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Hölder
Local rational dynamics and Ritt’s theorem
Recent results
General problem

Definition 1.1
1 A formal power series f (z) ∈ C[[z ]] is hypertranscendental or differentially
transcendental over C(z) if there is no non-zero polynomial P(z ,X0, . . . ,Xn)
with coefficients in C such that:

P(z , f (z), f ′(z), . . . , f (n)(z)) = 0,

2 A formal power series f (z) ∈ C[[z ]] is D-finite over C(z) if it satisfies a linear
differential equation with coefficients in C(z):

a0(z)f (z) + · · ·+ an(z)f (n)(z) = 0,
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Theorem 1.1 (O. Hölder, 1887)
The Gamma function is hypertranscendental.

It satisfies:

zΓ(z)− Γ(R(z)) = 0,

with

R(z) = z + 1 ∈ C(z).
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Local rational dynamics and Ritt’s theorem
Recent results
General problem

An endomorphism of the algebra C(z) is given by f 7→ f (R(z)), for some
R(z) ∈ C(z).

An automorphism corresponds to a Möbius transformation:

R(z) = az + b
cz + d , a, b, c, d ∈ C, ad − bc 6= 0.

Let us assume that R(α) = α. In a neighbourhood of α:

|R(z)− α| ' |R ′(α)|.|z − α|.

Nature of the fixed point of R ! convergence of (Rn(z))n near α.
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We say that a fixed point α is:

1 attracting if 0 < |R ′(α)| < 1,

2 super-attracting if |R ′(α)| = 0,

3 repelling if |R ′(α)| > 1,

4 rationally indifferent if R ′(α) is a root of unity,

5 irrationally indifferent if |R ′(α)| = 1 and if R ′(α) is not a root of unity.

In the sequel, we assume that α = 0.
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General problem

Theorem 1.2 (J. F. Ritt, 1926; P.-G. Becker and W. Bergweiler , 1995)
Let R ∈ C(z), of degree at least 2. We consider the Schröder’s, Böttcher’s and Abel’s
equations:

R(f (z)) = f (qz), q ∈ C∗.
R(f (z)) = f (zd ), d ≥ 2 integer.
f (R(z)) = f (z) + 1.

Except in some cases, solutions of Equations (S), (B) and (A) are hypertranscendental
over C(z).
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Recall:
zΓ(z)− Γ(R(z)) = 0,

where R(z) = z + 1 ∈ C(z).

Problem: let R ∈ C(z). Study the hypertranscendence of a solution f of:
n∑

i=0
ai (z)f

(
R i (z)

)
= 0.

Theorem 1.3 (B. Adamczewski, T. Dreyfus, C. Hardouin, 2019)
If R(z) = z + h or qz or zd , the solutions of

n∑
i=0

ai (z)f
(
R i (z)

)
= 0

are either hypertranscendental or in the "base field".
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Previous cases

General linear case:

n∑
i=0

ai (z)f
(
R i (z)

)
= 0 g(qz)=R(g(z))−−−−−−−−−→

n∑
i=0

ai (g(z))(f ◦ g)
(
qiz
)
.

Coefficients ai (g(z)) ∈ C(z) if R is a Möbius transformation but not in general.
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Framework
Statement
Elements of the proof
Case of R algebraic

C algebraically closed field of characteristic zero. C = C.

F := C((z)).

K the algebraic closure of C(z) over F.

R ∈ K, R(0) = 0.

Endomorphism

ΦR : F→ F
f (z) 7→ f (R(z)).
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Framework
Statement
Elements of the proof
Case of R algebraic

Let us consider the equation:

y(R(t)) = R ′(t)y(t).

There exists a formal solution ψ.

ψ ∈ C [[t]] if R ′(0) 6= 0.

ψ ∈ C [[t]][log(t)] if R ′(0) = 0.
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Framework
Statement
Elements of the proof
Case of R algebraic

Ritt

Theorem 2.1 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)
Let R ∈ C(z), not in the exceptions of Ritt’s theorem.

Let f ∈ F such that ΦR(f ) = f + b, for some b ∈ K, b 6= 0.
Then either f ∈ K or f is hypertranscendental over K.
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Framework
Statement
Elements of the proof
Case of R algebraic

Ingredient 1:

the derivation ∂ := ψ d
dt over F

((
d
dt

)i
(ψ)

)
i
commutes to ΦR :

∂ ◦ ΦR = ΦR ◦ ∂.

Ingredient 2:

Proposition 2.1 (C. Hardouin and M. Singer, 2008; L. Di Vizio, 2018)

Let b ∈ K
((

d
dt

)i
(ψ)

)
i
and let f ∈ F

((
d
dt

)i
(ψ)

)
i
be a solution of ΦR(y) = y + b.

The following statements are equivalent:

1 There exist n ≥ 0, λ0, . . . , λn ∈ C, not all zero, and g ∈ K
(( d

dt
)i (ψ)

)
i
such that

λ0b + λ1∂(b) + · · ·+ λn∂
n(b) = ΦR(g)− g.

2 f is differentially algebraic over K.
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Framework
Statement
Elements of the proof
Case of R algebraic

ψ(R(t)) = R ′(t)ψ(t).

If R ∈ C(z), not in the exceptions of Ritt’s theorem, the hypertranscendence of
ψ comes from the theorem of Ritt, and Becker-Bergweiler.
Example: If σ is solution of the Schröder’s equation:

R(σ(z)) = σ(qz).

Then τ = σ−1 is solution of the equation:

τ(R(t)) = qτ(t).

ψ := τ
τ ′ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)
If R ∈ C(z), not in the exceptions of Ritt’s theorem, then ψ is hypertranscendental.

Gwladys Fernandes



Historical setting
Hypertranscendental results

Application: generating series of knight walks

Framework
Statement
Elements of the proof
Case of R algebraic

ψ(R(t)) = R ′(t)ψ(t).
If R ∈ C(z), not in the exceptions of Ritt’s theorem, the hypertranscendence of
ψ comes from the theorem of Ritt, and Becker-Bergweiler.

Example: If σ is solution of the Schröder’s equation:

R(σ(z)) = σ(qz).

Then τ = σ−1 is solution of the equation:

τ(R(t)) = qτ(t).

ψ := τ
τ ′ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)
If R ∈ C(z), not in the exceptions of Ritt’s theorem, then ψ is hypertranscendental.

Gwladys Fernandes



Historical setting
Hypertranscendental results

Application: generating series of knight walks

Framework
Statement
Elements of the proof
Case of R algebraic

ψ(R(t)) = R ′(t)ψ(t).
If R ∈ C(z), not in the exceptions of Ritt’s theorem, the hypertranscendence of
ψ comes from the theorem of Ritt, and Becker-Bergweiler.
Example: If σ is solution of the Schröder’s equation:

R(σ(z)) = σ(qz).

Then τ = σ−1 is solution of the equation:

τ(R(t)) = qτ(t).

ψ := τ
τ ′ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)
If R ∈ C(z), not in the exceptions of Ritt’s theorem, then ψ is hypertranscendental.

Gwladys Fernandes



Historical setting
Hypertranscendental results

Application: generating series of knight walks

Framework
Statement
Elements of the proof
Case of R algebraic

ψ(R(t)) = R ′(t)ψ(t).
If R ∈ C(z), not in the exceptions of Ritt’s theorem, the hypertranscendence of
ψ comes from the theorem of Ritt, and Becker-Bergweiler.
Example: If σ is solution of the Schröder’s equation:

R(σ(z)) = σ(qz).

Then τ = σ−1 is solution of the equation:

τ(R(t)) = qτ(t).

ψ := τ
τ ′ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)
If R ∈ C(z), not in the exceptions of Ritt’s theorem, then ψ is hypertranscendental.

Gwladys Fernandes



Historical setting
Hypertranscendental results

Application: generating series of knight walks

Framework
Statement
Elements of the proof
Case of R algebraic

ψ(R(t)) = R ′(t)ψ(t).
If R ∈ C(z), not in the exceptions of Ritt’s theorem, the hypertranscendence of
ψ comes from the theorem of Ritt, and Becker-Bergweiler.
Example: If σ is solution of the Schröder’s equation:

R(σ(z)) = σ(qz).

Then τ = σ−1 is solution of the equation:

τ(R(t)) = qτ(t).

ψ := τ
τ ′ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)
If R ∈ C(z), not in the exceptions of Ritt’s theorem, then ψ is hypertranscendental.

Gwladys Fernandes



Historical setting
Hypertranscendental results

Application: generating series of knight walks

Framework
Statement
Elements of the proof
Case of R algebraic

ψ(R(t)) = R ′(t)ψ(t).
If R ∈ C(z), not in the exceptions of Ritt’s theorem, the hypertranscendence of
ψ comes from the theorem of Ritt, and Becker-Bergweiler.
Example: If σ is solution of the Schröder’s equation:

R(σ(z)) = σ(qz).

Then τ = σ−1 is solution of the equation:

τ(R(t)) = qτ(t).

ψ := τ
τ ′ satisfies the equation of the iterated logarithm.

Théorème 2.1 (For example, M. Aschenbrenner and W. Bergweiler)
If R ∈ C(z), not in the exceptions of Ritt’s theorem, then ψ is hypertranscendental.

Gwladys Fernandes



Historical setting
Hypertranscendental results

Application: generating series of knight walks

Framework
Statement
Elements of the proof
Case of R algebraic

Ingredients

Theorem 2.2 (Work in progress with A. Bostan, L. Di Vizio and M. Mishna)
Let R ∈ K.

Assume that ψ is hypertranscendental over K.
Let f ∈ F such that ΦR(f ) = f + b, for some b ∈ K, b 6= 0.
Then either f ∈ K or f is hypertranscendental over K.

ψ(R(t)) = R ′(t)ψ(t).
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Definition

Definition 3.1
The knight walks: in the quarter plane, begin at (1, 1), moves in {(−1, 2), (2,−1)}.

If i , j ∈ Z≥0, let qi ,j be the number of walks in the quarter plane ending at (i , j).
Generating function of the walk:

Q(x , y) =
∑
i ,j≥0

qi ,jx iy j .

Theorem 3.1 (M. Bousquet-Melou, M. Petkovsek, 2003)
Q is not D-finite.
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Theorem 2

G(R(x)) = −G(x) + x2R(x).

G(x) = x3Q(x , 0).
R is an algebraic function.
Problem: let R ∈ C((z)), algebraic over C(z). Study the hypertranscendence of
a solution f of: n∑

i=0
ai (z)f

(
R i (z)

)
= 0.

Particular case: inhomogeneous equation of order 1. The proof of the
hypertranscendence of ψ is crucial.
New proof of Ritt’s result with L. Di Vizio.

Use of Galois theory.
Less technical arguments.
Could be adapted to the problem of knight walks.
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Thank you for your attention!

Gwladys Fernandes
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