Hypertranscendence of solutions of iterated functional equations and Galois theory

Gwladys Fernandes

Université de Versailles Saint-Quentin en Yvelines

June 4, 2021

イロト イポト イヨト イヨト

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Definition 1.1

• A formal power series $f(z) \in \mathbb{C}[[z]]$ is hypertranscendental or differentially transcendental over $\mathbb{C}(z)$ if there is no non-zero polynomial $P(z, X_0, ..., X_n)$ with coefficients in \mathbb{C} such that:

$$P(z, f(z), f'(z), \ldots, f^{(n)}(z)) = 0,$$

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Definition 1.1

• A formal power series $f(z) \in \mathbb{C}[[z]]$ is hypertranscendental or differentially transcendental over $\mathbb{C}(z)$ if there is no non-zero polynomial $P(z, X_0, ..., X_n)$ with coefficients in \mathbb{C} such that:

$$P(z, f(z), f'(z), \ldots, f^{(n)}(z)) = 0,$$

2 A formal power series $f(z) \in \mathbb{C}[[z]]$ is *D*-finite over $\mathbb{C}(z)$ if it satisfies a linear differential equation with coefficients in $\mathbb{C}(z)$:

$$a_0(z)f(z) + \cdots + a_n(z)f^{(n)}(z) = 0,$$

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Theorem 1.1 (O. Hölder, 1887)

The Gamma function is hypertranscendental.

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Theorem 1.1 (O. Hölder, 1887)

The Gamma function is hypertranscendental.

It satisfies:

$$z\Gamma(z)-\Gamma(R(z))=0,$$

・ロト・日本・ キャー キー うくの

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

э.

Theorem 1.1 (O. Hölder, 1887)

The Gamma function is hypertranscendental.

It satisfies:

$$z\Gamma(z)-\Gamma(R(z))=0,$$

with

$$R(z) = z + 1 \in \mathbb{C}(z).$$

Hölder Hypertranscendental results Application: generating series of knight walks General problem

• An endomorphism of the algebra $\mathbb{C}(z)$ is given by $f \mapsto f(R(z))$, for some $R(z) \in \mathbb{C}(z)$.

- An endomorphism of the algebra $\mathbb{C}(z)$ is given by $f \mapsto f(R(z))$, for some $R(z) \in \mathbb{C}(z)$.
- An automorphism corresponds to a Möbius transformation:

$${\sf R}(z)=rac{{\sf a} z+b}{{\sf c} z+d}, \,\, {\sf a}, {\sf b}, {\sf c}, {\sf d}\in \mathbb{C}, \,\, {\sf a} d-{\sf b} {\sf c}
eq 0.$$

- An endomorphism of the algebra $\mathbb{C}(z)$ is given by $f \mapsto f(R(z))$, for some $R(z) \in \mathbb{C}(z)$.
- An automorphism corresponds to a Möbius transformation:

$${\sf R}(z)=rac{{\sf a} z+b}{{\sf c} z+d}, \,\, {\sf a}, {\sf b}, {\sf c}, {\sf d}\in \mathbb{C}, \,\, {\sf a} d-{\sf b} {\sf c}
eq 0.$$

• Let us assume that $R(\alpha) = \alpha$. In a neighbourhood of α :

$$|R(z) - \alpha| \simeq |R'(\alpha)| \cdot |z - \alpha|.$$

イロト イボト イヨト イヨト

3

- An endomorphism of the algebra $\mathbb{C}(z)$ is given by $f \mapsto f(R(z))$, for some $R(z) \in \mathbb{C}(z)$.
- An automorphism corresponds to a Möbius transformation:

$${\sf R}(z)=rac{{\sf a} z+b}{{\sf c} z+d}, \,\, {\sf a}, {\sf b}, {\sf c}, {\sf d}\in \mathbb{C}, \,\, {\sf a} d-{\sf b} {\sf c}
eq 0.$$

• Let us assume that $R(\alpha) = \alpha$. In a neighbourhood of α :

$$|R(z) - \alpha| \simeq |R'(\alpha)| \cdot |z - \alpha|.$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

э.

• Nature of the fixed point of $R \iff$ convergence of $(R^n(z))_n$ near α .

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

We say that a fixed point α is:

• attracting if $0 < |R'(\alpha)| < 1$,

- attracting if $0 < |R'(\alpha)| < 1$,
- **2** super-attracting if $|R'(\alpha)| = 0$,

- attracting if $0 < |R'(\alpha)| < 1$,
- **3** super-attracting if $|R'(\alpha)| = 0$,
- **③** repelling if $|R'(\alpha)| > 1$,

- attracting if $0 < |R'(\alpha)| < 1$,
- **2** super-attracting if $|R'(\alpha)| = 0$,
- **3** repelling if $|R'(\alpha)| > 1$,
- **③** rationally indifferent if $R'(\alpha)$ is a root of unity,

▲□▶▲□▶▲□▶▲□▶ □ の00

- attracting if $0 < |R'(\alpha)| < 1$,
- **2** super-attracting if $|R'(\alpha)| = 0$,
- 3 repelling if $|R'(\alpha)| > 1$,
- **③** rationally indifferent if $R'(\alpha)$ is a root of unity,
- **(a)** irrationally indifferent if $|R'(\alpha)| = 1$ and if $R'(\alpha)$ is not a root of unity.

- attracting if $0 < |R'(\alpha)| < 1$,
- **2** super-attracting if $|R'(\alpha)| = 0$,
- **3** repelling if $|R'(\alpha)| > 1$,
- **③** rationally indifferent if $R'(\alpha)$ is a root of unity,
- **(a)** irrationally indifferent if $|R'(\alpha)| = 1$ and if $R'(\alpha)$ is not a root of unity.
- In the sequel, we assume that $\alpha = 0$.

Theorem 1.2 (J. F. Ritt, 1926; P.-G. Becker and W. Bergweiler , 1995)

Let $R \in \mathbb{C}(z)$, of degree at least 2. We consider the Schröder's, Böttcher's and Abel's equations:

Theorem 1.2 (J. F. Ritt, 1926; P.-G. Becker and W. Bergweiler , 1995)

Let $R \in \mathbb{C}(z)$, of degree at least 2. We consider the Schröder's, Böttcher's and Abel's equations:

• $R(f(z)) = f(qz), q \in \mathbb{C}^*$.

Theorem 1.2 (J. F. Ritt, 1926; P.-G. Becker and W. Bergweiler , 1995)

Let $R \in \mathbb{C}(z)$, of degree at least 2. We consider the Schröder's, Böttcher's and Abel's equations:

- $R(f(z)) = f(qz), q \in \mathbb{C}^*$.
- $R(f(z)) = f(z^d), d \ge 2$ integer.

Theorem 1.2 (J. F. Ritt, 1926; P.-G. Becker and W. Bergweiler , 1995)

Let $R \in \mathbb{C}(z)$, of degree at least 2. We consider the Schröder's, Böttcher's and Abel's equations:

- $R(f(z)) = f(qz), q \in \mathbb{C}^*$.
- $R(f(z)) = f(z^d), d \ge 2$ integer.
- f(R(z)) = f(z) + 1.

Theorem 1.2 (J. F. Ritt, 1926; P.-G. Becker and W. Bergweiler , 1995)

Gwladys Fernandes

Let $R \in \mathbb{C}(z)$, of degree at least 2. We consider the Schröder's, Böttcher's and Abel's equations:

- $R(f(z)) = f(qz), q \in \mathbb{C}^*$.
- $R(f(z)) = f(z^d), d \ge 2$ integer.
- f(R(z)) = f(z) + 1.

Except in some cases, solutions of Equations (S), (B) and (A) are hypertranscendental over $\mathbb{C}(z)$.

イロト イヨト イヨト

э.

Hölder Local rational dynamics and Ritt's theorem **Recent results** General problem

• Recall:

$$z\Gamma(z)-\Gamma(R(z))=0,$$

where $R(z) = z + 1 \in \mathbb{C}(z)$.

Hölder Local rational dynamics and Ritt's theorem **Recent results** General problem

• Recall:

$$z\Gamma(z)-\Gamma(R(z))=0,$$

where $R(z) = z + 1 \in \mathbb{C}(z)$.

• **Problem**: let $R \in \mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^n a_i(z) f\left(R^i(z)\right) = 0.$$

Hölder Local rational dynamics and Ritt's theorem **Recent results** General problem

• Recall:

$$z\Gamma(z)-\Gamma(R(z))=0,$$

where $R(z) = z + 1 \in \mathbb{C}(z)$.

• **Problem**: let $R \in \mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^n a_i(z) f\left(R^i(z)\right) = 0.$$

Theorem 1.3 (B. Adamczewski, T. Dreyfus, C. Hardouin, 2019)

If R(z) = z + h or qz or z^d , the solutions of

$$\sum_{i=0}^{n} a_i(z) f\left(R^i(z)\right) = 0$$

are either hypertranscendental or in the "base field".

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Previous cases

• General linear case:

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Previous cases

• General linear case:

$$\sum_{i=0}^{n} a_i(z) f\left(R^i(z)\right) = 0$$

ふりてい 前、本田を入田を入日を

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Previous cases

• General linear case:

$$\sum_{i=0}^{n} a_i(z) f\left(R^i(z)\right) = 0 \xrightarrow{g(qz) = R(g(z))}$$

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Previous cases

• General linear case:

$$\sum_{i=0}^n a_i(z) f\left(R^i(z)\right) = 0 \xrightarrow{g(qz) = R(g(z))} \sum_{i=0}^n a_i(g(z)) (f \circ g)\left(q^i z\right).$$

Hölder Local rational dynamics and Ritt's theorem Recent results General problem

Previous cases

• General linear case:

$$\sum_{i=0}^n a_i(z) f\left(R^i(z)\right) = 0 \xrightarrow{g(qz)=R(g(z))} \sum_{i=0}^n a_i(g(z))(f \circ g)\left(q^i z\right).$$

• Coefficients $a_i(g(z)) \in \mathbb{C}(z)$ if R is a Möbius transformation but not in general.

• C algebraically closed field of characteristic zero. $C = \mathbb{C}$.

- C algebraically closed field of characteristic zero. $C = \mathbb{C}$.
- $\mathbb{F} := C((z)).$

- *C* algebraically closed field of characteristic zero. $C = \mathbb{C}$.
- $\mathbb{F} := C((z)).$
- \mathbb{K} the algebraic closure of C(z) over \mathbb{F} .

- *C* algebraically closed field of characteristic zero. $C = \mathbb{C}$.
- $\mathbb{F} := C((z)).$
- \mathbb{K} the algebraic closure of C(z) over \mathbb{F} .
- $R \in \mathbb{K}$, R(0) = 0.

- *C* algebraically closed field of characteristic zero. $C = \mathbb{C}$.
- $\mathbb{F} := C((z)).$
- \mathbb{K} the algebraic closure of C(z) over \mathbb{F} .
- $R \in \mathbb{K}$, R(0) = 0.
- Endomorphism

 $\Phi_R : \mathbb{F} \to \mathbb{F}$ $f(z) \mapsto f(R(z)).$

Framework Statement Elements of the proof Case of *R* algebraic

• Let us consider the equation:

y(R(t))=R'(t)y(t).

Framework Statement Elements of the proof Case of *R* algebraic

• Let us consider the equation:

y(R(t))=R'(t)y(t).

• There exists a formal solution ψ .

• Let us consider the equation:

y(R(t))=R'(t)y(t).

- There exists a formal solution $\psi.$
- $\psi \in C[[t]]$ if $R'(0) \neq 0$.

イロト イヨト イヨト

э.

• Let us consider the equation:

y(R(t))=R'(t)y(t).

- There exists a formal solution $\psi.$
- $\psi \in C[[t]]$ if $R'(0) \neq 0$.
- $\psi \in C[[t]][\log(t)]$ if R'(0) = 0.

Framework Statement Elements of the proof Case of *R* algebraic

Ritt

Theorem 2.1 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{C}(z)$, not in the exceptions of Ritt's theorem.

Theorem 2.1 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{C}(z)$, not in the exceptions of Ritt's theorem. Let $f \in \mathbb{F}$ such that $\Phi_R(f) = f + b$, for some $b \in \mathbb{K}$, $b \neq 0$.

Theorem 2.1 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{C}(z)$, not in the exceptions of Ritt's theorem. Let $f \in \mathbb{F}$ such that $\Phi_R(f) = f + b$, for some $b \in \mathbb{K}$, $b \neq 0$. Then either $f \in \mathbb{K}$ or f is hypertranscendental over \mathbb{K} .

Framework Statement Elements of the proof Case of *R* algebraic

• Ingredient 1:

Framework Statement Elements of the proof Case of R algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

Framework Statement Elements of the proof Case of R algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

• Ingredient 2:

Framework Statement Elements of the proof Case of *R* algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

• Ingredient 2:

Proposition 2.1 (C. Hardouin and M. Singer, 2008; L. Di Vizio, 2018)

Framework Statement Elements of the proof Case of *R* algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

• Ingredient 2:

Proposition 2.1 (C. Hardouin and M. Singer, 2008; L. Di Vizio, 2018) Let $b \in \mathbb{K}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ and let $f \in \mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ be a solution of $\Phi_{R}(y) = y + b$.

Framework Statement Elements of the proof Case of *R* algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

• Ingredient 2:

Proposition 2.1 (C. Hardouin and M. Singer, 2008; L. Di Vizio, 2018)

Let $b \in \mathbb{K}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ and let $f \in \mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ be a solution of $\Phi_{R}(y) = y + b$. The following statements are equivalent:

Framework Statement Elements of the proof Case of *R* algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

• Ingredient 2:

Proposition 2.1 (C. Hardouin and M. Singer, 2008; L. Di Vizio, 2018) Let $b \in \mathbb{K}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ and let $f \in \mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ be a solution of $\Phi_{R}(y) = y + b$. The following statements are equivalent: There exist $n \ge 0, \lambda_{0}, \dots, \lambda_{n} \in C$, not all zero, and $g \in \mathbb{K}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ such that $\lambda_{0}b + \lambda_{1}\partial(b) + \dots + \lambda_{n}\partial^{n}(b) = \Phi_{R}(g) - g$.

Framework Statement Elements of the proof Case of *R* algebraic

• Ingredient 1: the derivation
$$\partial := \psi \frac{d}{dt}$$
 over $\mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ commutes to Φ_{R} :
 $\partial \circ \Phi_{R} = \Phi_{R} \circ \partial$.

• Ingredient 2:

Proposition 2.1 (C. Hardouin and M. Singer, 2008; L. Di Vizio, 2018) Let $b \in \mathbb{K}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ and let $f \in \mathbb{F}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)_{i}$ be a solution of $\Phi_{R}(y) = y + b$. The following statements are equivalent: There exist $n \ge 0, \lambda_{0}, \dots, \lambda_{n} \in C$, not all zero, and $g \in \mathbb{K}\left(\left(\frac{d}{dt}\right)^{i}(\psi)\right)$, such that

 $\lambda_0 b + \lambda_1 \partial(b) + \cdots + \lambda_n \partial^n(b) = \Phi_R(g) - g.$

2) f is differentially algebraic over \mathbb{K} .

Framework Statement Elements of the proof Case of *R* algebraic

•
$$\psi(R(t)) = R'(t)\psi(t)$$
.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

- $\psi(R(t)) = R'(t)\psi(t)$.
- If R ∈ C(z), not in the exceptions of Ritt's theorem, the hypertranscendence of ψ comes from the theorem of Ritt, and Becker-Bergweiler.

- $\psi(R(t)) = R'(t)\psi(t)$.
- If R ∈ C(z), not in the exceptions of Ritt's theorem, the hypertranscendence of ψ comes from the theorem of Ritt, and Becker-Bergweiler.
- **Example**: If σ is solution of the Schröder's equation:

 $R(\sigma(z)) = \sigma(qz).$

イロト イボト イヨト イヨト

3

- $\psi(R(t)) = R'(t)\psi(t)$.
- If R ∈ C(z), not in the exceptions of Ritt's theorem, the hypertranscendence of ψ comes from the theorem of Ritt, and Becker-Bergweiler.
- **Example**: If σ is solution of the Schröder's equation:

$$R(\sigma(z)) = \sigma(qz).$$

• Then $\tau = \sigma^{-1}$ is solution of the equation:

$$au(R(t)) = q au(t).$$

イロト イボト イヨト イヨト

- $\psi(R(t)) = R'(t)\psi(t)$.
- If R ∈ C(z), not in the exceptions of Ritt's theorem, the hypertranscendence of ψ comes from the theorem of Ritt, and Becker-Bergweiler.
- **Example**: If σ is solution of the Schröder's equation:

$$R(\sigma(z)) = \sigma(qz).$$

• Then $\tau=\sigma^{-1}$ is solution of the equation:

$$\tau(R(t)) = q\tau(t).$$

• $\psi:=\frac{\tau}{\tau'}$ satisfies the equation of the iterated logarithm.

- $\psi(R(t)) = R'(t)\psi(t)$.
- If R ∈ C(z), not in the exceptions of Ritt's theorem, the hypertranscendence of ψ comes from the theorem of Ritt, and Becker-Bergweiler.
- **Example**: If σ is solution of the Schröder's equation:

$$R(\sigma(z)) = \sigma(qz).$$

• Then $\tau=\sigma^{-1}$ is solution of the equation:

$$\tau(R(t)) = q\tau(t).$$

• $\psi := \frac{\tau}{\tau'}$ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)

If $R \in \mathbb{C}(z)$, not in the exceptions of Ritt's theorem, then ψ is hypertranscendental.

Framework Statement Elements of the proof **Case of** *R* **algebraic**

Ingredients

Theorem 2.2 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{K}$.

Ingredients

Theorem 2.2 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{K}$. Assume that ψ is hypertranscendental over \mathbb{K} .

Ingredients

Theorem 2.2 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{K}$. Assume that ψ is hypertranscendental over \mathbb{K} . Let $f \in \mathbb{F}$ such that $\Phi_R(f) = f + b$, for some $b \in \mathbb{K}$, $b \neq 0$.

Ingredients

Theorem 2.2 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{K}$. Assume that ψ is hypertranscendental over \mathbb{K} . Let $f \in \mathbb{F}$ such that $\Phi_R(f) = f + b$, for some $b \in \mathbb{K}$, $b \neq 0$. Then either $f \in \mathbb{K}$ or f is hypertranscendental over \mathbb{K} .

Ingredients

Theorem 2.2 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)

Let $R \in \mathbb{K}$. Assume that ψ is hypertranscendental over \mathbb{K} . Let $f \in \mathbb{F}$ such that $\Phi_R(f) = f + b$, for some $b \in \mathbb{K}$, $b \neq 0$. Then either $f \in \mathbb{K}$ or f is hypertranscendental over \mathbb{K} .

 $\psi(R(t))=R'(t)\psi(t).$

The knight walks: in the quarter plane, begin at (1,1), moves in $\{(-1,2), (2,-1)\}$.

The knight walks: in the quarter plane, begin at (1,1), moves in $\{(-1,2), (2,-1)\}$. If $i, j \in \mathbb{Z}_{\geq 0}$, let $q_{i,j}$ be the number of walks in the quarter plane ending at (i, j).

The knight walks: in the quarter plane, begin at (1,1), moves in $\{(-1,2), (2,-1)\}$. If $i, j \in \mathbb{Z}_{\geq 0}$, let $q_{i,j}$ be the number of walks in the quarter plane ending at (i, j). Generating function of the walk:

The knight walks: in the quarter plane, begin at (1,1), moves in $\{(-1,2), (2,-1)\}$. If $i, j \in \mathbb{Z}_{\geq 0}$, let $q_{i,j}$ be the number of walks in the quarter plane ending at (i, j). Generating function of the walk:

$$Q(x,y) = \sum_{i,j\geq 0} q_{i,j} x^i y^j.$$

The knight walks: in the quarter plane, begin at (1,1), moves in $\{(-1,2), (2,-1)\}$. If $i, j \in \mathbb{Z}_{\geq 0}$, let $q_{i,j}$ be the number of walks in the quarter plane ending at (i, j). Generating function of the walk:

$$Q(x,y) = \sum_{i,j\geq 0} q_{i,j} x^i y^j.$$

Theorem 3.1 (M. Bousquet-Melou, M. Petkovsek, 2003)

Q is not D-finite.

・ロト・西ト・田・・田・ つくぐ

•
$$G(R(x)) = -G(x) + x^2 R(x)$$
.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.
- **Problem**: let $R \in \mathbb{C}((z))$, algebraic over $\mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^{''}a_i(z)f\left(R^i(z)\right)=0.$$

イロト イヨト イヨト

э.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.
- **Problem**: let $R \in \mathbb{C}((z))$, algebraic over $\mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^{''}a_i(z)f\left(R^i(z)\right)=0.$$

• **Particular case**: inhomogeneous equation of order 1. The proof of the **hypertranscendence** of ψ is crucial.

イロト イポト イヨト イヨト

э.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.
- **Problem**: let $R \in \mathbb{C}((z))$, algebraic over $\mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^{''}a_i(z)f\left(R^i(z)\right)=0.$$

- **Particular case**: inhomogeneous equation of order 1. The proof of the **hypertranscendence** of ψ is crucial.
- New proof of Ritt's result with L. Di Vizio.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.
- **Problem**: let $R \in \mathbb{C}((z))$, algebraic over $\mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^{\prime\prime}a_i(z)f\left(R^i(z)\right)=0.$$

- **Particular case**: inhomogeneous equation of order 1. The proof of the **hypertranscendence** of ψ is crucial.
- New proof of Ritt's result with L. Di Vizio.
 - Use of Galois theory.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.
- **Problem**: let $R \in \mathbb{C}((z))$, algebraic over $\mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^{\prime\prime}a_i(z)f\left(R^i(z)\right)=0.$$

- **Particular case**: inhomogeneous equation of order 1. The proof of the **hypertranscendence** of ψ is crucial.
- New proof of Ritt's result with L. Di Vizio.
 - Use of Galois theory.
 - Less technical arguments.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

э.

- $G(R(x)) = -G(x) + x^2 R(x)$.
- $G(x) = x^3 Q(x, 0)$.
- *R* is an **algebraic** function.
- **Problem**: let $R \in \mathbb{C}((z))$, algebraic over $\mathbb{C}(z)$. Study the hypertranscendence of a solution f of:

$$\sum_{i=0}^{\prime\prime}a_i(z)f\left(R^i(z)\right)=0.$$

- **Particular case**: inhomogeneous equation of order 1. The proof of the **hypertranscendence** of ψ is crucial.
- New proof of Ritt's result with L. Di Vizio.
 - Use of Galois theory.
 - Less technical arguments.
 - Could be adapted to the problem of knight walks.

Thank you for your attention!

・ロト・日本・日本・日本・日本・日本