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ALGORITHMS SEMINAR

1999{2000

Fr�ed�eri
 Chyzak

1

(Editor)

Abstra
t

These seminar notes 
onstitute the pro
eedings of a seminar devoted to the analysis of

algorithms and related topi
s. The subje
ts 
overed in
lude 
ombinatori
s, symboli
 
om-

putation, probabilisti
 methods, and average-
ase analysis of algorithms and data stru
tures.

This is the ninth in our series of seminar pro
eedings. The previous ones have appeared as INRIA

Resear
h Reports numbers 1779, 2130, 2381, 2669, 2992, 3267, 3504, and 3830. The 
ontent of these

pro
eedings 
onsists of summaries of the talks, usually written by a reporter from the audien
e.

2

The primary goal of the seminar is to 
over the major methods for the average-
ase analy-

sis of algorithms and data stru
tures. Neighbouring topi
s of study are 
ombinatori
s, symboli



omputation, asymptoti
 analysis, probabilisti
 methods, and 
omputational biology.

The study of 
ombinatorial obje
ts|their des
ription, their enumeration a

ording to various

parameters|arises naturally in the pro
ess of analysing algorithms that often involve 
lassi
al


ombinatorial stru
tures like strings, trees, graphs, and permutations.

Beside the traditional topi
s of 
ombinatori
s of words and algorithmi
s on words, over the years

an in
reasing interest has been given in the seminar to biologi
al appli
ations of 
ombinatori
s.

Symboli
 
omputation, and in parti
ular 
omputer algebra, plays an in
reasingly important

role in these areas. It provides a 
olle
tion of tools that allows one to atta
k 
omplex models of


ombinatori
s and the analysis of algorithms via generating fun
tions; at the same time, it inspires

the quest for developing ever more systemati
 solutions and de
ision pro
edures for the analysis of

well-
hara
terized 
lasses of problems.

The 31 arti
les in
luded in this book represent snapshots of 
urrent resear
h in these areas.

A tentative organization of their 
ontents is given below.

PART I. COMBINATORICS

In addition to its own traditions rooted in mathemati
s, the study of 
ombinatorial models arises

naturally in the pro
ess of analysing algorithms that often involve 
lassi
al 
ombinatorial stru
tures

like permutations, strings, trees, random walks, and graphs. Maps are a spe
ial 
lass of graphs that

are drawn in the plane. This is an a
tive �eld of resear
h to whi
h our seminar already dedi
ated

several sessions last year. Further progress has been made re
ently; this is reported in [1℄, [2℄, [3℄,

and [4℄. The talks [5℄ and [6℄ are 
on
erned with other types of graph enumerations: those of

non-
rossing 
on�gurations in the plane and of 
onstrained subgraphs of re
tangular grids. Models

of random automata have been developed re
ently. A simple 
lass of automata is introdu
ed in [7℄,

and a random generation algorithm is presented. A 
ombinatorially meaningful question is to

1

Partially supported by the IST Programme of the EU under 
ontra
t number IST-1999-14186 (ALCOM-FT).

2

The summaries for the past nine years are available on the web at the URL http://algo.inria.fr/seminars/.
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lassify 
ombinatorial models a

ording to the nature|rational, algebrai
, D-�nite, non-D-�nite|

of the 
orresponding generating fun
tions. Two di�erent viewpoints are given on this problem: the

talk [8℄ 
lassi�es the solutions to a general 
lass of multivariate re
urren
e systems, while several

models of random walks are 
ompared in [9℄. The \n! Conje
ture" in algebrai
 
ombinatori
s

asso
iates some ve
tor spa
e of polynomials to ea
h partition of the integer n and states that ea
h

of these spa
es has dimension n!. A re�nement of the 
onje
ture relates to Ma
donalds polynomials

and has been proved only re
ently. A ve
tor spa
e that in
ludes all the spa
es above is the obje
t

of study in [10℄.

[1℄ Enumeration of Planar Rooted Triangulations. J. Z. Gao.

[2℄ Some Sharp Con
entration Results about Random Planar Triangulations. J. Z. Gao.

[3℄ Planar Maps and Composition S
hemes. G. S
hae�er.

[4℄ Coales
en
e: Emergen
e of the Map{Airy Law. C. Banderier.

[5℄ Enumeration of Geometri
 Con�gurations on a Convex Polygon. M. Noy.

[6℄ Tutte Polynomials in Square Grids. M. Noy.

[7℄ Random Group Automata. C. Ni
aud.

[8℄ Solving Dis
rete Initial- and Boundary-Value Problems. M. Petkov�sek.

[9℄ Classifying ECO-Systems and Random Walks. C. Banderier.

[10℄ Combinatori
s of Harmoni
 Polynomials. F. Bergeron.

PART II. COMPUTER ALGEBRA AND SYMBOLIC METHODS

For a 
omputer algebra system, it is 
ru
ial to optimize the arithmeti
al operations on basi


obje
ts. In this spirit, 
lever algorithmi
 optimizations of existing algorithms are dis
ussed in [11℄,

and novel methods of lazy evaluation are presented in [12℄. These works are part of the few works

that provide 
omputer algebra pro
edures with a

urate 
omplexity analysis. Also fundamental is

the LLL algorithm; for example, it has re
ently been used as a 
ru
ial ingredient in an eÆ
ient

fa
toring algorithm. Summary [13℄ analyses three variants of LLL whi
h output bases of a similar

quality, but in a mu
h faster way on average. The Galois theory for di�erential equations is now


lassi
al and over the years has been the topi
 of several talks in our seminar. Re
ently, a Galois

theory has been developed for the 
ase of di�eren
e equations. The results are 
on
eptually similar

but have required a non-trivial adaptation. This is the topi
 of [14℄. A new algorithm to solve a


ertain 
lass of linear di�eren
e equations is presented in [15℄. As a transition to the next part, a

general symboli
 methodology to perform automati
 average-
ase analysis of algorithms is presented

in [16℄.

[11℄ EÆ
ient Algorithms on Numbers, Polynomials, and Series. P. Zimmermann.

[12℄ Relax But Don't Be Too Lazy. J. van der Hoeven.

[13℄ Threshold Phenomena in Random Latti
es and Redu
tion Algorithms. A. Akhavi.

[14℄ Eigenring and Redu
ibility of Di�eren
e Equations. R. Bomboy.

[15℄ Di�eren
e Equations with Hypergeometri
 CoeÆ
ients. M. Bronstein.

[16℄ Attribute Grammars and Automati
 Complexity Analysis. M. Mishna.

PART III. ANALYSIS OF ALGORITHMS AND DATA STRUCTURES

Continued fra
tions have made several appearan
es in this year's session of the seminar. Expan-

sion into 
ontinued fra
tion is 
losely related to the Eu
lidean algorithm; following previous works

on the arithmeti
al 
omplexity of these algorithms, [17℄ 
onsiders the 
orresponding bit 
omplex-

ity. The distribution of digits in 
ontinued fra
tions and other number representation systems is

studied in [18℄, where sorting algorithms based on su
h expansions are also analysed. The next

ii



two talks also deal with 
ontinued fra
tions, but are of a more number-theoreti
 nature. As a

follow-up to last year's series of talks by the same author, [19℄ provides the limiting distribution

of the alternating sum of the 
oeÆ
ients of a 
ontinued fra
tion; [20℄ dete
ts the trans
enden
e

of numbers from the digit stru
ture of their expansions into 
ontinued fra
tions or in some base b.

Summary [21℄ deals with the allo
ation of resour
es to 
onne
tion requests in a network, a problem

of graph 
olouring in disguise. A general basis for the analysis and synthesis of digital 
ir
uits is

provided in [22℄, together with unexpe
ted 
onne
tions between hardware design and the 
lassi
al

notion of automati
 sequen
es in number theory.

[17℄ Average Bit-Complexity of Eu
lidean Algorithms. B. Vall�ee.

[18℄ Continued Fra
tions, Comparison Algorithms and Fine Stru
ture Constants. Ph. Flajolet.

[19℄ Continued Fra
tions and Modular Forms. I. Vardi.

[20℄ Trans
enden
e of Numbers whose Expansion in Base b or into Continued Fra
tions is \Too

Regular." J.-P. Allou
he.

[21℄ Routing Permutations on Trees. S. Corteel.

[22℄ Syn
hronous De
ision Diagrams: a Data Stru
ture for Representing Finite Sequential Digital

Fun
tions. J. Vuillemin.

PART IV. COMPUTATIONAL BIOLOGY AND COMBINATORICS OF WORDS

The �rst three talks are of a biologi
al 
avour. Summary [23℄ is 
on
erned with determining the

lo
al statisti
al distribution of nu
leotides along a 
hromosome. Sear
hing genomi
 databases has

motivated the work [24℄ in whi
h the key tool is the 
lassi
al des
ription of the possible periods

in strings. Trees are another 
ombinatorial stru
ture 
entral to 
omputational biology. Indeed,

phylogeneti
 trees exhibit the evolution of a spe
ies, a gene, and so on. In this vein, [25℄ analyses

several methods of 
onstru
tion of 
lassi�
ation trees. More 
lassi
ally about 
ombinatori
s of

words, [26℄ presents a new data stru
ture used to design eÆ
ient string mat
hing algorithms: a

minimal automaton that stores the fa
tors of a word.

[23℄ Bayesian Approa
h to DNA Segmentation into Regions with Di�erent Average Nu
leotide

Composition. V. Makeev.

[24℄ Enumeration of Auto
orrelations and Computation of Their Populations.

�

E. Rivals.

[25℄ Classi�
ation by Trees: the Shape of the Inferred Tree Depends on the Algorithmi
 S
heme

Sele
ted. O. Gas
uel.

[26℄ Fa
tor Ora
le, SuÆx Ora
le. M. RaÆnot.

PART V. MISCELLANY

Two talks are 
on
erned with the analysis of algorithms or data stru
tures, but are of a more

probabilisti
 
avour. Random walks on graphs are studied in [27℄. Measures related to internal

path length in various models of possibly randomized sear
h trees and to the Qui
k�nd algorithm

are analysed in [28℄. The information-theoreti
 problem of sour
e 
oding is 
onsidered in great

generality in [29℄. The key question is to analyse the redundan
y of a sour
e. This relates to data


ompression by Hu�man 
odes, Shannon{Fano 
odes, and Lempel{Ziv algorithms. A dynami
al

system exhibiting 
haos is studied in [30℄; the iteration pro
ess is des
ribed in terms of a language

whose 
omplexity is sought. Finally, [31℄ dis
usses 
lassi
al models of statisti
al me
hani
s. This

re
e
ts the re
ent in
rease of interest in su
h problems in our seminar.

[27℄ On Random Graph Homomorphisms into Z. E. Mossel.

[28℄ Distributional Analysis of Re
ursive Algorithms by the Contra
tion Method. R. Neininger.

[29℄ Analyti
 Information Theory and the Redundan
y Rate Problem. W. Szpankowski.

iii



[30℄ Queues, Sta
ks, and Trans
endentality at the Transition to Chaos. C. Moore.

[31℄ Colorings, Potts Models, Height Representations, and Entropi
 For
es. C. Moore.
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Enumeration of Planar Rooted Triangulations

Jason Zhi
heng Gao

S
hool of Mathemati
s and Statisti
s, Carleton University

June 8, 2000

Summary by Gilles S
hae�er

This talk presents a joint work with I. M. Wanless and N. C. Wormald [5℄.

1. Introdu
tion

A planar map is a 
onne
ted graph embedded in the plane. In this talk, loops and multiple edges

are forbidden. A map is rooted if one edge is oriented. The start point of this root is 
alled the root

vertex, the fa
e on its right the root fa
e and the fa
e on its left the near fa
e. If the root and near

fa
e of a planar map are the same, the root is a bridge. By 
onvention the root is always taken so

that the root fa
e is the in�nite fa
e. The other fa
es are then 
alled interior fa
es. The degree of

a fa
e is its number of in
iden
es of edges (i.e., bridges 
ount for two). A triangulation is a map

whose fa
es all have degree three. A map is p-
onne
ted if at least p verti
es must be removed to

separate it into two 
onne
ted 
omponents.

Euler already enumerated triangulations of polygons in the 19th 
entury (they are Catalan), but

the enumeration of triangulations as de�ned here started with Tutte's work in the sixties. Several

families of planar rooted triangulations were in fa
t enumerated:

{ 4-
onne
ted triangulations (see [8℄: algebrai
 generating fun
tion and asymptoti
 are given),

{ 3-
onne
ted triangulations (see [2, 8℄: with n verti
es they are (4n+ 1)!=(n+ 1)! (3n + 2)!),

{ 2-
onne
ted allowing multiple edges (see [7℄: with n verti
es they are 3 �2

n

(3n)!=n! (2n+2)!),

{ all triangulations allowing loops and multiple edges (see [6℄: algebrai
 generating fun
tion

and asymptoti
 are given).

All these family of planar rooted triangulations have algebrai
 generating fun
tions and asymptoti


behaviors of the same form,




i

n

�5=2

(1=�

i

)

n

;

where n denotes the number of verti
es. For 
onne
tivity i from 1 to 4, the values of �

i

are

p

3=36; 2=27; 27=256; 4=27;

respe
tively. For no planar map is 6-
onne
ted, the only missing 
onne
tivity for triangulations

was 5, whi
h is the subje
t of the present study: it turns out that for 5-
onne
ted triangulations,

the generating fun
tion is algebrai
 of degree 6, and the asymptoti
 behavior is similar, with �

5

given as a root of a 
ertain polynomial P of degree 6 su
h that

�

5

� 0:2477:

It is amusing to remark that �

5

is not the smallest positive root the polynomial P .

The proof is based on skillful re�nements of the three original ingredients of Tutte's method:

root edge deletion, the quadrati
 method, and 
omposition s
hemes.



4 Enumeration of Planar Rooted Triangulations

2. Root Edge Deletion

The deletion of the root edge is maybe the simplest possible idea to de
ompose a map. It turns out

to be very eÆ
ient in providing fun
tional equation for generating fun
tions of \not-too-
onne
ted"

maps.

In general there are two 
ases in the root edge deletion pro
ess applied to a planar map M of a

family F :

{ either the root edge deletion separates M into two pie
es that more or less belong to F ,

{ or it yields dire
tly a map M

0

that belongs more or less to the family F . In this 
ase, M

0

usually has a larger root fa
e degree than M : the removal of the root has merged the root

and near fa
es of M .

This de
omposition 
an be made one-to-one, at the expense of taking the root fa
e degree into

a

ount. It then results into fun
tional equations for the generating fun
tion

F (x; y) =

X

n;k

f

n;k

x

n

y

k

;

where f

n;k

denote the number of maps with n inner verti
es and a root fa
e of degree k.

For instan
e let F (x; y) be the generating fun
tion of near-triangulations, i.e., maps with all fa
es

of degree three, ex
ept maybe the root fa
e. Then the root edge deletion yields

F (x; y) = y

2

+ y

�1

F (x; y)

2

+ xy

�1

�

F (x; u)� y

2

� yF

3

(x)F (x; y)

�

;

where F

3

(x) is the generating fun
tion of triangulations, i.e., F (x; y) = y

2

+F

3

(x)y

3

+O(y

4

). Indeed

in the right hand side, the three summands 
orrespond to three 
ases in the de
omposition of a

near-triangulation M :

{ M is the degenerate triangulation with one edge and two verti
es,

{ M is made of a 
ouple of triangulations separated by a rooted triangle,

{ or removing the root of M dire
tly yields a triangulation M

0

. In this 
ase, M

0

must not be

the degenerate triangulation, nor have a short diagonal 
utting it into a triangulation and a

near-triangulation (otherwise, repla
ing the root of M would 
reate a double edge).

In order to enumerate 5-
onne
ted triangulations, it turns out to be ne
essary to enumerate M-type

maps, i.e., maps whose interior fa
es have degree three or four. Their generating fun
tion

M(x; y; z) =

X

n;l;k

m

n;l;k

x

n

y

l

z

k

;

where m

n;l;k

denotes the number of rooted M-type maps with n triangular interior fa
es, l interior

quadrangular fa
es and a root fa
e of degree k, satis�es

M(x; y; z) = 1 + z

2

+M

3

(x; y)z

3

+M

4

(x; y)z

4

+O(z

5

)

where M

3

and M

4

denote the generating fun
tions of M-type maps with root fa
e of degree three

and four respe
tively.

The root edge deletion applied to M-type maps yields, with M

0

=M � 1,

M

0

= z

2

M

2

+ xz

�1

(M

0

� z

2

M � zM

3

M

0

) + yz

�2

(M

0

� z

2

� z

3

M

3

M � z

2

M

4

M

0

):

3. The Quadrati
 Method

The equations provided by root edge deletion have always the same 
avor: they involve a prin-


ipal generating fun
tion (F (y) for near-triangulations) in whi
h the equation is quadrati
, and a

se
ondary generating fun
tion not depending on y (F

3

for near-triangulations).



J. Z. Gao, summary by G. S
hae�er 5

The quadrati
 method, as used by Tutte, pro
eeds as follows

{ Write the equation in the form A

2

= B, where A and B are polynomials in all variables and

generating fun
tions and where B does not 
ontain the prin
ipal generating fun
tion. E.g.,

for near-triangulations this gives

A = F +

1

2

(x� xyF

3

� y); and B =

1

4

(x� xyF

3

� y)

2

+ xy

2

� y

3

:

In general this is possible be
ause the equation is quadrati
 in F .

{ Show that there exists a power series Y (x) su
h that

A

�

x; Y (x); F

3

(x); F

�

x; Y (x)

�

�

= 0:

{ Then

B

�

x; Y (x); F

3

(x)

�

=

�B

�y

�

x; Y (x); F

3

(x)

�

= 0

and, provided this system is not degenerate, this proves that F

3

and Y are algebrai
.

In the 
ase of M-type maps, the situation is somewhat more involved, be
ause of the presen
e of two

se
ondary generating fun
tions. However using a theorem of Brown on power series that are square

roots [3℄, Bender and Can�eld have dealt with a similar situation in [1℄. Upon �nding appropriate

parametrizations to make the 
omputation tra
table with Maple, this approa
h yields

M

3

= u

3

� 2uv + u; and M

4

= 3u

4

� 5u

2

v + u

2

� v

2

+ v + 2;

where u = u(x; y) and v = v(x; y) are the power series uniquely determined by

x =

3u

3

� 2uv + u

(1 + v)

3

; and y =

v � u

2

(1 + v)

3

:

4. Composition S
hemes and Non-Uniqueness

Root edge deletion does not work well on 4-
onne
ted triangulations or triangulations with

higher 
onne
tivity, be
ause the deletion of the root 
an produ
e maps with smaller 
onne
tivity

that are hard to de
ompose ba
k into maps with high 
onne
tivity. To enumerate 4-
onne
ted

triangulations, Tutte introdu
ed 
ompositions s
hemes.

First remark that a triangulation is 3-
onne
ted as soon as it 
ontains no loop and multiple edges,

4-
onne
ted if all its 
y
les of length three bound fa
es, and 5-
onne
ted if moreover it 
ontains no

4-
y
les with a vertex inside.

In the last two se
tions we were able to determine the generating fun
tion F

3

(x) of (3-
onne
ted)

triangulations. Now take a 3-
onne
ted triangulation M . Its 
y
les of length three are ordered by

in
lusion. In parti
ular they are all inside the outer 
y
le of the root fa
e; 
all a 
y
le of length three

maximal if it is not inside any other one. A maximal 
y
le either bounds a fa
e or 
ontains at least

one vertex in its inside. In the latter 
ase, the maximal 
y
le and its inside form a triangulation.

Removing the triangulation inside ea
h maximal 
y
le yields the de
omposition of M into a

4-
onne
ted triangulationM

0

plus one triangulation per fa
e ofM

0

(possibly redu
ed to a triangle).

In terms of generating fun
tions, this yields

F

3

(x)� 1 =

X

k�1

G

k

x

k

F

3

(x)

2k+1

where G

k

is the number of 4-
onne
ted triangulations with k verti
es (and 2k+1 inner fa
es). This

yields a fon
tional equation of the 
omposition type

F

3

(x) = 1 + F

3

(x)G

�

xF

3

(x)

2

�

;
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whi
h properly determines the generating fun
tionG(a) in terms of f(x) = F

3

(x)

2

. Indeed, 
onsider

the equation a = xf(x). As f(x) = 1+O(x) this equation properly de�nes a power series x(a) and

from the 
omposition equation,

�

1�G(a)

�

2

f

�

x(a)

�

=

�

1�G(a)

�

2

a=x(a) = 1:

Now as F

3

(x) is algebrai
, so is f(x) and there is a polynomial P (x; f) su
h that P (x; f(x)) = 0.

Take x = x(a) so that

P

�

x(a); f

�

x(a)

�

�

= P

�

x(a); a

�

= 0;

and we 
on
lude that x(a), and thus G(a), are algebrai
.

The next step is to go from 4-
onne
ted triangulation to 5-
onne
ted ones. The idea is again to

start with a triangulation and remove the inside of any non empty 
y
le of length three or four.

However in general this yields an M-type map and not a triangulation.

The 
omposition s
heme has thus to be de�ned between 4- and 5-
onne
ted M-type maps. The

same te
hnique immediately applies to remove 
y
les of length three in M-type maps, but for


y
le of length four, a new diÆ
ulty appear: two four 
y
les 
an overlap, making the de�nition of

maximal four-
y
les no so easy.

Finally, it turns out that a 
areful 
ase study allows to 
lassify overlapping four-
y
les and work

out the desired 
omposition s
hemes.

5. Con
lusion

Using the latter 
omposition s
heme and the results for M

3

(x; y) and M

4

(x; y), algebrai
 equa-

tions for the generating fun
tion T (x) of 5-
onne
ted triangulations 
an �nally be derived. These

equations take the form of a parametrization T (x) = �(x; s) where s has a relatively 
ompa
t

algebrai
 equation (unlike T (x)).

The asymptoti
 is then obtained from a 
areful analysis of the possible sour
es of singularity

in the parametrization. This indire
t approa
h seems more easily tra
table than dealing with the

expli
it polynomial equation giving T (x).

This 
on
ludes the story for planar triangulations. As far as exa
t expression for generating

fun
tions are 
on
erned, for general planar maps, there is no more than Tutte's result giving

3-
onne
ted ones. On higher genus surfa
es, 2-
onne
tivity was the limit until the very re
ent

result of [4℄ for 3-
onne
ted triangulations of the proje
tive plane.
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s and Statisti
s, Carleton University
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Summary by Cyril Banderier

Abstra
t

The theory of random maps has a relatively short history when 
ompared to the theory of

random graphs. In this talk, we mention some re
ent results 
on
erning sharp 
on
entration

properties of parameters in random planar triangulations. Examples in
lude the maximum

vertex degree, the largest 
omponent, the number of 
opies of a given submap, and the

number of 
ippable edges. This is joint work by Jason Zhi
heng Gao and Ni
holas Wormald

(Melbourne, Australia).

1. Introdu
tion

Draw a graph on a sphere and then mark (or \root") a fa
e, an edge of this fa
e and a vertex

of this edge. Then proje
t the graph on the plane (e.g., by a stereographi
 proje
tion): you get a

planar map. Without loss of generality, you 
an rotate the sphere so that the marked fa
e 
ontains

the north pole; then the proje
tion transforms the marked fa
e into an unbounded fa
e, whi
h is


alled the external fa
e.

For ba
kground, we refer to the summary of Gao's other talk (pages 3{6 in these pro
eedings)

for several de�nitions and examples on maps and triangulations.

For ten years, Jason Zhi
heng Gao (often 
ollaborating with other spe
ialists of maps, namely

Bender, Can�eld, Ri
hmond, M
Kay, Wormald, . . . ) has studied several parameters of maps

(strong 
onnexity, pattern o

urren
es, vertex degree, symmetries, 
y
les, Eulerian properties),

�nding new fun
tional equations, solving them, and also obtaining pre
ise asymptoti
 estimations.

We spe
ialize here the dis
ussion to two parameters that appear to be intimately related: vertex

degree and submap o

urren
e. Con
entration results are obtained by the se
ond moment method.

2. Submap Density Result

Many 
ombinatorial stru
tures satisfy Borges's Theorem,

1

meaning that any pattern will appear

with high probability in a large enough stru
ture. Any word of length lnn appears with high

probability in a random word of length n (for more details, see the study by Guibas and Odlyzko [6℄,

and then by Ni
od�eme et al. [7, 8℄). The o

urren
e of patterns in random graphs has also been

studied [2℄. However for maps, the situation is di�erent as these obje
ts live in quite a di�erent

probability spa
e. Let's make a bet: 
hoose a map of size 6, while I generate a random map

of size 1000; would you bet that your map is a submap of mine? This talk makes expli
it the


onditions under whi
h you 
an make good (or bad) bets.

1

Philippe Flajolet 
oined this naming in referen
e to Borges's novel The Library of Babel.
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Let T be any �xed triangulation and �

n

(T ) be the random variable 
ounting the number of


opies of T in a random triangulation with n verti
es. Ri
hmond and Wormald [9℄ showed that

P

�

�

n

(T ) > 
n

�

> 1� exp

�Æn

for some positive 
onstants 
 and Æ depending on T . Bender, Gao and Ri
hmond [1℄ showed that

the above result holds for many families of maps, and re
ently Gao and Wormald [4℄ proved that

�

n

(T ) is sharply 
on
entrated around 
n for some 
onstant 
. More pre
isely:

Theorem 1. Let T be a 3-
onne
ted triangulation with j+3 verti
es su
h that there are r distin
t

ways to root T . Let 
 = 2r(27=256)

j

. Then, provided that 
n!1, P

�

�

�

�

n

(T )� 
n

�

�

= o(
n)

�

! 1.

A near-triangulation is 
omposed of triangulations ex
ept that it 
an have more than 3 verti
es

on its external fa
e. De�ne

�

k

=

8(k � 2)

4k

2

� 1

�

�

3

4

�

k

�

�3=2

k

�

:

Theorem 2. Let M be a 3-
onne
ted near-triangulation with external fa
e of degree k and with

j internal verti
es su
h that there are r distin
t ways to root the external fa
e. Then, for �xed j

and k with k � 4, one has

P

�

�

�

�

n

(M)� r�

k

(27=256)

j�1

n

�

�

= o(n)

�

! 1:

Proof. The method used here relies on Chebyshev-like inequalities: P(X > t�) � 1=t and P

�

jX �

�j � t�

�

� 1=t

2

for a nonnegative random variable X with average � and varian
e �

2

. A 
onse-

quen
e is that if � = o(�), then one gets a 
on
entration result.

Let us �rst study the number �

n

(k) of verti
es of degree k in a random triangulation with

n + 2 verti
es. The quantity T

n

denotes the number of rooted triangulation with n + 2 verti
es;

T

n;k

denotes the number of rooted triangulation with n + 2 verti
es and root vertex of degree k;

T

n;k;l

denotes the number of rooted triangulation with n+ 2 verti
es, root vertex of degree k and

another distinguished vertex of degree l. The s
heme of the proof is as follows:

Step 1: Use 
ombinatorial arguments to show the relations

E

�

�

n

(k)

�

=

6n

k

T

n;k

T

n

and E

�

�

n

(k)(�

n

(k)� 1)

�

=

6n

k

T

n;k;k

T

n

:

Step 2: Obtain fun
tional equations for the generating fun
tions for T

n;k;l

, T

n;k

, and T

n

, and

perform singularity analysis.

Step 3: Derive a suitable multivariate version of Flajolet and Odlyzko's transfer theorem (see

Lemmas 2 and 3 below), and obtain the following asymptoti
s, uniformly for k = O(lnn):

T

n

=

p

6=(32

p

�)n

�5=2

(256=27)

n

�

1 +O(1=n)

�

;

T

n;k

=

k

p

6

192

p

�

�

k

n

�5=2

(256=27)

n

�

1 +O(k

20

=n)

�

;

T

n;k;k

=

k

p

6

192

p

�

�

2

k

n

�3=2

(256=27)

n

�

1 +O(k

20

=n)

�

:

Step 4: Derive asymptoti
s for the �rst two moments of �

n

(k);

E

�

�

n

(k)

�

= n�

k

�

1 +O(k

20

=n)

�

and Var

�

�

n

(k)

�

= n�

k

+ (n�

k

)

2

O(k

20

=n);

uniformly for k = O(lnn). It follows from Chebyshev's inequality that

P

�

�

�

�

n

(k)� �

k

n

�

�

= o(�

k

n)

�

! 1

uniformly for k <

�

lnn� (ln lnn)=2

�

= ln(4=3) � 
(n). �
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The proof is based on three lemmas.

Lemma 1. Let T be a 3-
onne
ted near-triangulation with j + 3 verti
es su
h that j is o(n) and

that there are r distin
t ways to root T . Let �

n

(T ) be the number of 
opies of T in a random rooted

triangulation with n+ 2 verti
es. Then

E

�

�

n

(T )

�

= r

�

27

256

�

j�1

E

�

�

n+1�j

(3)

��

1 + o(1)

�

;

E

�

�

n

(T )(�

n

(T )� 1)

�

= r

2

�

27

256

�

2j�2

E

�

�

n+2�2j

(3)(�

n+2�2j

(3) � 1)

��

1 + o(1)

�

:

In order to state pre
ise results, one needs the following notation: let � be a small positive


onstant, � be a 
onstant satisfying 0 < � < �=2, and �y be (y

1

; y

2

; : : : ; y

d

). De�ne:

�(�; �) =

�

x su
h that jxj � 1 + �; x 6= 1; jArg(x� 1)j � �

	

;

R(�; �) =

�

(x; �y) su
h that jy

j

j < 1; 1 � j � d; x 2 �(�; �)

	

:

Let �

j

> 0 for 1 � j � d, and � be any real number. The following two notations are also useful.

De�nition 1 (

e

O notation). We write f(x; �y) =

e

O

�

(1�x)

��

Q

d

j=1

(1�y

j

)

��

j

�

if there exist � > 0 and

0 < � < �=2 su
h that, in R(�; �), f(x; �y) is analyti
 and f(x; �y) = O

�

j1�xj

��

Q

d

j=1

(1� jy

j

j)

��

j

�

as (1� x)(1� y

j

)

�p

! 0, for 1 � j � d, and some p � 0; for some q � 0 and some real number �

0

,

one has f(x; �y) = O

�

j1� xj

��

0

Q

d

j=1

(1� jy

j

j)

�q

�

:

De�nition 2 (� notation). We write f(x; �y) � 
(1 � x)

��

Q

d

j=1

(1 � y

j

)

��

j

if f(x; �y) 
an be

expressed as f(x; �y) = 
(�y)(1 � x)

��

Q

d

j=1

(1 � y

j

)

��

j

+

P

d

j=0

C

j

(x; �y) + E(x; �y) where C

0

(x; �y)

is a polynomial in x, and for 1 � j � d, C

j

(x; �y) is a polynomial in y

j

and where E(x; �y) =

e

O

�

j1 � xj

��

0

Q

d

j=1

(1 � y

j

)

��

0

j

�

for some �

0

< � and �

0

j

� 0, 1 � j � n and �nally where


(�y) = 
+O(

P

d

j=1

j1� y

j

j) and is analyti
 when �y 2 �(�; �)

d

, with 
(

�

1) = 
 6= 0.

Lemma 2. Suppose that

f(x; �y) =

e

O

�

(1� x)

��

d

Y

j=1

(1� y

j

)

��

j

�

;

then as n!1 and 1 � k

j

= O(lnn),

[x

n

�y

k

℄f(x; �y) = O

�

n

��1

d

Y

j=1

k

�

j

j

�

;

and for any 0 < �

0

< 1 and for all n and k

j

,

[x

n

�y

k

℄f(x; �y) = O

�

n

��1

d

Y

j=1

(1� �

0

)

�

j

�

:

Lemma 3. Let d � 1 and f(x; �y) � 
(1 � x)

��

Q

d

j=1

(1 � y

j

)

��

j

, where � is neither a negative

integer nor 0, and 
 6= 0. Then as n!1 and k

j

= O(lnn),

[x

n

�y

k

℄f(x; �y) =




�(�)

d

Y

j=1

�

k

�

j

�1

j

=�(�

j

)

�

 

1 +O

�

d

X

j=1

1=k

j

�

!

:



10 Some Sharp Con
entration Results about Random Planar Triangulations

3. Maximum Vertex Degree

Let d

n

be the maximum vertex degree of a random map in a family of maps of size n. Devroye,

Flajolet, Hurtado, Noy, and Steiger [3℄ showed that, for triangulations of an n-gon,

P

�

�

�

d

n

� ln(n)= ln 2

�

�

� (1 + �) ln lnn= ln 2

�

! 1:

Gao and Wormald [5℄ improved this last result and extended it to general families of maps. They

showed that, for any fun
tion 
 going to in�nity arbitrarily slowly, one has

{ for triangulations of an n-gon: P

�

�

�

d

n

�

lnn+ln lnn

ln 2

�

�

� 
(n)

�

! 1,

{ for 3-
onne
ted triangulations of n verti
es: P

�

�

�

�

d

n

�

lnn+(ln lnn)=2

ln(4=3)

�

�

�

� 
(n)

�

! 1,

{ for all maps of n edges: P

�

�

�

�

d

n

�

lnn+(ln lnn)=2

ln(6=5)

�

�

�

� 
(n)

�

! 1.

4. A Few Open Problems

At the end of the talk, a few questions were raised, and the following 
onje
tures appear plausible

but might involve hard work.

Conje
ture 1. The generating fun
tion of maps without a given submap is algebrai
.

There is no doubt that a fun
tional equation 
ould be obtained for ea
h pattern (however, as

the overlaps 
an be very intri
ate, the fun
tional equation would be horrendous, and it is not 
lear

that a generalization of the quadrati
 method would allow us to solve it, and prove algebrai
ity).

Conje
ture 2. A Gaussian limit law should hold.

On
e more, we expe
t the behavior to be qualitatively the same for words, trees and maps.

Another interesting study (whi
h is as of now out of rea
h) is the o

urren
e of a given pattern,

not in a lo
al sense but in a global one (su
h patterns are 
alled \minors").

Other 
on
entration results about random planar triangulations su
h as the largest 
omponent

and the number of 
ippable edges were �nally not presented in the talk but 
an be found in Gao's

arti
les at his homepage http://mathstat.math.
arleton.
a/~zgao/.
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Planar Maps and Composition S
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Gilles S
hae�er

Polka Proje
t, INRIA Lorraine

Mar
h 20, 2000

Abstra
t

This talk is 
on
erned with presenting the enumerative theory of planar maps, following

Tutte's original approa
h. Combinatorial proofs of many beautiful formul� dis
overed by

Tutte have been given re
ently (
f. last year's talk). However, in \less beautiful" 
ases,

one is invariably ba
k to de
ompositions and generating series. In other words, the best

tools still are those introdu
ed by Tutte and Brown in the 1960's. The de
ompositions

by \deletion/
ontra
tion" of edges translate into quadrati
 bivariate dis
rete di�erential

equations, that transform into algebrai
 equations by the (rather mira
ulous) \quadrati


method." De
ompositions by \
omposition" of maps translate into 
omposition s
hemes.

From the viewpoint of singularity analysis, these s
hemes are all of the same type: the 
riti
al


omposition of two singularities in (�� x)

3=2

. The goal of this presentation is espe
ially to

show where the 
omposition s
hemes and the random generation algorithm reported on in

Cyril Banderier's 
ompanion talk stem from.
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Coales
en
e: Emergen
e of the Map{Airy Law

Cyril Banderier
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t, INRIA Ro
quen
ourt

Mar
h 20, 2000

Summary by Mi
hel Nguy

~

ên-Th

�

ê

Abstra
t

Maps are planar graphs presented together with an embedding in the plane, and as su
h,

they model the topology of many geometri
 arrangements. This talk is 
on
erned with

the statisti
al properties of random maps, and fo
uses on 
onne
tivity issues. The analysis

that we introdu
e is largely based on a method of \
oales
ing saddle points." We exhibit

here a new 
lass of \universal" phenomena that are of the exponential-
ubi
 type exp ix

3

,


orresponding to nonstandard distributions that involve the Airy fun
tion. Consequen
es

in
lude the analysis and �ne optimization of random generation algorithms for multiply


onne
ted planar graphs.

(Joint work of C. Banderier with P. Flajolet, G. S
hae�er and M. Soria.)

1. Statisti
al Properties of Random Maps

Generi
ally, M and C will be two 
lasses of maps, respe
tively the \basi
 maps" and the \
ore-

maps," withM

n

and C

n

the subsets of elements of size n. Here, the 
lass C is always a subset ofM

satisfying additional properties, su
h as higher 
onne
tivity.

1.1. Combinatori
s of maps. LetM

n

and C

k

be the 
ardinalities ofM

n

and C

k

. The generating

fun
tions of M and C are respe
tively de�ned by M(z) =

X

n>1

M

n

z

n

and C(z) =

X

k>1

C

k

z

k

:

(i) Root-fa
e de
omposition. From the quadrati
 method [6, Se
. 2.9℄ and from root-fa
e de-


omposition [9℄, one 
an �nd two power series  and �, su
h that M(z) =  

�

L(z)

�

, where L is

impli
itly determined by L(z) = z�

�

L(z)

�

. For nonseparable maps, one has �(y) = (1 + y)

3

and  (y) = y(1� y). Lagrange inversion theorem [6℄ hen
e yields:

M

n

= [z

n

℄M(z) =

1

n

[y

n

℄ 

0

(y)�(y)

n

; that is, for nonseparable maps: M

n

=

4(3n)!

n! (2n+ 2)!

:

(ii) Substitution de
omposition. Noti
ing that the generating fun
tions z+

2M(z)

2

1+M(z)

and C

�

M(z)

�

enumerate respe
tively the maps without 
ore (i.e., no submap that is element of C

n

) and the maps

formed of a nondegenerate 
ore in whi
h maps are substituted, we dedu
e that M(z) satis�es [9℄:

M(z) =

�

z +

2M(z)

2

1 +M(z)

�

+ C

�

M(z)

�

:

De�ne the bivariate generating fun
tion M(z; u) =

P

n;k

M

n;k

u

k

z

n

, with M

n;k

= CardM

n;k

,

where M

n;k

is the set of maps of size n having a 
ore of k + 1 edges. Tutte proved the re�nement

M(z; u) = C

�

uM(z)

�

.
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1.2. Conne
tivity issues. We are interested in the probability P[X

n

= k℄ that a map ofM

n

has

a 
ore with k + 1 edges. This probability is given by

P[X

n

= k℄ =

C

k

[z

n

℄M(z)

k

M

n

; with [z

n

℄M(z)

k

=

k

n

[y

n�1

℄y 

0

(y) (y)

k�1

�(y)

n

;

where the se
ond equality results from Lagrange inversion.

1.3. The asymptoti
s of maps. Thanks to transfer methods [4℄, one 
an derive asymptoti
s for

M

n

and C

k

[1℄. One obtains positive numbers b and b

0

, as well as � and � , su
h that:

M

n

�

n!1

3b

4

p

�

�

�n

n

5=2

; in parti
ular M

(non sep.)

n

�

n!1

p

3

2

p

�

�

27

4

�

n

n

�5=2

;

C

k

�

n!1

3b

0

4

p

�

 (�)

�k

k

�5=2

; in parti
ular C

(3-
onn.)

k

�

n!1

8

243

p

�

4

k

k

�5=2

:

Hen
e, studying P[X

n

= k℄ essentially 
onsists in estimating [z

n

℄M(z)

k

.

2. Two Saddle Points

Let us start the estimation of [z

n

℄M(z)

k

by Cau
hy's formula,

[z

n

℄M

k

(z) =

k

n

1

2i�

Z

�

z

�

 (z)

k

�

0

�(z)

n

dz

z

n+1

=

k

n

1

2i�

Z

�

G(z) (z)

k

(�(z)=z)

n

dz

where � is a 
ontour en
ir
ling the origin and G(z) =  

0

(z)= (z) = (1� 2z)=(z(1 � z)).

We make use of the saddle-point method. The idea 
onsists in deforming the 
ontour � in

the 
omplex plane in order to have it 
ross a saddle point of the integrand f (i.e., a zero of the

derivative) and to take advantage of 
on
entration of the integral near the saddle point.

The problem at hand furnishes with two saddle points, z

+

= 1=2 and z

�

= (n � k)=(n + k),

solutions of the equation

�

�z

�

k ln + n ln(�=z)

�

= 0. We distinguish four 
ases.

2.1. Distin
t saddles. When k < n=3, the saddle point z

+

= 1=2 is dominant, and when k > n=3,

z

�

= (n�k)=(n+k) dominates. If k is far enough from n=3, the basi
 saddle-point method applies

and we use for 
ontour a 
ir
le �

0


entered around the origin and passing through the dominant

saddle point � . Lo
al expansions are of the \exponential quadrati
" type and, the 
ontour being

orthogonal to the real axis in � , the real-variable Lapla
e method permits one to estimate the

integral asymptoti
ally [3℄. Then we have:

Theorem 1 (Tails and distin
t saddles [5℄). Let �(n) be an arbitrary fun
tion with �(n)! +1 and

�(n) = o(n

1=3

). Then, the probability distribution of the 
ore of random element of M

n

satis�es

P[X

n

= k℄ �

32

243

p

�

�

n

5=2

k

3=2

(n� 3k)

5=2

; uniformly for �(n) < k <

n

3

� n

2=3

�(n);

P[X

n

= k℄ = O

�

exp(�n(k=n� 1=3)

3

)

�

; uniformly for k >

n

3

+ n

2=3

�(n):

2.2. A double saddle. Here we dire
tly atta
k the analysis of the \
enter" of the distribution,

that is, the 
ase where n = 3k exa
tly. Then, the saddle points be
ome equal: z

�

= z

+

= � . The

fun
tion f 
an be written f(z) = f(�)+f

(3)

(�)(z��)

3

=6+O

�

(z��)

4

�

, with f

(3)

(�) real and negative.

Hen
e the 
urves of steepest des
ent, 
orresponding to real and nonpositive f

(3)

(�)(z� �)

3

=6 when

z is 
lose to � , either follow the positive real axis or form an angle of �2�=3 with it. We approximate



C. Banderier, summary by M. Nguy

~

ên-Th

�
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Maps (M), M

n

Cores (C), S
heme �

0




general, n edges 1, M' C[XM

2

℄ 1/3 3=4

2=3

general, n edges bridgeless, M' C[X (XM)

�

℄ 4/5 (5=3)

2=3

=4

general, n edges loopless, M' L+ C[X ((XM)

�

)

2

℄ 2/3 3=2

loopless , n edges simple, M' C[XM℄ 2/3 3

4=3

=4

bipartite, n edges bipartite simple, M' C[XM℄ 5/9 3

8=3

=20

bipartite, n edges bipartite nonseparable, M' C[XM

2

℄ 5/13 (13=6)

5=3

� 3=10

bipartite, n edges bipartite bridgeless, M' C[X (XM)

�

℄ 3/5 (15=2)

5=3

=18

nonseparable, n edges simple nonseparable, M' C[XM℄ 4/5 15

5=3

=36

nonseparable, n+ 1 edges 3-
onne
ted, M' D + C[M℄ 1/3 3

4=3

=4


ubi
 nonseparable, n+ 2 fa
es 
ubi
 3-
onne
ted, M' C[X (1 +M)

3

℄ 1/2 (3=2)

1=3


ubi
 3-
onne
ted, n+ 2 fa
es 
ubi
 4-
onne
ted, M'M � C[XM

2

℄ 1/2 6

2=3

=3

Table 1. A sele
tion of 
omposition s
hemes (X an edge, L, D auxiliary families).

those last two 
urves by repla
ing a small ar
 of �

0

by two small segments �

1

and �

2

interse
ting �

at an angle of �2�=3. A few 
omputations then deliver:

P[X

3k

= k℄ =

4

27

�(2=3)

3

1=6

�

k

�2=3

�

1 +O

�

(lnk)

4

k

�1=3

��

; with

4

27

�(2=3)

3

1=6

�

� 0:0531:

The estimation remains valid for n = 3k+1 and n = 3k+2. A similar result holds for n = 3k+O(1).

2.3. Nearby saddles. When k is 
lose to n=3, we 
hoose a 
ontour � with the same shape as

previously but going through the mid-point � := (z

�

+ z

+

)=2, so that it simultaneously 
at
hes

the 
ontributions of the two saddle points z

�

and z

+

. Lo
al estimates of the integrand lead to an

expression involving Airy fun
tions. With the \map{Airy" distribution A de�ned by

A(x) = 2 exp

�

�

2

3

x

3

�

�

xAi(x

2

)�Ai

0

(x

2

)

�

; where Ai(z) =

1

2�

Z

+1

�1

e

i(zt+t

3

=3)

dt;

we have indeed: sup

a6

k�n=3

n

2=3

6b

�

�

�

�

�

n

2=3

P[X

n

= k℄�

16

81

3

4=3

4

A

 

3

4=3

4

k � n=3

n

2=3

!

�

�

�

�

�

�!

n!1

0:

2.4. Coales
ing saddles. This 
ase is an improvement of the former one, in so far as we provide

a uniform des
ription of the transition regions around n=3, allowing k to range anywhere between

�(n) and n� �(n), for any �(n) = o(n) with �(n)!1. We set k = (1=3 + �)n, and make � vary

in any 
ompa
t subinterval of

�

�1=3; 2=3

�

. By a 
hange of variable, one redu
es the 
omputation

to the 
ase of (the exponential of) a 
ubi
 integrand [1, 2, 10℄|the simplest 
ase enabling a double

saddle point| to get:

P[X

n

= n=3 + �n℄ =

16

81(1 + 3�)

3=2

n

2=3

�

a

1

2

A(�) +

a

4

n

2=3

exp

�

�

2

3

�

3

�

Ai(�

2

)

�

�

1 +O(1=n)

�

;

where: (i) � = n

1=3


; (ii) the error term is uniform for � in any 
ompa
t subinterval of

�

�1=3; 2=3

�

and is also uniform for any k > �(n), up to repla
ing O(1=n) with O

�

�(n)

�1

�

; (iii) 
, a

1

, a

4

are

fun
tions of � made expli
it in [1℄.

3. Appli
ations to Maps and Random Sampling

The former framework was applied to the families of random maps presented in Table 1, whose

generating fun
tions are all of Lagrangian type. Ea
h family is 
hara
terized by two parameters

�

0

and 
, displayed in Table 1.
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Theorem 2. Consider any s
heme of Table 1 with parameters �

0

and 
. The probability P[X

n

= k℄

that a map of size n has a 
ore of size k has a lo
al limit law of the map{Airy type with 
entering


onstant �

0

and s
ale parameter 
.

Suppose now that one wants to generate a random map from a given family in Table 1. For

general, nonseparable, bipartite, and 
ubi
 nonseparable maps, an algorithm Map is already given

in [8℄ that takes an integer n and outputs in linear time a map of size n uniformly at random.

For the other families of Table 1, one 
an use the following probabilisti
 algorithm Core(k) with

parameter f(k):

1. use Map(n) to generate a random map M 2M of size n = f(k);

2. extra
t the largest 
omponent C of M with respe
t to the s
heme;

3. if C does not have size k, then go ba
k to step 1; otherwise output C.

Ex
ept for an exponentially small number of failures, this algorithm produ
es an element of C

k

with

uniform probability. Among other results, we have:

Theorem 3. In all extra
tion/reje
tion algorithms of [8℄, the 
hoi
e f(k) = k=�

0

yields an algo-

rithm whose average number of iterations satis�es

`

n

� n

2=3

=

�

A(0)


�

:

Let x

0

� 0:44322 be the position of the peak of the map{Airy density fun
tion given by the equation

(1� 4x

3

0

)Ai(x

2

0

) + 4x

2

0

Ai

0

(x

2

0

) = 0:

The optimal 
hoi
e f(k) = k=�

0

� (x

0

=�

0


) (k=�

0

)

2=3

redu
es the expe
ted number of loops by

1�A(0)=A(x

0

) � 30%.

This proves that the extra
tion/reje
tion algorithms have overall 
omplexity O(k

5=3

), as do

variant algorithms of [7, 8℄ that are uniform over all C

k

. This 
omplexity drops to O(k) if one

allows some small toleran
e on the size of the generated map.
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Abstra
t

We survey re
ent work on the enumeration of non-
rossing 
on�gurations on the set of

verti
es of a 
onvex polygon, su
h as triangulations, trees, and forests. Exa
t formul� and

limit laws are determined for several parameters of interest. In the se
ond part of the talk

we present results on the enumeration of 
hord diagrams (pairings of 2n verti
es of a 
onvex

polygon by means of n disjoint pairs). We present limit laws for the number of 
omponents,

the size of the largest 
omponent and the number of 
rossings. The use of generating

fun
tions and of a variation of Levy's 
ontinuity theorem for 
hara
teristi
 fun
tions enable

us to establish that most of the limit laws presented here are Gaussian. (Joint work by Mar


Noy with Philippe Flajolet and others.)

1. Analyti
 Combinatori
s of Non-
rossing Con�gurations [3℄

1.1. Conne
ted graphs and general graphs. Let �

n

= fv

1

; : : : ; v

n

g be a �xed set of points in

the plane, 
onventionally ordered 
ounter-
lo
kwise, that are verti
es of a regular n-gon K. De�ne

a non-
rossing graph as a graph with vertex set �

n

whose edges are straight line segments that do

not 
ross. A graph is 
onne
ted if any two verti
es 
an be joined by a path. Parameters of interest

are the number of edges of 
onne
ted graphs and general graphs, and the number of 
omponents

of general graphs.

x

1v

y

z

1v

(a) (b)

z

x

y

Figure 1. (a) A 
onne
ted non-
rossing graph; (b) an arbitrary non-
rossing graph.
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1.2. Trees and forests. A (general) tree is a 
onne
ted a
y
li
 graph and the number of edges in a

tree is one less than the number of verti
es. The study of trees be
omes easier with the introdu
tion

of butter
ies [3℄, de�ned to be ordered pairs of trees with a 
ommon vertex; a tree appears to be

a sequen
e of butter
ies atta
hed to a root. A forest is an a
y
li
 graph, in other words a graph

whose 
omponents are trees.

1
v

x

y

z

1v

x

y

(b)(a)

Figure 2. (a) A tree; (b) a forest.

1.3. Triangulations. A triangulation [7℄ is a set T

n

of n � 3 non-
rossing diagonals v

i

v

j

whi
h

partitions K into n� 2 triangles. As ea
h triangle 
orresponds to an internal node of a binary tree

(see the generating fun
tion of exer
ise 7.22 of [6℄) via a 
lassi
al bije
tion due to Euler [11℄, the

number

b

T

n

of triangulations is given by the (n�2)-th Catalan number

b

T

n

= C

n�2

=

�

2n�4

n�2

�

=(n�1).

Let d

i

denote the degree of the vertex v

i

(i.e., the number of diagonals in
ident with v

i

) and

kv

i

v

j

k = min

�

ji� jj; n� ji� jj

�

the length of a diagonal v

i

v

j

. De�ne [2℄:

�

n

(�) = max

�

d

i

�

�

i = 0; : : : ; n� 1

	

;

the maximal degree of the verti
es, and

�

n

(�) = max

�

kv

i

v

j

k

�

�

v

i

v

j

2 T

n

	

;

the length of the longest diagonal in the triangulation.

Those features are of interest for a triangulation � be
ause they 
onvey information about the


orresponding tree b(�): �

n

(�) measures the external-node separation of b(�), i.e., the maximal

distan
e between su

essive external nodes; �

n

(�) measures its nearly half measure, i.e., the size

of the largest subtree with not more than half the external nodes.

Using 
ombinatorial bije
tions and probability lemmas [2℄, we �nd:

E[�

n

℄ � log

2

n; and E[�

n

℄ � �n; where � =

p

3

�

+

1

3

�

log

�

2 +

p

3

�

�

' 0:4654:

Let an ear of a triangulation � be a triangle sharing two sides with the polygon, and e

n

the

number of ears of a triangulation. Let us view triangulations as binary trees and ears as leaves

(internal node whose 
hildren are external nodes [11℄) or roots with at least one 
hild that is an
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external node, and let

b

B enumerate binary trees by size and number of leaves and

b

T enumerate

triangulations by size and number of ears.

1

These generating series satisfy [5℄

z

2

b

T (z; w) =

�

1 + 2z(w � 1)

�

b

B(z; w); where

b

B(z; w) = z

�

w + 2

b

B(z; w) +

b

B(z; w)

2

�

;

leading to Var[e

n

℄ �

p

n=4 and a Gaussian limit law (see x1.5 below). The expe
tation

E[e

n

℄ =

n(n� 1)

2(2n� 5)

�

n

4

was already known from a 
ombinatorial manipulation of Catalan numbers des
ribed in [7℄.

1.4. Generating fun
tions. The 
ombinatorial obje
ts and parameters above, ex
ept for ex-

tremal ones, lead to univariate and bivariate generating fun
tions, given in Table 1 below.

Con�guration Generating fun
tion equation

Conne
ted graphs C

3

+ C

2

� 3zC + 2z

2

= 0

|{, edges wC

3

+ wC

2

� (1 + 2w)zC + (1 + w)z

2

= 0

Graphs G

2

+ (2z

2

� 3z � 2)G+ 3z + 1 = 0

|{, edges wG

2

+

�

(1 + w)z

2

� (1 + 2w)z � 2w)G+ w + (1 + 2w)z = 0

|{, 
omponents G

3

+ (2w

3

z

2

� 3w

2

z + w � 3)G

2

+ (3w

2

z � 2w + 3)G+ w � 1 = 0

Trees T

3

� zT + z

2

= 0

|{, leaves T

3

+ (z

2

w � z

2

� z)T + z

2

= 0

Forests F

3

+ (z

2

� z � 3)F

2

+ (z + 3)F � 1 = 0

|{, 
omponents F

3

+ (w

3

z

2

� w

2

z � 3)F

2

+ (w

3

z + 3)F � 1 = 0

Triangulations z

4

b

T

2

+ (2z

2

� z)

b

T + 1 = 0

|{, ears z

4

b

T

2

+

�

1 + 2z(w � 1)

�

(2z

2

� z)

b

T + w

�

1 + 2z(w � 1)

�

2

= 0

Table 1. Generating fun
tion equations (z and w mark verti
es and the se
ondary parameter).

A few tri
ks enable one to make Lagrange inversion appli
able and to derive exa
t formul�|

sometimes involving summations|for all 
oeÆ
ients. For example, the 
hange of variable T = z+zy

followed by Lagrange's formula yields:

T

n

=

1

2n� 1

�

3n� 3

n� 1

�

and T

n;k

=

1

n� 1

�

n� 1

k

�

k�1

X

j=0

�

n� 1

j

��

n� k � 1

k � 1� j

�

2

n�2k+j

:

Finding C

n;k

goes through a parameterization of the fun
tional equation of C. To get the 
oef-

�
ients

b

T , we use the equality

b

T

n;k

=

b

B

n+2;k�1

+ 2

b

B

n+1;k

� 2

b

B

n+1;k

dedu
ed from z

2

b

T (z; w) =

�

1 + 2z(w � 1)

�

b

B(z; w).

1.5. Asymptoti
s. All of the univariate generating fun
tions above, and a few others (disse
tions

and partitions of 
onvex polygons) not presented in the talk but available in [3℄, have a unique

dominant singularity � in (0; 1), and 
an be written

f(z) = 


0

+ 


1

�

1�

z

�

�

1=2

+O

�

1�

z

�

�

; entailing [z

n

℄f(z) =




1

�(�1=2)

�

1 +O

�

1

n

��

:

For example the numbers T

n

and F

n

of respe
tively general trees and forests satisfy

T

n

� (27=4)

n

= 6:75

n

and F

n

� 8:2246

n

; when
e T

n

= o(F

n

):

1

The expression of

b

T , entailing the Gaussian limit of the distribution of ears of triangulations, was established by

the author of this summary.
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The numbers C

n

and G

n

of respe
tively 
onne
ted and general graphs satisfy

C

n

�

 

p

6

9

�

p

2

6

!

� 10:39

n

and G

n

�

1

4

q

99

p

2� 140 �

2

n

(3 + 2 +

p

2)

n

p

�n

3=2

� 11:65

n

;

entailing C

n

=G

n

! 0 when n!1.

The bivariate generating fun
tion seen before admits the form

f(z; w) = 


0

(w) + 


1

(w)

�

1�

z

�(w)

�

1=2

+O

�

1�

z

�(w)

�

;

this leads to

f

n

(w) = 
(w)

�

1

�(w)

�

n

�

1 +O

�

1

p

n

��

; or

f

n

(w)

f

n

(1)

=


(w)


(1)

�

�(1)

�(w)

�

n

�

1 +O

�

1

p

n

��

:

From the Quasi-Powers theorem [5, 8℄, whi
h is a 
onsequen
e of Levy's 
ontinuity theorem for 
har-

a
teristi
 fun
tions, one dedu
es that f

n

is asymptoti
ally normal. The mean �

n

and varian
e �

n

satisfy �

n

� �n and �

2

n

� �n for algebrai
 numbers � and �.

For instan
e, for the distribution of the number of edges in the spa
e of 
onne
ted graphs of

given size, we have � =

�

1 +

p

3

�

=2 ' 1:366:

2. Analyti
s Combinatori
s of Chord Diagrams [4℄

2.1. De�nitions. Take 2n points on a 
ir
le, labelled 1, 2, . . . , 2n, and join them in disjoint pairs

by n 
hords. The resulting 
on�guration is 
alled a 
hord diagram. A diagram is 
onne
ted if no

set of 
hords 
an be separated from the remaining 
hords by a line. A 
omponent is a maximal


onne
ted subdiagram.

2.2. Components.

2.2.1. Number of 
omponents. Let C(z) =

P

n>0

C

n

z

n

be the generating fun
tion of 
onne
ted

diagrams of size n. The bivariate generating fun
tion I(z; w) =

P

n;k>0

I

n;k

w

k

z

n

of diagrams of

size n and k 
omponents satis�es I(z; w) = 1 +wC

�

zI(z; w)

2

�

.

We have the following result:

Theorem 1. Let X

n

be the number of 
omponents in a random diagram of size n.

1. For k > 1, one has P[X

n

= k℄ =

n!1

e

�1

(k � 1)!

�

1 + o(1)

�

.

2. The mean �

n

and the varian
e �

n

of the distribution satisfy �

n

�

n!1

2 and �

2

n

�

n!1

1.

Sket
h of proof. The proof of the �rst point makes use of \monoliths," or \monolithi
 diagrams,"

where a diagram is said to be monolithi
 if: (i) it 
onsists solely of the 
onne
ted 
omponent that


ontains 1 (
alled the root 
omponent) and of isolated edges; (ii) for any two su
h isolated edges

(a; b) and (
; d), one never has a < 
 < d < b or 
 < a < b < d (in other words, two isolated 
hords

are never in a dominan
e relation).

The ordinary generating fun
tion of monoliths reads M(z) = C

�

z=(1 � z)

2

�

, and a

ording to

Stein and Everett [12℄ C

n

=I

n

= e

�1

+ o(1), so one 
an dedu
e the relation M

n

� I

n

, i.e., that

almost every diagram is a monolith. The number M

n;k

of monoliths of size n with k 
omponents

is given by

M

n;k

=

�

2n� k

k � 1

�

C

n�k+1

�

e

�1

(k � 1)!

I

n

:
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As to the se
ond point, using 2zC(z)C

0

(z) = C(z)

2

+ C(z)� z, whi
h is dedu
ed from

C

n

= (n� 1)

n�1

X

j=1

C

j

C

n�j

and C

1

= 1 [9, 13℄, one �nds

�

n

=

�I

�w

(z; w)

�

�

�

�

w=1

=

1

z

�

I(z) + h(z)� 2

�

; where h(z) = I(z)

�1

:

Hen
e, letting g

n

= h

n

=I

n

, one obtains

g

n

= 1�

n�1

X

k=1

g

k

�

n

k

��

2n

2k

�

�1

= 1�

1

n

+

3

4n

2

+O(n

�3

);

and �

n

=

I

n+1

+ h

n+1

I

n

=

2n+ 1

n+ 1

+O(n

�1

) � 2: Similar 
omputations yield the varian
e. �

2.2.2. Largest 
onne
ted 
omponent.

Theorem 2. Let L

n

be the size of the largest 
onne
ted 
omponent in a random diagram of size

n. Then, as n!1, the mean �

n

and the varian
e �

n

of the distribution of L

n

are

E[L

n

℄ = n� 1 + o(1); Var[L

n

℄ = 1 + o(1);

and for any �xed k > 1, one has P[n � L

n

= k℄ =

e

�1

k!

�

1 + o(1)

�

: In other words, thre random

variable n� L

n

follows a Poisson law of parameter 1.

The proof relies on the analysis of the largest 
omponent in a monolith, namely, the root 
om-

ponent with probability 1 � o(1), the other 
omponents being only edges. The number M

n;k

of

monoliths of size n with root 
omponent of size n� k is given by:

M

n;k

=

�

2n� k � 1

k

�

C

n�k

�

n!1

e

�1

(k � 1)!

I

n

:

2.3. Crossings. Let � denote the number of 
hord 
rossings in a 
hord diagram, and let I

n

be the

set of all diagrams of size n. Flajolet and Noy proved the following result:

Theorem 3. Let X

n

be the random variable equal to the value of � taken over the set of 
hord

diagrams I

n

of size n endowed with the uniform probability distribution.

1. The mean �

n

and the varian
e �

n

of the distribution of X

n

are given by

�

n

= E[X

n

℄ =

n(n� 1)

6

and �

2

n

= Var[X

n

℄ =

n(n� 1)(n+ 3)

45

; respe
tively.

2. The distribution of X

n

is Gaussian in the asymptoti
 limit: for all real x, one has

lim

n!1

P

�

X

n

� �

n

�

n

6 x

�

=

1

p

2�

Z

x

�1

e

�y

2

=2

dy:

Sket
h of proof. Flajolet and Noy prove a stronger result by 
omputing the moments of any order.

They use the exa
t formula dis
overed by Tou
hard [14℄ and Riordan [10℄, namely that the series

�

n

(q) =

X

w2I

n

q

�(w)

equals

1

(1� q)

n

n

X

k=�n

(�1)

k

q

k(k�1)=2

�

2n

n+ k

�

:
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Using the equality e

a

2

=2

=

1

p

2�

Z

+1

�1

e

�x

2

=2

e

ax

dx for a = k

p

t, one obtains:

�

n

(e

t

) =

1

(1� e

t

)

n

n

X

k=�n

(�1)

k

e

�kt=2

�

2n

n+ k

�

e

k

2

t=2

=

1

2

p

�

Z

+1

�1

e

�x

2

=2

x

2n

H(x; t)

n

dx;

where H(x; t) =

2 sinh

2

(x

p

t=2� t=4)

x

2

exp(t=2) sinh(t=2)

.

Taking derivatives with respe
t to t and taking the limit when t! 0 yields the moments of any

order; this proves the �rst point of the 
laim.

The Lapla
e method delivers the asymptoti
 relation

e

�u�

n

=�

n

�

n

(u=�

n

)

�

n

(1)

= e

u

2

=2

�

1 +O(n

�1=5

)

�

:

From Levy's 
ontinuity theorem for Lapla
e transforms [1℄, one 
on
ludes that (X

n

� �

n

)=�

n


onverges in distribution towards N (0; 1). �
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Abstra
t

The Tutte polynomial of a graph G is a two-variable polynomial that re
ords mu
h informa-

tion on G. In parti
ular, di�erent evaluations at integers provide the number of spanning

trees, forests (a
y
li
 spanning subgraphs), and a
y
li
 orientations of G. We estimate these

values when G is an n� n square grid so as to dedu
e re�ned upper and lower bounds for

the numbers of forests and a
y
li
 orientations on su
h grids.

1. Polynomial Invariants of Graphs

1.1. Chromati
 polynomials. A general graph G = (V;E) is a undire
ted graph with loops

and multiple edges allowed; it is des
ribed by its set V of verti
es and its set E of edges. The


hromati
 polynomial p(G;�), introdu
ed by Birkho� in 1912 is a very important invariant of G:

it 
ounts the number of its �-
olourings, i.e., the number of ways to assign 
olours to the verti
es

of G in su
h a way that no two adja
ent verti
es share the same 
olour, and that the number of


olours used is at most �. This polynomial re
ords many statisti
s of the graph: indeed, for a

graph on n verti
es, we have the expansion p(G;�) = �

n

� jEj�

n�1

+ a�

n�2

� � � � � �

�(G)

where

a = jEj

�

jEj � 1

�

=2 � t(G) relates to the number t(G) of triangles in G, and where �(G) is the

number of 
onne
ted 
omponents of G. Also, the 
oeÆ
ients of p(G;�) alternate in signs. Table 1

provides other interesting graph statisti
s as evaluations of the 
hromati
 polynomial.

Unfortunately, the 
omputation of a 
hromati
 polynomial is hard: already the problem of 
om-

puting the 
hromati
 number of a graph G, i.e., the smallest integer � su
h that there exists a

�-
olouring, is NP-
omplete; evaluating the 
hromati
 polynomial itself is #P-hard, as is even


omputing the 
hromati
 polynomial at any algebrai
 number di�erent from 0, 1, and 2. A sim-

ple exponential algorithm to 
ompute p(G;�) is based on 
ontra
tion and deletion of edges: the

graph G=e resulting from the 
ontra
tion of an edge e in a graph G is obtained by removing the

edge and identifying both in
ident verti
es; the mere deletion of an edge e in a graph G results

in the graph G n e with same vertex set V and new edge set E n feg. The algorithm 
onsists in

following the re
urren
e p(G;�) = p(G n e;�) � p(G=e;�) provided that G is 
onne
ted and that

e is neither a loop nor a bridge (also 
alled isthmus or 
o-loop, i.e., an edge whose deletion does

not dis
onne
t the graph). Finally, the 
hromati
 polynomial of a (possibly dis
onne
ted) graph is

the produ
t of the 
hromati
 polynomials of its 
onne
ted 
omponents.

1.2. Tutte polynomials. A generalization of the 
hromati
 polynomial is the Tutte polynomial

T (G;x; y) of a graph G [5, 6℄, most easily de�ned as the variant T (G;x; y) = R(G;x � 1; y � 1) of

Whitney's rank generating fun
tion R(G;x; y) [9℄. The rank of a graph G is de�ned as the size of

any of its spanning forests, whi
h is jV j��(G). This notion stems from the matroid interpretation
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p(G; 0) 0

p(G; 1) 1 if G is empty

p(G; 1) 0 if G 
ontains an edge

p(G; 2) 2

�(G)

if G is bipartite

p(G; 2) 0 if G is not bipartite

�

�

p(G;�1)

�

�

# of a
y
li
 orientations [4℄

T (G; 1; 1) # of spanning trees

T (G; 2; 1) # of forests

T (G; 1; 2) # of 
onne
ted subgraphs

T (G; 2; 0) # of a
y
li
 orientations [4℄

T (G; 1; 0) # of a
. or. with a single sour
e

T (G; 0; 2) # of totally 
y
li
 orientations

Table 1. Spe
ial evaluations of the 
hromati
 (left) and Tutte (right) polynomials.

of graphs [7, 8℄, whi
h, informally, views 
ir
uits (i.e., 
y
les) in a graph as dependen
y relations

and forests as sets of independent edges. Now, by de�nition

(1) R(G;x; y) =

X

A�E

x

r(E)�r(A)

y

jAj�r(A)

= x

r(E)

X

A�E

y

jAj

=(xy)

r(A)

;

where r(A) denotes the rank of the subgraph G

A

= (V;A) of the graph G = (V;E) obtained by

retaining the subset A � E of its edges only. Note that r(A) = r(E) means that G

A

has the same

number of 
onne
ted 
omponents as G, while r(A) = jAj means that G

A

is a
y
li
. The 
hromati


polynomial is re
overed through the relation p(G;�) = (�1)

r(G)

�

�(G)

T (G; 1 � �; 0); on the other

hand, the relation f(G;�) = (�1)

jGj

T (G; 0; 1 � �) de�nes the 
ow polynomial of G, whi
h 
ounts

the number of 
ows on G with edges weighted by elements of Z=�Z, on
e any orientation has

been 
hosen on G. (A 
ow is an assignment of weights to edges in su
h a way that the weights


orresponding to all edges in
ident to the same vertex add up to zero.) Table 1 provides other

interesting graph statisti
s as evaluations of the Tutte polynomial.

An algorithm similar to the one in the 
ase of the 
hromati
 polynomial above 
omputes the Tutte

polynomial, and is based on the relations: T (G;x; y) = 1 if G is empty; T (G;x; y) = T (G=e;x; y) if

e is a bridge; T (G;x; y) = T (G n e;x; y) if e is a loop; and T (G;x; y) = T (G=e;x; y)+T (G n e;x; y)

otherwise. Finally, the Tutte polynomial of a (possibly dis
onne
ted) graph is the produ
t of the

Tutte polynomials of its 
onne
ted 
omponents.

1.3. Tutte{Grothendie
k invariants. A restatement of this is that the Tutte polynomial is an

example of Tutte{Grothendie
k invariant [2℄, i.e., a fun
tion v from the set of graphs to a �xed


ommutative ring|Z[x; y℄ in the 
ase of the Tutte polynomial|with the relations:

1. v(G) = v(G=e) + v(G n e) provided G is 
onne
ted and e is neither a loop nor a bridge;

2. the invariant of a graph is the produ
t of the invariants of its 
onne
ted 
omponents;

3. the invariants of two isomorphi
 graphs are the same.

A result by Brylawski [2℄ is that any Tutte{Grothendie
k invariant is uniquely determined by its

values on the loop and bridge graphs, 
onsisting of a single loop around a single vertex and of a

single edge between two verti
es, respe
tively, and the invariant v(G) is the evaluation of the Tutte

polynomial at x = v(loop graph) and y = v(bridge graph).

The Tutte polynomial satis�es the following more general universality theorem (
f. [1, Chap. X℄).

Let v be any fun
tion from the set of graphs to the 
ommutative ring Z[x; y; �; �; � ℄ whi
h satis�es


onditions 2. and 3. in the des
ription of Tutte{Grothendie
k invariants and the relations u(G) =

�

jGj

if G is empty; u(G) = xu(G=e) if e is a bridge; u(G) = yu(G n e) if e is a loop; u(G) =

�u(Gne)+�u(G=e) otherwise. Then v is given in terms of the Tutte polynomial of G by the relation

v(G) = �

�(G)

�

jGj

�

r(G)

T (G;�x=�; y=�). Spe
ial 
ases are the 
hromati
 and Tutte polynomials,

respe
tively obtained when (x; y; �; �; �) is set to (1� x; 0; x; 1;�1) and (x; y; 1; 1; 1).
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1.4. Matroidal interpretation of graphs. Matroids [7, 8℄ are a general 
on
ept used to represent

the 
ombinatori
s of dependen
y between obje
ts of many di�erent types, like linear dependen
y,

aÆne dependen
y, algebrai
 dependen
y, the stru
ture of 
y
les (or 
ir
uits) in a graph, and so

on. Chromati
 and Tutte polynomials extend to this setting with the same type of properties.

Appli
ations in
lude latti
e theory, graph theory, knot theory, 
oding theory, geometry, networks,

per
olation theory, and statisti
al me
hani
s.

2. Counting Problems on the n� n Grid

Although the following 
ombinatorial obje
ts are well-de�ned on any graph, we 
onsider their

enumeration on the square n�n grid L

n

(with simple edges only) where we pro
eed to derive new

asymptoti
 estimates:

1. A mat
hing is a pairing of neighbouring verti
es by edges of the graph, possibly leaving some

of its verti
es unpaired. Enumerating mat
hings relates to the study of a latti
e gas model

of statisti
al physi
s for a gas 
onsisting of monomers and dimers.

2. A perfe
t mat
hing is a mat
hing that leaves no vertex on its own. This 
orresponds to a

gas with dimers only.

3. A set of verti
es is independent if no two of them 
an be joined by an edge. This 
orresponds

to Fibona

i arrays, i.e., arrays 
onsisting of 0's and 1's only, with no two 
onse
utive 1's,

either verti
ally or horizontally.

4. A spanning tree is a tree made of edges of the graph and that exhausts its verti
es.

5. An a
y
li
 orientations is an orientation of the edges of the graph that indu
es no 
y
le.

Upon substitution of ea
h vertex of L

n

by a square 
entred at this vertex, and after gluing squares

that 
orrespond to adja
ent verti
es, a mat
hing be
omes a tiling with dominoes and squares while

a perfe
t mat
hing be
omes a domino tiling. Obviously, the above-mentioned transformation is a

one-to-one 
orresponden
e. The following 
ombinatorial algorithm by Temperley provides another

bije
tion, between spanning trees on L

n

and perfe
t mat
hings on L

2n+1

deprived of one vertex:

(i) spanning trees are rooted at some �xed vertex; (ii) dominoes are then pla
ed on the bran
hes

of trees, from leaves to the root, and the same pro
ess is applied to the dual graph of the tree;

(iii) domino tilings are 
hanged into perfe
t mat
hings. The 
ommon 
ounting number t(n) on

the grid L

n

is given as T (L

n

; 1; 1) (see Table 1) and is known to satisfy lim

n!1

t(n)

1=n

2

= t

where t = 3:2099125 : : :

Upper and lower bounds for forests and a
y
li
 orientations. The numbers of forests and

a
y
li
 orientations on the graph L

n

are expressable in terms of its Tutte polynomial, and are

T (L

n

; 2; 1) and T (L

n

; 2; 0), respe
tively (see Table 1). Sin
e a spanning tree is a forest and a forest

is merely an un
onstrained 
hoi
e of edges, the bounds t

n

< f

n

< 2

2n(n�1)

< 4

n

2

hold for the

number of forests. On the other hand, orienting all verti
al edges towards the top endows L

n

with

an a
y
li
 orientation, and a
y
li
 orientations are orientations. This yields the bounds 2

n(n�1)

<

a

n

< 2

2n(n�1)

< 4

n

2

. Again, the limits f = lim

n!1

f(n)

1=n

2

and a = lim

n!1

a(n)

1=n

2

exist; the

relations above yield the trivial bounds t = 3:2099125 : : : < f < 4 and 2 < a < 4. Merino, Noy,

and Welsh have obtained the improved bounds

t = 3:64497 � f � 3:74698 and 3:41358 � a � 3:56322:

The method used to derive the new, better upper bounds is to view the square grid L

n

as a


omposite of m=n re
tangular m�n grids L

m;n

, relying on the 
omputation of T (L

m;n

; 2; 1) as the


ardinal of a rational language. The idea is to extend a forest, respe
tively an a
y
li
 orientation,

on L

m;n

to one on L

m;n+1

. To this end, the m verti
es on the nth 
olumn of the original graph
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are tagged in order to keep tra
k of verti
es that are members of the same tree. The number of

su
h 
on�gurations is �nite (in parti
ular, the m verti
es 
an be in at most m di�erent trees).

Among the 2

2m�1


hoi
es of edges that may be used to extend the original graph, only part of

them do not produ
e a 
y
le. This provides a �nite-state automaton that re
ognizes the relevant


on�gurations on L

m;n

. The generating series that enumerates this 
on�gurations is thus rational,

and the 
ounting numbers grow as the exponential �

n

m

of an algebrai
 number �

m

. Gluing n=m


on�gurations on L

m;n

in any way yields the upper bounds f

n

� (�

n

m

)

n=m

2

n(n=m�1)

� (2�

m

=m)

n

2

(sin
e blind gluing may produ
e 
y
les), as well as similar bounds for a

n

(with a di�erent �

m

).

The 
ase of the new lower bounds is very similar. Again, the forests, resp. a
y
li
 orientations,

on L

n

are obtained by gluing relevant 
on�gurations on L

m;n

. However, an additional 
onstraint is

that the sele
ted 
on�gurations on L

m;n

indu
e forests, resp. a
y
li
 orientations, on the graph L

�

m;n

obtained by 
ontra
ting the mth row to a single vertex. This ensures that no 
y
le is 
reated while

gluing the re
tangular grids. Again, the 
on�gurations on L

�

m;n

are 
ounted by a rational language,

yielding lower bounds of the same form as the upper bounds above. The numeri
al values indi
ated

were obtained for m = 8. An arti
le is in preparation [3℄.

3. Computing the Tutte Polynomial of L

m;n

by a Re
urren
e in n

The interpretation in terms of rational languages also applies to the 
omputation of Tutte poly-

nomials for L

m;n

, based on the right-most representation (1) of Whitney's rank generating fun
tion.

This form makes expli
it the way to extend the rational automaton re
ognizing the forests of L

m;n

,

whi
h has been des
ribed in the previous se
tion. This extension only needs to keep tra
k of the

number of verti
es (+m at ea
h 
olumn), the number of 
onne
ted 
omponents (whose variation

is between �m and +m at ea
h 
olumn), and the number of edges (whi
h by di�eren
e yields the

rank). To ea
h state s 
orresponding to a stru
ture of 
onne
ted 
omponents on the nth 
olumn

of L

m;n

, we asso
iate a generating fun
tion F

(s)

(x; y; z) =

P

n

R

(s)

n

(x; y)z

n

where R

(s)

n

(x; y) is the


ontribution to the sum (1) restri
ted to 
on�gurations A of edges whose last 
olumn 
orresponds

to state s. This indu
es a linear system of re
urren
es between the F

(s)

(x; y; z), with Laurent

polynomial entries in x and y.

For �xed m, the rational generating fun
tion of the rank generating fun
tions of the family of

graphs L

m;n

is thus obtained as one of the F

(s)

(x; y; z) for a suitable state s. The rational generating

fun
tion of the Tutte polynomials is then obtained by shifting x and y.
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Summary by Marianne Durand

Abstra
t

A group automaton is a 
omplete deterministi
 automaton su
h that ea
h letter of the

alphabet a
ts on the set of states as a permutation [1, 5℄. The aim is to des
ribe an

algorithm for the random generation of a minimal group automaton with n states. The

treatment is largely based on properties of random permutations and random automata.

1. Properties

A group automaton is a 
omplete deterministi
 automaton su
h that ea
h letter of the alphabet

a
ts on the set of states as a permutation [1, 5℄. We 
onsider a group automaton A, with states

1, 2, . . . , n. The state 1 is the initial state; the set of �nal states is denoted by F , the alphabet by

a, b, . . . , and the transitions by q

2

= Æ(q

1

; a) or equivalently (q

1

; a; q

2

).

1 2 3 4

start a

a

b

a

b

b

a,b

Figure 1. A group automaton.

Let us re
all that two states q

1

and q

2

of an automaton are equivalent, notationally q

1

� q

2

, if for

every word u, the state Æ(q

1

; u) belongs to F if and only if Æ(q

2

; u) belongs to F . The automaton A

is minimal if A has no distin
t equivalent states. The stru
ture properties of group automata are:

the minimal automaton of a group automaton is a group automaton; the set of group automata is


losed under union, interse
tion and 
omplementation but it is not 
losed under star and produ
t.

As ea
h letter a
ts like a permutation on the set of states, there 
annot exist two transitions (q

1

; a; q)

and (q

2

; a; q) with q

1

and q

2

distin
t. This means that there is a \reversibility" property be
ause

when the automaton is in a state q after reading a word u, it is possible to retra
e the path followed.

We are now interested in the 
onnexity of an automaton. An automaton is 
onne
ted if for

any state q, there is a path joining the initial state to q. Be
ause of the reversibility property, if

a group automaton is 
onne
ted then it is strongly 
onne
ted, whi
h means that for any states q

and q

0

, there is a path from q to q

0

. A group automaton is de�ned by the k permutations 
oding

the transitions and by the set F , where k is the 
ardinality of the alphabet, so there are (2

n

�1)n!

k

group automata. We show that, if the alphabet has at least two letters, almost all group automata

on n states are 
onne
ted. In order to do this we �rst state the fa
t that given two permutations
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� and � the generated group h�; �i is almost surely transitive. This 
an be shown by a simple


ombinatorial argument. Take two letters a and b and 
onsider �

a

the permutation related to a

and �

b

the one related to b; then as h�

a

; �

b

i is almost always transitive the automaton is almost

always 
onne
ted. We even have an asymptoti
 estimate if the alphabet has exa
tly two letters:

Card(not 
onne
ted group automata)

Card(group automata)

�

1

n

:

2. Minimality

We now have to study the minimality of the automaton. An important theorem is that almost all


onne
ted group automata are minimal. The proof is partially based on the study of the one-letter


ase: if the automaton is 
onne
ted, then as there is only one letter a, the permutation indu
ed

by a is a 
ir
ular permutation. It is minimal if it is not stable under a rotation whi
h is equivalent

to saying that the word u = 1 � � � Æ

k

(1; a) � � � Æ

n�1

(1; a) is not a non-trivial fa
tor of uu. Then in this


ase by 
ounting the words 
orresponding to minimal 
ir
ular permutations we show that almost

all 
onne
ted automata are minimal on a one-letter alphabet. If the alphabet has more than one

letter, we observe that for almost all group automata, there is a letter a su
h that the permutation

indu
ed by a on the set of states has only one 
y
le of maximum length [3℄. More pre
isely, we

have the following lemma:

Lemma 1. The probability that a permutation � of size n has more than two 
y
les of maximum

length is o(1).

Proof. Let 


n;m

be the probability that a permutation of size n has exa
tly two maximal 
y
les of

size m + 1. We note the generating fun
tion C

m

(z) =

P

1

n=0




n;m

z

n

and 


n

=

P

m�n=2




n;m

. The

following equality holds:

C

m

(z) =

z

2(m+1)

2(m+ 1)

2

e

z

� � � e

z

m

m

=

1

1� z

z

2(m+1)

2(m+ 1)

2

exp

�

�r

m

(z)

�

where r

m

(z) =

P

n>m

z

n

=n is the remainder of the generating fun
tion of the logarithm. In order

to get the 
oeÆ
ient 


n;m

we apply Cau
hy's formula:




n;m

=

1

2i�

Z

C

1

1� z

z

2(m+1)

2(m+ 1)

2

exp

�

�r

m

(z)

�

dz

z

n+1

where C is a path around the origin. We 
hoose for this path a 
ir
le around the origin de�ned by:

jzj = e

�1=n

and we set z = e

�p=n

for a 
hange of variable. So we have




n;m

=

1

2i�

Z

1+in�

1�in�

exp

�

�r

m

(e

�p=n

)

�

1� e

�p=n

e

�p(2m+2)=n

2(m+ 1)

2

e

p

n

dp

We now need to approximate some of the quantities in the integral, for this we use a te
hnique and

a few lemmas provided in [2℄. We �rst have the relations

(1) r

m

(e

�p

) = E(mp) +O

�

e

�mp

m

�

and

1

n

�

1� e

�p=n

�

=

1

p

+

1

n

 

�

p

n

�

with E(x) =

R

1

x

e

�v

v

dv and  (z) =

1

1�e

�z

�

1

z

, and where the error term O

�

exp(�mp)=M

�

is

moreover uniform over <(p) > 0 and

�

�

=(p)

�

�

� �.

Property 1. For all a > 0, the fun
tion e

�aE(u)

is bounded on <(u) > 0.
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The relations 1 allow us to write, after we set � = m=n:




n;m

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p) +O

�

1

m

���

1

p

+

1

n

 

�

p

n

�

�

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

�

1

p

+

1

n

 

�

p

n

�

+O

�

1

pm

��

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp:

This rewrites as 


n;m

= I

1

+ I

2

+ I

3

where

I

1

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

1

p

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp;

I

2

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

1

n

 

�

p

n

�

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp;

I

3

=

1

m

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

O

�

1

p

�

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp:

To study these three expressions, we use the fa
t that the quantities exp

�

�E(�p)

�

(Property 1)

and e

p

e

�p(2m+2)=n

are bounded uniformly on m. This helps us to give an upper bound for these

three expressions: �rst,

I

1

=

Z

1+in�

1�in�

O(1)

pm

2

dp = O

�

log n

m

2

�

and this approximation is uniform on m. Se
ond

I

2

=

Z

1+in�

1�in�

O(1)

1

n

 

�

p

n

�

1

2(m+ 1)

2

dp

as  is also bounded uniformly on m we have

I

2

=

1

nm

2

Z

1+in�

1�in�

O(1) dp = O

�

1

m

2

�

:

Third, as in the 
ase of I

1

, we obtain

I

3

=

1

m

Z

1+in�

1�in�

O

�

1

p

�

1

2(m+ 1)

2

dp = O

�

log n

m

3

�

:

Combining these estimates we obtain 


n;m

= O

�

log n

m

2

�

uniformly onm. The approximation is going

to be useful when m is greater than

p

n; otherwise we use the following lemma:

Lemma 2. The probability that a permutation � of size n has a maximal 
y
le of length smaller

than

p

n is o(1).

Proof. Let p

n;m

be the probability that a permutation of size n has all its 
y
les of size smaller

than m. The saddle-point method gives us an upper bound for the quantity p

n;m

. Then we have

p

n;m

= [z

n

℄e

l

m

(z)

�

e

l

m

(r)

r

n

where l

m

(z) = z + � � � +

z

m

m

:

The saddle-point method drives us to apply this inequality to the value r = n

1

3m


hosen to �t the

minimum, whi
h gives

p

n;m

�

exp

�

n

1=3

logm

�

n

n=3m

; so p

n;

p

n

� e

�

n

1=3

2

�

p

n

3

�

log n

= o(1):



30 Random Group Automata

�

The probability that a permutation has two maximal 
y
les of sizem is bounded by the probabil-

ity that a permutation has one maximal 
y
le of size m. Therefore the probability that a permuta-

tion of size n has two maximal 
y
les of size smaller than

p

n is o(1). So 


n

= o(1)+

P

m=n=2

m=

p

n




n;m

=

o(1) by the approximation 


n;m

= O

�

log n

m

2

�

. Lemma 1 dire
tly follows by showing that almost all

permutations of size n having at least two maximal 
y
les have exa
tly two maximal 
y
les. �

We de�ne E

n

as the set of group automata A of size n that are 
onne
ted and with the property

that there exists one letter a su
h that the permutation indu
ed by a has only one maximal 
y
le.

By Lemma 1, we show that almost all 
onne
ted group automata belong to E

n

. Furthermore, if A

belongs to E

n

then we 
an show that the maximal 
y
le of �

a

does not interfere with other 
y
les,

be
ause of their di�erent 
ardinalities and so we 
an use the one-letter 
ase, and say that this

maximal 
y
le is almost always minimal. As the automaton 
onsidered is 
onne
ted, this implies

that the automaton is minimal. So we have the following result:

Theorem 1. Almost all group automata are minimal.

Proof. E

n

� Minimal

n

� Conne
ted

n

� Group Automaton

n

, and we have proved that almost every

group automaton is in E

n

. �

3. Algorithm

This work naturally leads to an algorithm for generating uniformly at random a minimal 
on-

ne
ted group automata. Here the 
ardinality of the alphabet is bounded. The size of an automaton

is the number n of states of its minimal automaton. The algorithm is:

{ generate a random group automaton A using a fun
tion returning a random permutation for

ea
h letter of the alphabet. The 
ost is O(n);

{ test if A 2 E

n

, if not use Hop
roft's algorithm to 
he
k if it is minimal. Sin
e Hop
roft is

used rarely, the 
ost is O(n);

this being done a 
onstant number of time on average, be
ause of the theorem above.

This yields a linear 
omplexity in the average 
ase, whi
h is better than the best known algorithm

by Hop
roft [4℄ whi
h has 
omplexity n log n.
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O
tober 4, 1999

Summary by Cyril Banderier

Abstra
t

Multivariate linear re
urren
es appear in su
h diverse �elds of mathemati
s as 
ombinatori
s,

probability theory, and numeri
al resolution of partial di�erential equations. Whereas in

the univariate 
ase the solution of a 
onstant-
oeÆ
ient re
urren
e always has a rational

generating fun
tion, this is no longer true in the multivariate 
ase where this generating

fun
tion 
an be non-rational, non-algebrai
, and even non-D-�nite. Nevertheless, there are

important 
ases where the solution 
an be 
omputed exa
tly in terms of algebrai
 fun
tions.

Examples in
lude many latti
e-path problems su
h as the enumerations of Dy
k, Motzkin,

and S
hroeder paths, determining the 
ardinality of various free algebras, and (in some


ases) the enumeration of permutations with a forbidden pattern. This is joint work by

Marko Petkov�sek and Mireille Bousquet-M�elou (CNRS, Universit�e de Bordeaux I).

1. Multivariate Linear Re
urren
es

Combinatori
s are often synonymous of re
urren
es; whereas a quite impressive apparatus is

available for univariate re
urren
es, multivariate re
urren
es are always a strange and mysterious

world. Whereas a linear re
urren
e with 
onstant 
oeÆ
ients ne
essarily leads to a rational gen-

erating fun
tion in one variable, this is no longer true in several variables (even with very regular

boundary 
onditions). In fa
t, the set of multivariate generating fun
tions with su
h a re
urren
e

interse
ts almost all of the well-known 
lasses of fun
tions. Here are two examples leading to two

kinds of generating fun
tions.

A rational generating fun
tion: the 
hess king re
urren
e. On the square latti
e, one

performs a walk, beginning at (0; 0), made of a sequen
e of jumps (1,0), (1,1) or (0,1). Let a

n;k

be

the number of ways to rea
h (n; k). Thus, one has the relation a

n;0

= a

0;k

= 1 (for n; k � 0) and

the re
urren
e a

n;k

= a

n�1;k

+ a

n;k�1

+ a

n�1;k�1

(for n; k � 1). Then, the generating fun
tion is

F (x; y) =

1

X

n;k=0

a

n;k

x

n

y

k

=

1

1� (x+ y + xy)

:

Of 
ourse there is an expli
it formula for the 
oeÆ
ients (often referred to as Delannoy numbers

1

),

namely a

n;k

=

P

n

i=0

�

n

i

��

n+k�i

n

�

whi
h translates all the possible 
hoi
es to perform i moves of the

type (1; 1), n� i moves of the type (1; 0) and k � i moves of the type (0; 1).

1

Henry Auguste Delannoy was born in 1833, graduated from the

�

E
ole polyte
hnique in 1853 and be
ame a military

intendant in the 
ity of Orl�eans. He wrote a lot of 
ontributions in re
reative mathemati
s and 
ombinatori
s until

1895, the most remarkable being How to use a 
hessboard in order to solve some probability problems. After the death

of his friend Lu
as, he took in 
harge the publi
ation of Lu
as's last una
hieved books.
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An irrational generating fun
tion: the 
hess knight re
urren
e. This time, one performs

jumps (1; 2) or (2; 1) and the a

n;k

's are known for n � 1 or k � 1. Petkov�sek proved that F (x; y) =

P

a

n;k

x

n

y

k

is irrational [10℄ and a forth
oming arti
le by Bousquet-M�elou and Petkov�sek should

show that F is in fa
t non D-�nite.

A �rst problem whi
h 
an arise in several variables is that initial 
onditions have to be 
or-

re
tly set in order to establish the uniqueness of the solution to a linear re
urren
e with 
onstant


oeÆ
ients. The se
ond problem is what the nature of the solutions is, and how to 
ompute them.

2. Existen
e and Uniqueness of the Solution

Hen
eforth, we view all the indi
es (and variables) as tuples of Z

d

or C

d

, that is n = (n

1

; : : : ; n

d

)

and x = (x

1

; : : : ; x

d

). Let H = fh

1

; : : : ;h

k

g be the set of allowed jumps. Let s be the \true"

starting point of the walk, that is the point after whi
h all jumps are possible and where one does

not 
are about the side 
onditions anymore. The kind of re
urren
e under study is formalized by

(1) a

n

=

(

�(n) for n � 0 and n 6� s;




h

1

a

n+h

1

+ � � �+ 


h

k

a

n+h

k

for n � s.

The �rst part of the re
urren
e stands for the \initial" 
onditions (that is, the boundary values)

and the se
ond part re
e
ts the di�erent shifts (or jumps) allowed.

De�nition 1 (Dependen
y relation). De�ne ! by p! q () (p� q 2 H and q � s). Note

+

! the

transitive 
losure of !.

Thus, p! q simply means that there is a \step" from p to q, with q outside of the \boundary

value" area, and p

+

! q means that there is a sequen
e of steps from p to q.

Theorem 1. The following are equivalent:

1. the transitive 
losure

+

! of the dependen
y relation ! is well-founded in N

d

;

2. there exists u > 0 su
h that u � h < 0 for any \jump ve
tor" h 2 H;

3. the 
onvex hull of H does not interse
t R

d

+

.

The last point is the most eÆ
ient for proving uniqueness of the solution of re
urren
e (1) as

it is easy to 
he
k. For example, for the 
hess king problem, one has a re
urren
e with starting

point s = (1; 1) and the set of allowed jumps is H = f(�1; 0); (�1;�1); (0;�1)g, the interse
tion

of the 
onvex hull of H (a triangle in the lower left quarter) and of R

2

+

is 
learly the empty

set; thus there is a unique solution to the re
urren
e. Considering now the re
urren
e a

n;k

=

a

n�1;k+2

+ a

n+2;k�1

(for n; k � 1), where the a

n;k

's are known (for n = 0 or k = 0), where the

starting point is s = (1; 1) and where the set of allowed jumps H = f(�1; 2); (2;�1)g, gives an

example for whi
h the 
onvex hull interse
ts R

2

+

; thus uniqueness does not hold. As a last example,

one shows that the 
hess knight problem has a unique solution: the starting point is s = (2; 2) and

the set of allowed jumps is H =

�

(�2; 1); (1;�2)

	

, whose 
onvex hull does not interse
t R

2

+

.

3. Nature of the Solution

Let K be a �eld of 
hara
teristi
 zero. Consider F (x) =

P

n�0

a

n

x

n

with a

n

2 K and x

n

=

x

n

1

� � � x

n

d

. A fun
tion F (x) is 
alled rational if there exist two polynomials P and Q in K [x℄ n f0g

su
h that QF �P = 0. The fun
tion F is 
alled algebrai
 if there exists P 2 K [x; t℄ n f0g su
h that

P (x; F (x)) = 0. The fun
tion F is 
alled D-�nite if there exist polynomials P

i;j

in K [x℄ su
h that

P

i;k

(x)

�

k

F (x)

�x

k

i

+ � � � + P

i;0

(x)

�

k

F (x)

�x

k

i

= 0
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with P

i;j

6= 0 for at least one j for ea
h i = 1; 2; : : : ; d. An equivalent de�nition states that the

spa
e spanned by all the derivatives of F is �nite-dimensional over K (x). D-�nite fun
tions have

ni
e 
losure properties and are related to a lot of 
ombinatorial problems (see Stanley's arti
le [12℄

and Lipshitz's arti
le [7℄).

De�nition 2 (Apex). The apex of H is the 
omponentwise maximum of H [ f0g.

For example, for the 
hess knight problem, one has H = f(�2; 1); (1;�2)g so the apex is (1; 1)

(and the starting point is (2; 2)). If H = f(�2;�1); (�1; 2)g, then the apex is (0,2).

An important ingredient in the proof of the two theorems stated hereafter is the kernel method.

Let us detail this point: one wants to make expli
it the solution F

s

of the re
urren
e (1), whi
h

rewritesQ(x)F

s

(x) = K(x)�U(x) whereK stands for the known initial 
onditions and U stands for

the unknown initial 
onditions. Q is 
alled the kernel. The kernel method 
onsists in 
an
elling the

kernel Q(x) by a 
hoi
e of algebrai
 values a of x, thus one gets a system of equationsK(a)�U(a) =

0. Solving this system generally allows to make U expli
it. This provides F

s

for generi
 x:

F

s

(x) =

K(x)� U(x)

Q(x)

:

Typi
ally, the fun
tion U(x) is the sum of m unknown multivariate fun
tions F

i

(x

1

; : : : ; x

d�1

); thus


an
elling the kernel with m di�erent values for x

d

(whi
h then be
ome fun
tions of (x

1

; : : : ; x

d�1

))

yields a system whi
h allows to make expli
it the F

i

's. The kernel method has belonged to mathe-

mati
al folklore sin
e the 1970's; e.g., it has been used by 
ombinatorialists [3℄[6, Se
. 2.2.1, Ex. 4

and 11℄ and probabilists [4℄. There is also some re
ent work whi
h makes a deep use of it [1, 2, 10, 11℄.

Theorem 2. Assume the apex of H is 0. Then the generating fun
tion F

s

(x) of the unique solution

of re
urren
e (1) is rational if and only if the known initial fun
tion K(x) itself is rational.

Theorem 3. Take K = C . Assume the apex of H has at most one positive 
oordinate. Then the

generating fun
tion F

s

(x) of the unique solution to the re
urren
e (1) is algebrai
 if and only if the

known initial fun
tion K(x) itself is algebrai
.

An algebrai
 example: Dy
k paths. One performs steps (1; 1) or (1;�1), the numbers a

i;j

of

paths from (0; 0) to (i; j) satisfy the re
urren
e a

i;j

= a

i�1;j�1

+ a

i�1;j+1

(for m;n � 1), a

0;0

= 1

and a

i;j

= 0 elsewhere. This leads to the fun
tional equation (y � x � xy

2

)F

s

(x; y) = y � U(x).

Applying the kernel method yields

F

s

(x; y) =

y �

1�

p

1�4x

2

2x

y � x� xy

2

:

A trans
endental and D-�nite example: Young tableaux. The generating fun
tion of Young

tableaux of height at most d is related to the numbers

a

1;:::;1;n+1

=

d�1

Y

i=1

i

d�1

(dn)!

Q

d�1

i=0

(n+ i)!

�

d�1

Y

i=1

i

d�1

p

d

(2�)

(d�1)=2

d

dn

n

(d

2

�1)=2

:

Algebrai
ity would imply asymptoti
s of the type C � A

n

=

�

�(1 � r)n

r

�

with C and A algebrai


numbers and r a rational number not in f1; 2; 3; : : : g (
lassi
al result from singularity analysis [5℄).

In our 
ase, for odd d > 1, r is an integer and for even d > 2, �

�

1 � (d

2

� 1)=2

�

is in Q

�

p

�

�

but not in Q

�

�

(d�1)=2

�

. Thus, the generating fun
tion of Young tableaux of height at most d

is trans
endental (for d � 3) and D-�nite. Due to well-known one-to-one 
orresponden
es, this

result extends from Young tableaux to ballot problems and involutions avoiding long in
reasing

subsequen
es.
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A non-D-�nite and hypertrans
endental example. The numbers a

m;n

de�ned by

a

m;n

= a

m+1;n�2

+ a

m�2;n+1

� a

m�1;n�1

; if m;n � 2,

a

1;1

= �1, and a

m;n

= 0 elsewhere, a
tually belong to f0; 1;�1g and 
orrespond to a ni
e \fra
tal"

lozenge pattern (see the \diamond �gure" in [11℄). Let G(x) =

P

m�2

a

m;2

x

m+1

; one then has

F

s

(x; y) =

X

m;n�2

a

m;n

x

m�2

y

n�2

=

xy �G(x)G(y)

(x� y

2

)(y � x

2

)

:

This equation gives x

3

�G(x)�G(x

2

) = 0 whi
h leads by iteration to G(x) = x

3

P

i�0

(�i)

i

x

2

i

: This

kind of la
unary series 
annot be D-�nite. A stronger result gives that G is in fa
t hypertrans
en-

dental [8℄, whi
h means that there exists no algebrai
 di�erential equation P

�

z;G;G

0

; : : : ; G

(n)

�

= 0.

4. Con
lusion

This talk gave a bestiary of solutions for linear multivariate re
urren
es with 
onstant 
oeÆ
ients.

In two dimensions, it 
overs the theory of Riordan arrays [9℄ (obje
ts related to the Lagrange

inversion formula). Even in two dimensions, it 
an be diÆ
ult to get the status of the generating

fun
tion (algebrai
?, D-�nite?, . . . ). The main possible proofs are: in the algebrai
 
ase, the key

point is the kernel method, note that this method also appears in two other summaries in these

pro
eedings (see S
hae�er's and Banderier's talks); in the trans
endental 
ase, asymptoti
s allow

to dete
t the nonalgebrai
ity, and for non D-�nite fun
tions, one generally tries bootstrapping and

then obtaining an in�nite number of singular points.

Marko Petkov�sek has implemented some of the methods presented here in a Mathemati
a pa
kage

multivar, available, as several author's arti
les, at http://www.fmf.uni-lj.si/~petkovsek/.
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Classifying ECO-Systems and Random Walks

Cyril Banderier
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t, INRIA Ro
quen
ourt
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Summary by Pierre Ni
od�eme

Abstra
t

This talk presents a 
lassi�
ation by rationality, algebrai
ity or trans
enden
e of ECO-

systems (Enumerating Combinatorial Obje
ts) and of more general random walks. It is

based on an arti
le by Cyril Banderier, Mireille Bousquet-M�elou, Alain Denise, Philippe

Flajolet, Dani�ele Gardy and Dominique Gouyou-Beau
hamps [1℄.

1. Introdu
tion

A generating tree is de�ned by a system (an axiom and a family of rewriting rules)

(1)

�

(s

0

);

�

(k); (e

1

(k))(e

2

(k)) : : : (e

k

(k))

	

k�0

�

:

Here, the axiom (s

0

) spe
i�es the degree of the root, while the produ
tions e

i

(k) (with e

i

(k) > 0)

list the degrees of the k des
endants of a node labelled k (note the 
onstraint on the number of

des
endants of a node). Su
h a system 
onstitutes an ECO-System.

Example. 123-avoiding permutations. Consider the set S

n

(123) of permutations of length n that

avoid the pattern 123: there exist no integers i < j < k su
h that �(i) < �(j) < �(k). For instan
e,

� = 4213 belongs to S

4

(123) but � = 1324 does not, sin
e �(1) < �(3) < �(4).

Observe that if � 2 S

n+1

(123), then the permutation � obtained by erasing the entry n + 1

from � belongs to S

n

(123). Conversely, for every � 2 S

n

(123), insert the value n+1 in ea
h pla
e

where this is 
ompatible with the avoiding rule; this gives an element of S

n+1

(123). For example,

the permutation � = 213 gives 4213, 2413 and 2143, by insertion of 4 in �rst, se
ond and third

pla
e respe
tively. The permutation 2134, resulting of the insertion of 4 in the last pla
e, does

not belong to S

4

(123). This pro
ess 
an be des
ribed by a tree whose nodes are the permutations

avoiding 123: the root is 1, and the 
hildren of any node � are the permutations derived as above

(see Figure 1(a)).

Let us now label the nodes by their number of 
hildren: we obtain the tree of Figure 1(b). It


an be proved that the k 
hildren of any node labelled k are labelled respe
tively k+ 1; 2; 3; : : : ; k.

Thus the tree we have 
onstru
ted is the generating tree obtained from the following system:

(2)

�

(2);

�

(k); (2)(3) : : : (k � 1)(k)(k + 1)

	

k�2

�

:

Notations. We assume that all the values appearing in the generating tree are positive.

In the generating tree, let f

n

be the number of nodes at level n and s

n

the sum of the labels of

these nodes. By 
onvention, the root is at level 0, so that f

0

= 1. In terms of walks, f

n

is the number

of walks of length n. The generating fun
tion asso
iated to the system is F (z) =

P

n�0

f

n

z

n

:

Note that s

n

= f

n+1

, and that the sequen
e (f

n

)

n

is nonde
reasing.



36 Classifying ECO-Systems and Random Walks

1

21 12

321 231 213 312 132

4321 3241
3421 3214

4231
2431 2413

4213 2143 4312
3412

3142 4132
1432

5 2 3 4 3 2 4 2 3 4 2 3 3 2

4 2 3 3 2

3 2

2

(a) (b)

Figure 1. The generating tree of 123-avoiding permutations: (a) nodes labelled

by the permutations; (b) nodes labelled by the numbers of 
hildren.

Now let f

n;k

be the number of nodes at level n having label k (or the number of walks of length n

ending at position k). The following generating fun
tions will be of interest:

F

k

(z) =

X

n�0

f

n;k

z

n

and F (z; u) =

X

n;k�0

f

n;k

z

n

u

k

:

We have F (z) = F (z; 1) =

P

k�1

F

k

(z). Furthermore, the F

k

's satisfy the relation

(3) F

k

(z) = [k = s

0

℄ + z

X

j�1

�

j;k

F

j

(z);

where [k = s

0

℄ is 1 if k = s

0

and 0 elsewhere and �

j;k

denotes the number

�

�

f i � j j e

i

(j) = k g

�

�

of

one-step transitions from j to k. This is equivalent to the re
urren
e f

n+1;k

=

P

j�1

�

j;k

f

n;j

for the

numbers f

n;k

(with f

0;s

0

= 1), that results from tra
ing all the paths that lead to k in n+ 1 steps.

We refer to [1℄ for random generation using 
ounting and generating trees.

2. Rational Systems

ECO-systems satisfying strong regularity 
onditions lead to rational generating fun
tions. This


overs systems that have a �nite number of allowed degrees, as well as systems where the sum of

the labels at level k depends linearly on k.

Proposition 1. If �nitely many labels appear in the tree, then F (z) = F (z; 1) is rational.

Proof. Only a �nite number of F

k

's are nonzero; they are related by linear equations like Equa-

tion (3) above and therefore rational. F (z) is a �nite sum of these, and is also rational. �

Example. Fibona

i numbers are generated by the system

�

(1);

�

(k); (k)

k�1

((k mod 2) + 1)

	�

that 
an also be written as

�

(1);

�

(1); (2); (2) ; (1)(2)

	�

.

Proposition 2. Let �(k) = e

1

(k) + e

2

(k) + � � � + e

k

(k). If � is an aÆne fun
tion of k, say

�(k) = �k + �, then the series F (z) is rational. More pre
isely:

F (z) =

1 + (s

0

� �)z

1� �z � �z

2

:
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Proof. Let n � 0 and let k

1

; k

2

; : : : ; k

f

n

denote the labels of the f

n

nodes at level n. Then

f

n+2

= s

n+1

= (�k

1

+ �) + (�k

2

+ �) + � � �+ (�k

f

n

+ �)

= �s

n

+ �f

n

= �f

n+1

+ �f

n

:

We know that f

0

= 1 and f

1

= s

0

. The result follows. �

Example. The system

�

(2);

�

(k); (2)

k�1

(k+1)

	�

produ
es the Fibona

i numbers of even index.

Proposition 2 
an be adapted to apply to systems that \almost" satisfy its 
riterion (see [1℄).

3. Algebrai
 Systems

Systems where a �nite modi�
ation of the set f1; : : : ; kg is rea
hable from k lead to algebrai


generating fun
tions.

The possible moves from k are given by the rule:

(4) (k); f(0); : : : ; (k � 1)g n f(k � i) j i 2 Bg [ ff(k + j) j j 2 Agg;

where A � N and B � N

+

are a �nite multiset (denoted ff: : : gg) and a �nite set spe
ifying

respe
tively the allowed forward jumps (possibly 
oloured) and the forbidden ba
kwards jumps.

Observe that these walk models are not ne
essarily ECO-systems, �rst be
ause we allow labels

to be zero|but a simple translation 
an take us ba
k to a model with positive labels|, and se
ond

be
ause we do not require (k) to have exa
tly k su

essors.

In this se
tion f

n;k

is the number of walks of length n ending at point k and f

n

(u) =

P

k�0

f

n;k

u

k

is the 
oeÆ
ient of z

n

in F (z; u).

We 
ontinue this se
tion with the example A = f4; 15g and B = f2g, axiom (0) and the 
orre-

sponding family of rules

�

(k); (0)(1) : : : (k � 3)(k � 1)(k + 4)(k + 15)

	

:

This 
orresponds in generating fun
tions to substituting u

k

in

u

0

+ � � �+ u

k�1

� u

k�2

+ u

k+4

+ u

k+15

=

1� u

k

1� u

� u

k�2

+ u

k+4

+ u

k+15

for k � 2. This gives the re
urren
e f

n+1

(u) =

f

n

(1)�f

n

(u)

1�u

+ (u

4

+ u

15

� u

�2

)f

n

(u), and yields the

fun
tional equation

(5) F (z; u) = 1 + z

0

�

F (z; 1) � F (z; u)

1� u

+ P (u)F (z; u) � fu

<0

g

X

n�0

z

n

L[f

n

℄(u)

1

A

:

Here P (u) =

P

�2A

u

�

�

P

�2B

u

��

and L[g℄(u) =

g(1)�g(u)

1�u

+ P (u)g(u). Equation (5) may be

rewritten as

F (z; u)

�

1 +

z

1� u

� zP (u)

�

= 1 +

z

1� u

F (z; 1) � z

b�1

X

j=0




j

(u)�

j

u

F (z; 0);

where the 


j

(u) are Laurent polynomials. The kernel K(z; u) of Equation (5) is the 
oeÆ
ient

of F (z; u) in the left-hand side of this equation. F (z; u)K(z; u) is a linear 
ombination of b + 1

unknown fun
tions. Solving K(z; u) = 0 in u gives b + 1 
onvergent bran
hes u

i

(z) whi
h, in

turn, give the �

j

u

F (z; 0) through a (b+ 1)� (b+ 1) linear system, and from there F (z; 1), whi
h is

algebrai
.
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Proposition 3. The generating fun
tion F (z; 1) 
ounting the number of walks, starting from zero

and irrespe
tive of their endpoint is algebrai
 and F (z; 1) = �1=z

Q

b

i=0

(1 � u

i

); where b = maxB

and u

i

(z) are the �nite solutions at z = 0 of the equation K(z; u) = 0.

Examples of algebrai
 systems are the Catalan numbers

�

(k); (0)(1) : : : (k)(k+1)

	

, the Motzkin

numbers

�

(k); (0) : : : (k � 1)(k + 1)

	

, the S
hr�oder numbers

�

(k); (0) : : : (k � 1)(k)(k + 1)

	

or

the m-ary trees

�

(m);

�

(k); (m) : : : (k)(k + 1)(k + 2) : : : (k +m� 1)

	�

.

4. Trans
endental Systems

4.1. Trans
enden
e. If the 
oeÆ
ients of a series grow too fast, its radius of 
onvergen
e is zero.

Proposition 4. Let b be a nonnegative integer. For k � 1, let m

k

=

�

�

f i j e

i

(k) � k� b g

�

�

. Assume

that:

1. for all k, there exists a forward jump from k (i.e., e

i

(k) > k for some i),

2. the sequen
e (m

k

)

k

is non-de
reasing and tends to in�nity.

Then the generating fun
tion of the system has radius of 
onvergen
e 0.

Proof. See [1℄. �

However, there are ECO-systems or walks that are trans
endental with positive radius of 
on-

vergen
e su
h as

�

(k); (2)(4) : : : (2k)

	

or

�

(k); (dk=2e)

k�1

(k + 1)

	

.

4.2. Holonomy. A sub
lass of trans
endental fun
tions is the 
lass of holonomi
 fun
tions. A

series is said to be holonomi
 or D-�nite if it satis�es a linear di�erential equation with polynomial


oeÆ
ients in z. Equivalently, its 
oeÆ
ients f

n

satisfy a linear re
urren
e relation with polynomial


oeÆ
ients in n. Given a sequen
e f

n

, the OGF (ordinary generating fun
tion)

P

f

n

z

n

is holonomi


if and only if the EGF (exponential generating fun
tion)

P

f

n

z

n

=n! is holonomi
.

The following table gives examples of holonomi
 and non-holonomi
 trans
endental systems with

referen
es to the En
y
lopedia of Integer Sequen
es (EIS) by Sloane and Plou�e [2, 3℄.

Axiom Rewriting rules Name EIS Id. Generating Fun
tion

Holonomi
 OGF EGF

(1) (k); (k + 1)

k

Permutations M1675 1=(1� z)

(2) (k); (k)(k + 1)

k�1

Arrangements M1497 e

z

=(1� z)

(1) (k); (k � 1)

k�1

(k + 1) Involutions M1221 e

z+z

2

=2

(2) (k); (k + 1)

k�1

(k + 2) Partial permutations M1795 e

z=(1�z)

=(1� z)

Nonholonomi
 OGF EGF

(1) (k); (k)

k�1

(k + 1) Bell numbers M1484 e

e

z

�1

(2) (k); (k � 1)(k)

k�2

(k + 1) Bessel numbers M1462 |
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The spa
e of totally harmoni
 polynomials in n variables (for the symmetri
 group) is \
lassi
ally"

de�ned as the set of solutions y(x) to the system of PDE's:

n

X

i=1

�

k

x

i

y(x) = 0; 1 � k � n:

We re
all an expli
it des
ription of this solution set before introdu
ting the notion of diagonally

harmoni
 polynomials. As we will see, this gives rise to many 
ombinatorial problems.
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e

January 24, 2000

Summary by Fr�ed�eri
 Chyzak

Abstra
t

For a 
omputer algebra system, it is 
ru
ial to optimize the arithmeti
al operations on basi


obje
ts|numbers, polynomials, series, . . . In fa
t, two 
lasses of obje
ts 
an be distin-

guished: integers and polynomials, whi
h require exa
t operations; 
oating-point numbers

and series, for whi
h only the most signi�
ant part of the exa
t result is needed. The best

algorithms 
urrently known for multipli
ation, division, and square root on integers and


oating-point numbers are mostly re
ent. We present and analyse them using 
omplexity

models based on three di�erent multipli
ation algorithms (naive, Karatsuba, and FFT).

The MPFR library developed by Guillaume Hanrot and Paul Zimmermann is a C library for

multipre
ision 
oating-point 
omputations with exa
t rounding [6℄. Its main purpose is to a
hieve

eÆ
ien
y with a well-de�ned semanti
s. Beside the elementary operations +, �, �, and /, it

provides routines for square root (with remainder in the integer 
ase, without remainder in the


oating-point 
ase), logarithm and exponential. The longer-term goal is to integrate routines for

the numeri
al evaluation of other elementary and spe
ial fun
tions as well.

Paul Zimmermann's algorithm for square roots [8℄ originates in this work. It is reported on here,

as well as other re
ent fast algorithms for multipli
ations, divisions, and square roots. They all base

Operation Naive Karatsuba FFT

Method exa
t trun
ated exa
t trun
ated exa
t trun
ated

Multipli
ation 1 1/2 1 1 1 1

Mulders 0.808

Division 1 1/2

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9/2 7/2

Jebelean, Burnikel{Ziegler 2 3/2

Mulders 1.397

Square root 1/2 1/4

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9=2

y

7=2

y

Jebelean, Burnikel{Ziegler 3=2

z

1

z

Mulders 0:966

z

Figure 1. Complexity of division and square root algorithms in terms of exa
t

multipli
ations for the three usual multipli
ation models. Algorithms marked `y',

resp. `z', were analysed, resp. designed and analysed, by Paul Zimmermann in [8℄.
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on Newton's method, whi
h essentially redu
es division and square root to a few multipli
ations.

Conversely, division 
annot be performed faster than multipli
ation, for ab = a=(1=b). Thus, on
e

a model for multipli
ation is 
hosen, the best to hope is to lessen the 
onstant in the 
omputational


omplexity of inversion and square rooting. Several approa
hes to redu
e this 
onstant are des
ribed

and 
ombined in the following se
tions. To simplify the exposition, 
arries and their propagation

are not taken into a

ount, although they 
ould be a

omodated with no 
on
eptual diÆ
ulty and

no essential 
hange of the 
omplexities.

1. The Three Classi
al Multipli
ation Models

The naive multipli
ation algorithm 
omputes a produ
t by 
onvolution between 
oeÆ
ients. Its

arithmeti
al 
omplexity is N(n) = O

�

n

2

�

. Karatsuba's re
ursive algorithm bases on the formula

(1) uv = (u

1

b+ u

0

)(v

1

b+ v

0

) = u

1

v

1

b

2

+

�

(u

1

+ v

1

)(u

0

+ v

0

)� u

1

v

1

� u

0

v

0

�

b+ u

0

v

0

;

where only three multipli
ations are required instead of four by the naive method, yielding the

better 
omplexity K(n) = O

�

n

lg 3

�

= O

�

n

1:585:::

�

. A re�nement of this idea, splitting ea
h term

of the produ
t into more and more parts as n goes to in�nity, is the Toom{Cook approa
h [5℄.

The improved 
omplexity is O

�

n

1+

p

2=

p

lg n

lnn

�

. However this algorithm is only a theoreti
al

one. Finally, the fastest known multipli
ation algorithm relies on FFT (fast Fourier transform)

to a
hieve the 
omplexity F (n) = O(n lnn ln lnn). FFT is a fast re
ursive method to 
ompute

the DFT (dis
rete Fourier transform) of a polynomial (i.e., its evaluation at ea
h of the nth roots

of unity, also 
alled its Fourier 
oeÆ
ients). DFT ex
hanges produ
t of polynomials|
onvolution

of the 
oeÆ
ients|and point-wise produ
t of the Fourier 
oeÆ
ients. A produ
t of polynomials

is thus essentially 
omputed by two dire
t DFT, mulpli
ation of the Fourier 
oeÆ
ients, and one

reverse DFT. Note the following asymptoti
 relations between arithmeti
al 
omplexities:

(2) N(2n) � 4N(n); K(2n) � 3K(n); and F (2n) � 2F (n):

2. Newton's S
heme for Inverses and Square Roots

Newton's s
hemes respe
tively given by �(x) = x(2 � ax) and �(x) = x(3 � ax

2

)=2 
onverge

to 1=a and 1=

p

a. This entails that inverses and square roots 
an be 
omputed by additions and

multipli
ations only, using b=a = b� (1=a) and

p

a = a� (1=

p

a ). Both methods have a quadrati



onvergen
e rate sin
e

�

�

1 + �

a

�

=

1� �

2

a

and �

�

1 + �

p

a

�

=

1� 3�

2

=2� �

3

=2

p

a

:

This means that the number of 
orre
t digits doubles at ea
h step of the iteration.

For a of size n and x of size n=2, a naive 
al
ulation of �(x) would take 5M(n=2) arithmeti
al

operations, returning an output of size 2n. The method is optimized by writing �(x) = x+x(1�ax)

and noting that if the n=2 digits of x are 
orre
t, 1 � ax starts with n=2 zeroes and ends with

a 
orre
tion of size n, whose �rst n=2 digits only are useful. Thus, only the middle n=2 digits

of ax are 
omputed in 2M(n=2) arithmeti
al operations, then multiplied with x, then added to x

by merely appending them. The overall 
ost I(n) for inverting a of size n is therefore given by

the re
urren
e I(n) = 3M(n=2) + I(n=2). Unfolding it using (2) yields the asymptoti
s 2N(n)

(no improvement), 3K(n)=2, and 3F (n), depending on the multipli
ation model. Adding 1 for the

�nal multipli
ations, this gives the 
onstants for the trun
ated 
ase. In the 
ase of inversion with

remainder, the latter is 
omputed after the division as a 
orre
ting term, so that another 1 has to

be added to the 
onstant.
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The same tri
k works to 
ompute square roots, after writing �(x) = x + x(1 � ax

2

)=2: x

2

is


omputed in M(n=2) arithmeti
al operations, then 1 � ax

2

in M(n) arithmeti
al operations; the

�rst n=2 digits are zero, and only the next n=2 ones are multiplied with x in M(n=2) arithmeti
al

operations. The overall 
ost S(n) to 
ompute 1=

p

a for a of size n is therefore given by the

re
urren
e S(n) =M(n)+2M(n=2)+S(n=2), whi
h on
e unfold yields the asymptoti
s 2N(n) (no

improvement), 5K(n)=2, and 4F (n), when
e the 
onstants for the trun
ated and exa
t 
ases.

3. Karp and Markstein's Modi�
ation of Newton's Method

Karp and Markstein's improvement is to in
orporate the �nal multipli
ations b � (1=a) and

a�(1=

p

a ), respe
tively, into the last step of Newton's method in the 
orresponding 
al
ulation [4℄.

In the 
ase of the inverse, this 
orresponds to repla
ing the last step of the iteration with the


omputation of y = bx, then of y + x(b � ay). Only the �rst n=2 digits of y are kept, and the


onvergen
e remains quadrati
. As to the 
omplexity, onlyM(n=2) has been added to the iteration

as a repla
ement for the arithmeti
al 
omplexity M(n) of a multipli
ation outside of it. The gain

is thus 2K(n)=3 or F (n)=2, depending on the multipli
ation model.

In the 
ase of the square root, the last step of the iteration is repla
ed with the 
omputation

of y = ax, then of y + x(a � y

2

)=2. Only the last n=2 digits of y are kept, the method remains

quadrati
, and the gains are the same as with inversion.

4. Burnikel and Ziegler's Division with Remainder

All the algorithms mentioned above base on Newton's method to redu
e manipulations of obje
ts

of size 2n to manipulations of obje
ts of size n. For a 
hange, Burnikel and Ziegler's improvement

of division [1, 3℄ 
onsists of two mutually re
ursive algorithms for dividing an obje
t of size 3n by

an obje
t of size 2n and for dividing an obje
t of size 4n by an obje
t of size 2n. The division

algorithm obtained in this way was then reused by Zimmermann for the 
omputation of square

roots [8℄.

Algorithm D

2=1

to divide u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

by v

1

b + v

0

(where ea
h u

i

or v

i

is a blo
k of

size n and where b is a suitable basis) �rst 
omputes (q

1

; r

1

b + r

0

) = D

3=2

(u

3

b

2

+ u

2

b + u

1

; v

1

b +

v

0

), then (q

0

; s

1

b + s

0

) = D

3=2

(r

1

b

2

+ r

0

b + u

0

; v

1

b + v

0

), to return (q

1

b + q

0

; s

1

b + s

0

). The

arithmeti
al 
omplexity D

2=1

(n) to divide an obje
t of size n by an obje
t of size n=2 is thus twi
e

the arithmeti
al 
omplexity D

3=2

(n=2) to divide an obje
t of size 3n=2 by an obje
t of size n. For its

part, Algorithm D

3=2

to divide u

2

b

2

+u

1

b+u

0

by v

1

b+v

0

�rst 
omputes (q; 
) = D

2=1

(u

2

b+u

1

; v

1

),

then r = r

1

b + r

0

= 
b + u

0

� qv

0

; next, it de
reases q by 1 while adding v

1

b + v

0

to r until

r is nonnegative, before returning (q; r). This `while' loop is proved to 
ost little, so that the


omplexity D

3=2

(n) is just D

2=1

(n) +M(n).

Consequently, the 
omplexity D

2=1

(n) is ruled by the re
urren
e D

2=1

(n) = 2D

2=1

(n=2) +

2M(n=2). This makes no improvement in the 
ase of FFT (
omplexity 2F (n) lnn), but provides

a Karatsuba-based exa
t division of arithmeti
al 
omplexity 2K(n), whi
h is redu
ed to 3K(n)=2

for trun
ated division. Indeed, the trun
ated variant of Algorithm D

2=1


alls the exa
t variant

of Algorithm D

3=2

on
e, and its trun
ated variant on
e. Then, the exa
t D

3=2

only uses the

exa
t D

2=1

, while the trun
ated D

3=2


alls the trun
ated D

2=1

. This variant saves as mu
h as

M(n=2) +M(n=4) + � � � , that is to say K(n)=2 in the Karatsuba model.

Zimmermann's algorithm R to 
ompute the square root of u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

�rst 
om-

putes (s

0

; r

0

) = R(u

3

b + u

2

), then (q; u) = D

2=1

(r

0

b + u

1

; 2s

0

); it next lets s and r be s

0

b + q

and (ub + u

0

) � q

2

, respe
tively; if r is nonnegative, it returns (s; r), else (s; r + 2s � 1). The

arithmeti
al 
omplexity R(n) to 
ompute the square root of an obje
t of size n is then given by the
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re
urren
e R(n) = R(n=2) + D

2=1

(n=2) +M(n=2). With multipli
ations by the Karatsuba algo-

rithm, this redu
es to 3K(n)=2 for the exa
t 
ase. In the trun
ated 
ase, the algorithm is modi�ed

by 
alling the trun
ated variant of D

2=1

and by not substra
ting q

2

to de�ne r. The re
urren
e

be
omes R(n) = R(n=2) +D(n=2), whi
h in the Karatsuba model delivers a 
omplexity K(n) for

square roots without remainder.

5. Mulders' \Short Produ
ts"

Mulder's idea is a modi�
ation of Karatsuba's algorithm dedi
ated to the trun
ated 
ase [7℄.

Ea
h of the terms u

1

v

1

, (u

1

+v

1

)(u

0

+v

0

)�u

1

v

1

�u

0

v

0

, and u

0

v

0

in Equation (1) has size 2n if the

input u and v are of size 2n. In view of a trun
ated produ
t|or \short produ
t"|, the same relation

suggests to 
ompute u

1

v

1

exa
tly, only the most signi�
ant half of (u

1

+ v

1

)(u

0

+ v

0

)�u

1

v

1

�u

0

v

0

,

and to save the 
al
ulation of u

0

v

0

. In fa
t, the simpler form u

1

v

0

+ u

0

v

1

is used: the produ
t uv

is thus redu
ed to an exa
t multipli
ation, u

0

v

0

, and two trun
ated multipli
ations, u

1

v

0

and u

0

v

1

.

Unfortunately, unfolding the re
urren
e M(n) = K(n=2) + 2M(n=2) yields no optimization at all.

The idea is then to vary the sizes of the blo
ks in u and v: for blo
ks u

1

and v

1

of size �n, the

re
urren
e be
omes M(n) = K(�n) + 2M

�

(1 � �)n

�

, indu
ing M(n) = 
K(n) for 
 = �

�

=

�

1 �

2(1� �)

�

�

, where � = lg 3 = 1:585 : : : The optimum is obtained for � ' 0:694 and 
 ' 0:808.

The same idea applies to division, with an optimum for � ' 0:542 and 
 ' 1:397. Moreover,

Zimmermann's algorithm redu
es the 
omputation of a trun
ated square root of an obje
t of size n

to an exa
t square root and a trun
ated division on obje
ts of size n=2; this yields the arithmeti
al


omplexity ' (3=2 + 1:397)K(n=2) ' 0:966K(n) for trun
ated square root.

6. Other Improvements

Other improvements for the Karatsuba model were announ
ed in the talk: Hanrot and Zimmer-

mann have obtained a better 
onstant for inversion and division (' 1:212), whi
h was then used

by Quer
ia to lessen the 
onstant for division without remainder to roughly 1. These works have

been further developed sin
e then, with appli
ations to square roots as well [2℄.
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Relax But Don't Be Too Lazy

Joris van der Hoeven

Laboratoire de Math�ematique, Universit�e Paris-Sud

January 24, 2000

Summary by Paul Zimmermann

Joris van der Hoeven's talk presents novel algorithms operating on formal power series. These new

algorithms are based on fast multipli
ation methods (Karatsuba, Toom{Cook, FFT), and improve

the best asymptoti
 
omplexities known, for example those obtained by Brent and Kung [1℄, while

staying very eÆ
ient for the medium range (Karatsuba).

Most algorithms work with a linear spa
e in the input size n, some of them require a spa
e

in n logn. The basi
 idea of these new algorithms is what Joris van der Hoeven 
alls \the relaxed

approa
h," intermediate between the zealous approa
h and the lazy approa
h. This relaxed ap-

proa
h was invented in 1997, with the presentation of two relaxed algorithms for the multipli
ation

of formal power series at the ISSAC'97 
onferen
e [8℄. The report [9℄ details these algorithms and

their implantation, presents some other multipli
ation algorithms, shows how the relaxed approa
h

extends naturally to other operations on formal power series, and �nally o�ers several experimental


omparisons between 
lassi
al and relaxed algorithms.

1. The Zealous Approa
h

Let us 
onsider the produ
t of two formal power series, f = f

0

+� � �+f

n

z

n

and g = g

0

+� � �+g

n

z

n

.

The zealous approa
h 
onsists in using at the same time every data f

0

, . . . , f

n

, g

0

, . . . , g

n

to


al
ulate the produ
t h = f � g = h

0

+ � � � + h

n

z

n

+ O(z

n+1

). So it 
orresponds to the 
lassi
al

or \o�-line" approa
h. Several algorithms of di�erent 
omplexities implement this approa
h: the

na��ve multipli
ation in O(n

2

), Karatsuba's algorithm in O(n

log

2

3

) [6℄, and the multipli
ation by

FFT in O(n log n log log n). The following table summarizes the 
omplexity in time and spa
e of

the best known zealous algorithms for di�erent operations on formal power series (to fa
ilitate the

reading, we omitted the O(�) terms):

Algorithm Time Spa
e

Multipli
ation M(n) = n log n log logn n

Division M(n) n

Di�erential equations M(n) n

Holonomi
 fun
tions n n

Algebrai
 
omposition M(n) log n n

General 
omposition M(n)

p

n logn n logn

Composition in �nite 
hara
teristi
 M(n) log n n
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Newton's method. Newton's method redu
es several operations to elementary 
omputations. For

example, the logarithm of a formal power series is written:

log f = log f

0

+

Z

f

0

f

and redu
es to a division (f

0

=f) and an integration of linear 
omplexity, when
e a 
ost in O

�

M(n)

�

.

Exponentiation redu
es to logarithm by Newton's method. If g is su
h that log g � f = O(z

n=2

),

i.e., g is an approximation to order n=2 of exp f , then ~g = g�g(log g�f) will be an approximation

to order n, when
e an algorithm again in O

�

M(n)

�

. Fun
tional inversion|given a series f , �nd g

su
h that f Æ g = z|redu
es to 
omposition by:

~g = g �

f Æ g � z

f

0

Æ g

;

and so the 
omplexity of inversion is that of 
omposition.

Polynomial 
omposition. The problem is as follows: given a polynomial f of degree p, a polyno-

mial g with zero 
onstant 
oeÆ
ient and of �xed degree q, and an integer n � p, 
ompute h = f Æ g

to order n. The divide-and-
onquer algorithm 
onsists in writing:

f Æ g = (f

lo

+ z

p=2

f

hi

) Æ g = f

lo

Æ g + g

p=2

(f

hi

Æ g);

and so on with p=4, p=8, . . . , the powers of g being pre
omputed. It gives a 
omplexity of

O

�

(pq=n)M(n) log n

�

.

General 
omposition. Given two formal power series f = f

0

+ � � �+ f

n

z

n

and g = g

1

z+ � � �+ g

n

z

n

,

we want to 
ompute h = f Æg = h

0

+ � � �+h

n

z

n

+O(z

n+1

). Brent and Kung's algorithm [1℄ splits gf

into two parts g = g

lo

+ g

hi

:

g

lo

= g

1

z + � � � + g

q

z

q

g

hi

= g

q+1

z

q+1

+ � � � + g

n

z

n

;

then writes the Taylor expansion of f Æ (g

lo

+ s) at s = 0:

f Æ g = f Æ g

lo

+ (f

0

Æ g

lo

)g

hi

+

1

2

(f

00

Æ g

lo

)(g

hi

)

2

+ � � � :

The 
omputation of f

(n)

Æ g

lo


an be done by dire
t iteration:

f

(i)

Æ g

lo

=

�

f

(i�1)

Æ g

lo

�

0

g

0

lo

or inverse iteration:

1

(i� 1)!

f

(i�1)

Æ g

lo

= f

i�1

+ i

Z

�

1

i!

f

(i)

Æ g

lo

�

g

0

lo

:

2. The Lazy Approa
h

Here, we regard the formal power series not as a list of 
oeÆ
ients given on
e and for all,

but as a 
ow of 
oeÆ
ients. That 
orresponds to \in-line" 
omputations. The lazy approa
h


onsists in 
al
ulating the 
oeÆ
ients one by one; at ea
h stage, we only perform stri
tly ne
essary


omputations.
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Let us 
onsider for example the equation for the generating fun
tion f(z) of binary trees 
ounted

a

ording to their internal nodes:

f = 1 + zf

2

:

Here the zealous or \o�-line" approa
h does not apply be
ause the 
oeÆ
ient f

n

of order n � 1

of f depends on f

0

, f

1

, . . . , f

n�1

:

f

n

= f

0

f

n�1

+ f

1

f

n�2

+ � � �+ f

n�2

f

1

+ f

n�1

f

0

:

Thus, for the multipli
ation at order 3 of f = f

0

+f

1

x+f

2

x

2

+O(x

3

) by g = g

0

+g

1

x+g

2

x

2

+O(x

3

)

giving h = f � g = h

0

+ h

1

x + h

2

x

2

+ O(x

3

), the lazy approa
h 
onsists in 
al
ulating the value

h

0

= f

0

g

0

at stage 0, then h

1

= f

0

g

1

+ f

1

g

0

at stage 1 and h

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

at stage 2,

for a total of 6 multipli
ations. It is also possible to represent this 
omputation graphi
ally by

the following table, where the value k at the interse
tion of line g

i

and 
olumn f

j

means that the

value f

j

g

i

is obtained at stage k:

g

2

2

g

1

1 2

g

0

0 1 2

� f

0

f

1

f

2

The major disadvantage of this approa
h is that the 
omputation of all 
oeÆ
ients up to order n


osts O(n

2

): we 
annot use fast multipli
ation algorithms to redu
e the 
omplexity.

1

Another example is the 
omputation of the exponential g = exp f of a formal power series. By

di�erentiation, we obtain g

0

= g � f

0

, whi
h redu
es the exponentiation to a multipli
ation (the

di�erentiation and the integration having linear 
omplexity):

g =

Z

f

0

g:

However, here again, the series g appears in both members of the equation; with the lazy approa
h,

we 
an 
al
ulate the produ
t f

0

g one term at a time only, here again giving a quadrati
 
omplexity.

The arti
le [10℄ by Stephen Watt des
ribes an implementation in S
rat
hpad II (former name of

Axiom) of that approa
h, based on a lazy implementation of formal power series.

In 
on
lusion, the lazy approa
h has the advantage on the zealous approa
h to apply to the


ase of impli
it equations; in return it does not allow the use of fast multipli
ation algorithms,

and therefore gives higher asymptoti
 
omplexities. It is pre
isely this drawba
k whi
h the relaxed

approa
h solves.

3. The Relaxed Approa
h

The relaxed approa
h tries to use fast algorithms from the zealous approa
h in 
ases where this

approa
h is not appli
able, i.e., when \o�-line" 
omputations are not possible, like for example for

the 
omputation of the 
oeÆ
ients of the generating fun
tion of binaries trees f = 1 + zf

2

, or of

the exponential of a series g =

R

f

0

g.

The basi
 idea is the following: instead of performing the minimal 
omputations at ea
h stage as

in the lazy approa
h, one performs a few more 
al
ulations at 
ertain stages, whi
h will allow the

use of fast algorithms, and in the end a global gain. As all operations 
onsidered ultimately redu
e

to multipli
ations, it is enough to detail the relaxed approa
h for the multipli
ation of formal power

series.

1

By the way, this method is pre
isely that used in the 
ombstru
t library for the enumeration of 
ombinational

stru
tures.
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Let us re
all the above-mentioned example of the produ
t of f = f

0

+ f

1

x + f

2

x

2

+ O(x

3

) by

g = g

0

+g

1

x+g

2

x

2

+O(x

3

). The relaxed algorithm operates in the following way: at stage 1, instead

of 
al
ulating h

1

by f

0

g

1

+f

1

g

0

, we obtain it by Karatsuba's formula (f

0

+f

1

)(g

0

+g

1

)�f

0

g

0

�f

1

g

1

,

thus with two multipli
ations as well be
ause f

0

g

0

= h

0

has already been 
al
ulated. However, this

already made it possible to 
ompute part of h

2

, namely f

1

g

1

. Then stage 2 has to 
ompute f

0

g

2

and f

2

g

0

only, thus a gain of one multipli
ation 
ompared to the lazy approa
h. The 
orresponding

table is the following:

g

2

2

g

1

1 1

g

0

0 1 2

� f

0

f

1

f

2

where the square formed by the `0' and three `1' is obtained in three multipli
ations instead of

four, thanks to Karatsuba's algorithm. Considering di�erently, we 
ut out the triangle of side 3

in two squares 1 � 1 and a square 2 � 2, for whi
h we used a fast algorithm. More generally, any

relaxed algorithm for the multipli
ation of formal power series of order n 
onsists of a tiling of the

triangle of side n by a set of squares. With ea
h tiling 
orresponds a new algorithm. Ea
h square

is numbered by an integer from 0 to n, indi
ating the stage at whi
h it is 
al
ulated; at stage n,

only the 
oeÆ
ients of order less than or equal to n 
an be used.

The example above illustrates two signi�
ant points of relaxed algorithms:

1. at the end of stage 1, it is ne
essary to save the value of f

1

g

1

whi
h was 
omputed in advan
e,

for latter use at stage 2. The relaxed algorithms may thus require more memory than zealous

algorithms. In most 
ases however, the memory used remains linear, but it 
an be in n logn;

2. if we want to 
ontinue the 
al
ulation of h = fg to a higher order, say order 4, the

adopted strategy is not ne
essarily the best. Indeed, at stage 2 we 
ould have 
al
ulated

(f

0

+ f

2

)(g

0

+ g

2

)� f

0

g

0

� f

2

g

2

in two multipli
ations, whi
h would give f

0

g

2

+ f

2

g

0

in two

multipli
ations as well, but would also give the term f

2

g

2

of h

4

.

Thus we 
an distinguish two 
ases: (i) the 
ase where the maximum order n of 
al
ulations is

known in advan
e and thus it is a question of optimizing the total number of operations up to this

order n; (ii) the 
ase where the maximum order is not known a priori, and one wants to optimize

the \average" number of operations of the relaxed algorithm.

Joris van der Hoeven also shows that Karatsuba's algorithm for the multipli
ation of polynomials

|we do not speak any more of formal power series here|is essentially relaxed, i.e., the formula

giving the term h

k

of the produ
t only depends on f

0

, . . . , f

k

and g

0

, . . . , g

k

. Consequently,

Karatsuba's algorithm 
an dire
tly be used for the relaxed multipli
ation. The table 
orresponding

to the produ
t of two polynomials of degree 3 is the following:

2

g

3

3 3 3 3

g

2

2 3 2 3

g

1

1 1 3 3

g

0

0 1 2 3

� f

0

f

1

f

2

f

3

2

Exer
ise: Find the operations 
arried out with ea
h stage from 0 to 6 and 
he
k that one indeed performs

9 multipli
ations. Help: 9 = 1 + 2 + 2 + 3 + 1 + 0 + 0.
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The major disadvantage of the relaxed alternative of Karatsuba's algorithm is however the memory

usage: on the one hand the memory required is in O(n log n), on the other hand the memory

management is extremely 
omplex, sin
e for ea
h stage it is ne
essary to know whi
h values must

be 
al
ulated, whi
h should be reused|and among those, whi
h 
an be destroyed|, �nally whi
h

have to be saved for latter use.

Another algorithm proposed by Joris van der Hoeven 
onsists in tiling the square n � n by a

sequen
e of `L' shapes of in
reasing width. That leads to a relaxed multipli
ation in O

�

M(n) log n

�

.

Several other alternatives are proposed in [9℄, both for 
omplete produ
ts (polynomials) and trun-


ated produ
ts (formal power series). The other operations (division, 
omposition) are also \es-

sentially relaxed." Finally we obtain the following 
omplexities for the relaxed alternatives of the

operations on formal power series:

Algorithm Times Spa
e

Karatsuba's multipli
ation n

log

2

3

n logn

Multipli
ation via FFT D(n) =M(n) log n n

Division D(n) n

Di�erential equations D(n) n

Holonomi
 fun
tions n n

Algebrai
 
omposition D(n) log n n

General 
omposition D(n)

p

n logn n

3=2

log n

Composition in �nished 
hara
teristi
 D(n) log n n logn

The time 
omplexities are the same ones as for the zealous approa
h, while repla
ing M(n)

with D(n). The memory 
omplexity is identi
al, ex
ept when we use Karatsuba's multipli
a-

tion algorithm (there is however a slower variant by a 
onstant fa
tor, but in spa
e O(n)), or for

the 
omposition (general or in �nite 
hara
teristi
).

Joris van der Hoeven gives in his report [9℄ many experimental results for these new algorithms.

Timings below 
orrespond to an AMD pro
essor at 200 MHz with 64 MB of main memory. Van

der Hoeven's program 
al
ulates 500 terms of the Taylor expansion of exp(z exp z) in 342 se
onds

against 1086 se
onds for the zealous approa
h; it 
al
ulates the number of al
ohols C

n

H

2n+1

OH

for n = 5000 in approximately 2300 se
onds, whereas the na��ve method does not allow this 
al
u-

lation in reasonable time and spa
e; it 
al
ulates the expansion in 1=x of the di�erential-di�eren
e

equation

f(x) =

1

x

�

1 + f(x+ 1) + f

0

(x)

2

�

to order 2000 in 1572 se
onds.

4. Con
lusion

Joris van der Hoeven presented us a whole panoply of algorithms whi
h redu
e the 
al
ulation

of the �rst n 
oeÆ
ients of the majority of the formal power series de�ned by algebrai
 equations,

di�erential equations or di�eren
e equations, to a quasi-linear 
omplexity, whereas the best algo-

rithms known before were almost quadrati
 (in the impli
it 
ase, i.e, where the zealous approa
h

does not apply).

It would be ni
e if these algorithms were implemented in enumerative 
ombinatori
s softwares like


ombstru
t

3

or CS [3℄. More generally, all 
omputer algebra systems worthy of the name should

implement these new algorithms, both for formal power series, polynomials, and integers. Indeed,

3

http://algo.inria.fr/libraries/software.html
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one of the by-produ
ts of Joris van der Hoeven's report is a division algorithm with remainder in

K(n) operations, whereas the best known algorithm was in 2K(n) [7, 2, 5℄.

Related work. For trun
ated division and square root, new algorithms based on Karatsuba's mul-

tipli
ation are detailed in the report [4℄.

A
knowledgement. People who don't read Fren
h may thank Gina Pierrel�ee-Grisvard who helped

to translate this summary.
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Threshold Phenomena in Random Latti
es and Redu
tion Algorithms
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Summary by Philippe Flajolet

By a latti
e is meant here the set of all linear 
ombinations of a �nite 
olle
tion of ve
tors in R

n

taken with integer 
oeÆ
ients,

L = Ze

1

� � � � � Ze

p

:

One may think of a latti
e as a regular arrangement of points in spa
e, somewhat like atoms


omposing a 
rystal in R

3

. Given the generating family (e

j

), there is great interest in �nding a

\good" basis of the latti
e. By this is meant a basis that is \almost" orthogonal and is formed with

ve
tors of \small" length. The pro
ess of 
onstru
ting a \good" basis from a skewed one is referred

to as latti
e [basis℄ redu
tion.

Latti
e redu
tion is of stru
tural interest in various bran
hes of number theory. For instan
e,

redu
tion in dimension 2 is 
ompletely solved by a method due to Gau�. This entails a 
omplete


lassi�
ation of binary quadrati
 forms with integer 
oeÆ
ients, a fa
t that has numerous impli-


ations in the analysis of quadrati
 irrationals and in the representation of integers by quadrati


forms (
f. for example Pell's equation, x

2

� dy

2

= 1.)

The algorithmi
 and 
omputational questions that stem from latti
e redu
tion are of even greater

appli
ability. In all generality, the exa
t optimization problem (i.e., �nding the \best" basis, for

instan
e, the one formed by ve
tors of stri
tly minimal lengths) isNP -
omplete, hen
e 
omputation-

ally intra
table even in relatively low dimensions. However, as is usual in this range of optimization

problems, approximate solutions may be found at a reasonable 
ost. In fa
t, a major advan
e in

this area is due to Lenstra, Lenstra, and Lov�asz [4℄ who were the �rst to give a polynomial approx-

imation algorithm (ni
knamed the `LLL' algorithm); this algorithm applies in all dimensions and

is of polynomial time 
omplexity. A spe
ta
ular 
onsequen
e was to provide (for the �rst time) an

algorithm that fa
torizes univariate polynomials over the rationals in polynomial time.

1

The LLL

algorithm takes its inspiration from the 
lassi
al Gram{S
hmidt orthogonalization pro
ess, with

the important modi�
ation that orthogonalization 
oeÆ
ients must be approximated by integers,

while the algorithm strives to keep ve
tors of a \reasonable" length. This results both in a default

of orthogonality and a default of minimality as regards the basis that is 
onstru
ted.

Sin
e 1982, the LLL algorithm has found innumerable 
onsequen
es in various bran
hes of 
om-

putational number theory, 
omputer algebra, 
ryptography, and 
ombinatorial optimization.

2

The

1

The authors of [4℄ pro
eed as follows. Let f be the initial polynomial (with integer 
oeÆ
ients) and h be an

irredu
ible fa
tor of f mod p

n

. The set of polynomials of degree one whi
h redu
e modulo p

n

to a multiple of h

is a latti
e, and this latti
e 
ontains a ve
tor of (relatively) short length if and only if it 
ontains a multiple of the

irredu
ible fa
tor of f 
orresponding to h.

2

An example of appli
ation at the 
rossroads of 
ombinatorial optimization and 
ryptography is the Knapsa
k

Problem.
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superb book of von zur Gathen and Gerhard [5℄ devotes Chapters 16 and 17 to the question and

o�ers a very readable a

ount.

The talk presents two new notions of redu
tion that are stru
turally weaker than LLL redu
tion.

These are 
alled Gram redu
tion and S
hmidt redu
tion. Regarding the algorithms asso
iated to

these redu
tions, not mu
h gain is per
eptible in the worst 
ase when 
ompared to LLL redu
tion.

However, interesting di�eren
es start appearing in the average 
ase. In 
ontrast, the relaxation of


onstraints a�orded by Gram or S
hmidt redu
tion brings measurable bene�ts in many 
ases to

be en
ountered in pra
ti
e. We refer to Akhavi's Ph.D. thesis and espe
ially to his paper [1℄ for a

pre
ise des
ription of the algorithms involved. In what follows, we fo
us on modelling issues.

A simple and natural model of what a random latti
e is 
an be des
ribed as follows: take a

system of p ve
tors (e

1

; : : : ; e

p

) 
hoosen uniformly and independently inside the unit ball of R

n

(with n � p). Let `

j

denote the length of the jth element of the orthogonalized version a

ording

to the 
lassi
al Gram{S
hmidt pro
edure (in the real domain). Daud�e and Vall�ee have shown

that ea
h `

j

has a distribution that is asymptoti
ally of the Beta type, with probability density

proportional to u

n�j

(1 � u

2

)

(j�1)=2

; see [3℄. A 
onsequen
e of the estimates of [3℄ is the following

upper bound for the expe
ted number E(K) of iterations of the LLL algorithm over inputs bounded

from above by M ,

E(K) �

n

2

log t

�

logn

2

+ 3

�

+ n+ 3n

2

log

t

M

M

1=3

:

(There t 2 (1; 2) is a 
ontrol parameter whi
h in
uen
es the performan
e of the redu
tion algo-

rithm.) This result implies an upper bound on the number of iterations of the order of n

2

logn.

Akhavi improves the estimates of [3℄. The noti
eable fa
t here is the presen
e of thresholds.

Consider a large dimension n together with the lengths of the ath and bth (standard Gram{S
hmidt)

orthogonalized ve
tors in R

n

. Then one has (Theorem 8 of [1℄):

1. If a = �n+ i and b = �n+ j with �xed 0 < � < � < 1, then the ratio `

b

=`

a

exhibits a sharp

threshold: the random variable `

b

=`

a

is with high probability 
on
entrated around its mean,

namely �

0

:=

p

1� �=

p

1� �.

2. If a = n� i and b = n� j, then the ratio `

b

=`

a

is governed by a modi�ed Beta distribution

(that admits a 
ontinuous density).

These results quantify pre
isely the \evolution" of the lengths of ve
tors during the orthogonal-

ization pro
ess. They des
ribe in fa
t two regimes, one with sharp thresholds is relative to the

\initial" steps of the pro
ess while the other with 
ontinuous transitions des
ribes what happens

at the end.

Te
hni
ally, the geometry of the problem leads to multidimensional integrals that one needs to

estimate asymptoti
ally. The method of 
hoi
e here is the Lapla
e method for integrals as des
ribed

for instan
e in [2℄. The general method needs to be amended for the 
ase at hand and Akhavi o�ers

in [1℄ a valuable dis
ussion of the asymptoti
s of 2-dimensional Lapla
e integrals when taken over

polygonal domains. Naturally, the dis
ussion bases itself on whether the maximum of the integrand

lies inside, on the boundary, or outside of the integration domain. The net result is the pre
ise

quanti�
ation summarized above.

Finally, the estimates are put to use in order to analyse three redu
tion methods, in the sense

of Siegel, Gram, and S
hmidt. It turns out that, by relaxing the LLL 
onditions, the new redu
ed

bases are obtained faster (see Theorem 9 of [1℄ for pre
ise statements). An experimental study is


ondu
ted that supports the theoreti
al results. First, under the uniform model, there is little loss

in the quality of the bases produ
ed. Next the redu
tion of latti
es asso
iated with the \Subset
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Sum" problem are 
onsidered: these are of 
ryptographi
 relevan
e (in 
onne
tion with the S
hnorr{

Eu
hner system) and Akhavi reports 
omputational gains by a fa
tor in the range 2{5, while the new

redu
ed bases obtained prove to be of a quality 
omparable to what 
lassi
al redu
tion algorithms

provide.
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Abstra
t

The Galois theory for di�erential equations is now 
lassi
al. We 
onsider here a Galois

theory for di�eren
e equations whose development is more re
ent. In analogy with the

di�erential 
ase, a 
on
ept of Liouvillian solutions of a di�eren
e equation is introdu
ed,

in relation to equations with solvable Galois group. In the �rst part of this talk, Bomboy

presents the Galois theory for linear �nite di�eren
e operators. Next he adapts the 
on
ept of

eigenring introdu
ed in the di�erential 
ase by Singer [11℄ to suggest an algorithm sear
hing

for Liouvillian solutions of linear di�eren
e equations. This dire
t algorithm solves a sub
lass

of the di�eren
e equations without using Petkov�sek's algorithm [8℄.

Introdu
tion

We review in Se
tion 1 the basi
 notions of Galois theory for di�eren
e equations, following the

presentation of [7℄. As in the di�erential 
ase, the Galois group is a linear algebrai
 group. In

Se
tion 2 we present the main properties of redu
ible and 
ompletely redu
ible systems, from the

point of view of the stru
ture of their asso
iated matri
es. In the di�erential 
ase, a Liouvillian

extension of a di�erential �eld is done by algebrai
 extensions and by the operations of exponenti-

ation and integration of a fun
tion of the �eld. In Se
tion 3 we de�ne Liouvillian solutions in the

di�eren
e 
ase; these solutions are essentially interla
ings of hypergeometri
 sequen
es. We des
ribe

the notion of eigenring in Se
tion 4 and summarize relevant properties. We �nish by presenting

Bomboy's algorithm for sear
hing Liouvillian solutions in Se
tion 5, and by 
on
luding 
omments.

1. Di�eren
e Galois Theory

A di�eren
e ring (k; �) is a ring k with an automorphism �. (Note that all rings 
onsidered here

are rings with identity.) For example, let k be the ring C [z℄ of polynomials or the �eld C (z) of

fra
tions, and � the automorphism that substitutes z + 1 for z. When �(x) = x for x 2 k, x is


alled a 
onstant of (k; �). The set C(k) of 
onstants is a subring of k.

From now on we assume that k is a �eld. A (s
alar) di�eren
e equation has the form

(1) L(y) = �

m

(y) + a

m�1

�

m�1

(y) + � � � + a

0

y = 0;

where the a

i

's are in k and L = �

m

+a

m�1

�

m�1

+� � �+a

0

is the di�eren
e operator asso
iated to the

equation. The set of di�eren
e operators or skew polynomials in � with multipli
ation �a = �(a)�

is a non-
ommutative ring P

k

(�). Equation (1) 
an be transformed into the system �(Y ) = A

L

Y ,
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where � is applied 
omponentwise to the ve
tor Y and

A

L

=

0

B

B

B

�

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�a

0

�a

1

: : : : : : (�a

m

� 1)

1

C

C

C

A

:

One sees that y is a solution of L(y) = 0 if and only if

�

y; �(y); : : : ; �

m�1

(y)

�

T

is a solution of

�(Y ) = A

L

Y .

More generally, we will 
onsider systems of di�eren
e equations of the form

(2) �(Y ) = AY

for an element A of GL

n

(k), the spa
e of invertible matri
es of dimension n over k. IfR is a di�eren
e

ring extension of k, a fundamental matrix for Equation (2) is an element U =

�

u

i;j

�

2 GL

n

(R)

su
h that �(U) = AU where � maps 
omponentwise to matri
es. A di�eren
e ring extension R

of k is 
alled a Pi
ard{Vessiot extension of k for Equation (2) if R is a simple di�eren
e ring (the

only �-invariants ideals are (0) and R) and R = k

�

u

1;1

; : : : ; u

n;n

; (detU)

�1

�

with U a fundamental

matrix. The following theorem des
ribes the stru
ture of su
h extensions.

Theorem 1 ([12℄). If the set of 
onstants C(k) is algebrai
ally 
losed, Pi
ard{Vessiot extensions

R of k exist and are unique up to isomorphism.

The Galois group Gal(R=k) of R over k is the set of linear maps that are the identity on k

and 
ommute with �. As in the di�erential 
ase, it 
an be proved to have a stru
ture of a linear

algebrai
 group over C(k). The set V of solutions of Equation (2) in R

n

is an n-dimensional ve
tor

spa
e over C(k) that is invariant by Gal(R=k). This yields a representation of Gal(R=k) in C(k)

n

.

Let �(Y ) = AY and �(Y ) = BY be two systems with A and B in GL

n

(k) and let V

A

and V

B

be the 
orresponding solution spa
es in Pi
ard{Vessiot extensions R

A

and R

B

. Both systems are

equivalent if there is a matrix T 2 GL

n

(k) su
h that B = �(T )AT

�1

. Then, if U is a fundamental

matrix of �(Y ) = AY , it follows that TU is a fundamental matrix for �(Y ) = BY ; in this 
ase, one


an identify the rings R

A

and R

B

, and V

A

and V

B

are isomorphi
 as Gal(R=k)-modules (de�ned as

modules over the group algebra of Gal(R=k) with 
oeÆ
ients in C(k)). For a large 
lass of di�eren
e

�elds, any system �(Y ) = AY is equivalent to the 
ompanion system of a s
alar equation [7℄.

We 
on
lude this se
tion with an illustration on the ring S of germs of sequen
es over C .

De�nition 1. Consider two elements (a

n

)

n2N

and (b

n

)

n2N

of C

N

(where C � C is a ring). We

de�ne the following equivalen
e relation: (x

n

) � (y

n

) if and only if (x

n

) and (y

n

) only di�er by

a �nite number of terms. We now 
onsider the quotient ring S =

�

C

N

= �

�

where addition and

multipli
ation are de�ned 
omponentwise; an element of this ring is 
alled a germ.

Note that this gives us a natural embedding � of the rational fun
tion ring C (z) into S, where

for F 2 C (z), �(F ) is given as the germ of any (s

n

)

n2N

su
h that s

n

= F (n) for suÆ
iently large n.

De�nition 2. The shift � of S maps �

�

(x

0

; : : : ; x

n

; : : : )

�

to �

�

(x

1

; : : : ; x

n+1

; : : : )

�

.

From now on, the ring C is an algebrai
ally 
losed sub�eld of C and k = �

�

C(z)

�

.

Property 1 ([12℄). Let C � C be an algebrai
ally 
losed �eld. There exists a Pi
ard{Vessiot

extension of the equation �(Y ) = AY over C(z) � S that also lies in S.

Example. Consider k = �

�

C (z)

�

and the equation �(x) = �x. The Pi
ard{Vessiot extension R of k

is the ring generated by k and the sequen
e s = (1;�1; 1;�1; : : : ). Note that if t = s+(1; 1; : : : ) =

(2; 0; 2; : : : ) then t��(t) = 0. The Pi
ard{Vessiot extension therefore has zero divisors and 
annot

be a �eld.
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2. Redu
ibility

The following theorem gives a 
riterion of redu
ibility for operators.

Theorem 2 ([3℄). Consider an operator L 2 P

k

(�) with Pi
ard{Vessiot extension R. The following

statements are equivalent:

1. L is redu
ible (i.e., L = L

1

L

2

in P

k

(�));

2. the solution spa
e V has a stri
t subspa
e W that is stable under the a
tion of the Galois

group G = Gal(R=k);

3. the system �(X) = A

L

X is equivalent to a system with blo
k upper triangular 
ompanion

matrix.

We also 
onsider the 
lass of 
ompletely redu
ible operators.

De�nition 3. Let l
lm stand for least 
ommon left multiple. An operator L 2 P

k

(�) is 
ompletely

redu
ible if there exist L

1

, . . . , L

k

su
h that L = l
lm(L

1

; : : : ; L

k

),

Beware that an irredu
ible operator L is 
ompletely redu
ible be
ause L = l
lm(L).

Property 2 ([3℄). The following statements are equivalent:

1. L is 
ompletely redu
ible;

2. the solution spa
e V is expressible as a dire
t sum V = V

1

� � � � � V

k

where V

i

is a stable

G-module for ea
h i, and the 
orresponding operators are irredu
ible;

3. the system �(X) = AX is equivalent to a system with blo
k diagonal 
ompanion matrix where

ea
h blo
k 
orresponds to an irredu
ible G-module.

3. Liouvillian Solutions

We begin this se
tion by de�ning Liouvillian solutions of an equation in terms of interla
ings

of sequen
es and hypergeometri
 sequen
es. Next we give the expe
ted Galois-theoreti
 
hara
ter-

ization of Liouvillian solutions of a di�eren
e equation, before giving another 
hara
terization in

terms of interla
ings of hypergeometri
 solutions.

De�nition 4. The interla
ing of sequen
es x

1

, . . . , x

l

of C

N

is the sequen
e (x

1

0

; x

2

0

; : : : ; x

l

0

; x

1

1

; : : : ).

This de�nition extends to interla
ing of germs in a natural way.

De�nition 5. Hypergeometri
 sequen
es are germs x 2 S su
h that �(x) = ax for some a 2 k.

De�nition 6. The set L of Liouvillian sequen
es is the smallest subring of S su
h that:

1. 
onstants belong to L, where it is understood that 
 2 C(k) is identi�ed to the germ

(
; 
; : : : ) 2 S;

2. if x is hypergeometri
, x belongs to L;

3. if x is solution of �(x) = x+ a with a 2 L, then x belongs to L;

4. if x belongs to L, the interla
ings of x with zero germs (i.e., the interla
ings of x

1

= � � � =

x

l�1

= 0 and x

l

= x) belongs to L.

Example. Elements of k are hypergeometri
, thus belong to L; on the other hand, the germs (2

n

)

n2N

and (n!)

n2N

are two examples of hypergeometri
, thus Liouvillian, sequen
es that are not in k.

Example (Harmoni
 numbers). If k = C (z) and x =

�

P

n

j=1

1=j

�

n2N

we have

�

1=(n + 1)

�

n2N

=

�

�

1=(z + 1)

�

2 k and �(x) = x+

�

1=(n+ 1)

�

n2N

. The germ �(x) thus belongs to L.

Example. The sequen
e (0; 1; 0; 1; : : : ) is the interla
ing of both 
onstant sequen
es 0 and 1, and

therefore belongs to L.

The following theorem gives the expe
ted Galois-theoreti
 
hara
terization of Liouvillian se-

quen
es.
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Theorem 3 ([7℄). A solution x 2 S of Equation (1) is Liouvillian if and only if the Galois group

of any Pi
ard{Vessiot extension of this equation is solvable.

We 
ome to another 
hara
terization of Liouvillian sequen
es. Let Z be a fundamental system

of �(X) = AX. Then by iteratively applying � to �(Z) = AZ we see that Z is solution of

�

m

(Z) = �

m

�

Z where �

m

�

= �

m�1

(A) : : : A. Let � be the automorphism of C (z) substituting mz

for z. Then � Æ �

m

= � Æ � ; for i from 0 to m � 1, the ith m-se
tion � Æ �

i

(Z) of Z satis�es the

equation �(O) =

�

�

m

�;i

A

�

O in the unknown O, where �

m

�;i

A = � Æ�

i

�

�

m

�

A

�

. This gives the following

theorem and 
orollary.

Theorem 4 ([7℄). Let L be an operator of order n over k. The following statements are equivalent:

1. there is a Liouvillian solution for the equation L(y) = 0;

2. there exists an m less than or equal to n, su
h that the equation L(y) = 0 has a solution that

is the interla
ing of m hypergeometri
 series;

3. there exists an m su
h that, for all i between 0 and m� 1, the equation �(y) = (�

m

�;i

A

L

)(y)

has an hypergeometri
 solution;

4. there exist m and i, with i � m, su
h that the equation �(y) = (�

m

�;i

A

L

)(y) has an hyperge-

ometri
 solution.

Corollary 1 ([7℄). Let L be an operator with 
oeÆ
ients in k. One 
an �nd operators H

1

, . . . , H

t

,

R with 
oeÆ
ients in k su
h that

1. L = RH

t

: : : H

1

;

2. the solution spa
e of ea
h H

i

is spanned by interla
ings of hypergeometri
 sequen
es;

3. any Liouvillian solution of L(y) = 0 is a solution of H

t

: : : H

1

(y) = 0.

4. Eigenrings and their Stru
ture

We 
onsider the non-
ommutative ring A = P

k

(�) and a di�eren
e operator L 2 A with Pi
ard{

Vessiot extension R. Let V be the spa
e of solutions of L in R. We now des
ribe isomorphisms

between three 
lasses of obje
ts:

1. eigenrings, that are rings that essentially 
ontain operators that follow some spe
ial 
ommu-

tation relation with L;

2. endomorphisms of V that 
ommute with the Galois group G = Gal(R=k);

3. A-module homomorphisms of A=AL into A=AL.

Eigenring of L. Given an operator L, the elements U +AL 2 A=AL su
h that there exists U

0

2 A

satisfying LU = U

0

L 
learly form a ring. We 
all it the eigenring E(L) of L. Note that E(L) is

never empty: C(k) is always part of E(L).

G-endomorphisms of the solution spa
e V . For P 2 A, 
onsider the mapping �

P

of R into R

de�ned by �

P

(v) = P � v for all v in R. This C(k)-linear mapping 
learly 
ommutes with G, sin
e

G 
ommutes with �. We are interested in the situation when the mapping �

P

indu
es a linear map

of End

G

V , the algebra of C(k)-linear mappings of V into V that 
ommute with G. Take v in V ;

we have L � v = 0. Consider L � �

P

(v) = LP � v. This is zero if and only if P +AL belongs to E(L),

for then there is P

0

su
h that LP = P

0

L. In this latter 
ase, �

P

indu
es a G-endomorphism of V .

A-linear endomorphisms of A=AL. Consider the C(k)-algebra End

A

(A=AL) of A-linear endomor-

phisms of A=AL, and � an element of this algebra. Re
all that the module A=AL 
an be viewed

as the A-module generated by any \generi
 solution" of L; the linear map � is thus 
ompletely
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des
ribed by the image of the generator 1+AL of A=AL. The map � is well-de�ned as an A-linear

map if and only if the image �(1 +AL) = U +AL abides by the relation

L(U +AL) = L�(1 +AL) = �

�

L(1 +AL)

�

= �(0) = 0;

whi
h implies that there exists U

0

su
h that LU = U

0

L; in other words, U +AL is in the eigenring.

The 
onverse property is proved similarly.

With a 
loser look on the bije
tions above, one gets the following result.

Proposition 1. The three rings E(L), End

G

V , and End

A

(A=AL) are isomorphi
.

The 
lassi
al representation theory for semi-simple modules [6℄ applies to the study of the stru
-

ture of eigenrings, yielding the following proposition and 
orollary.

Proposition 2 ([4℄). For an operator L with Galois group G and spa
e of solutions V , there are

ring isomorphisms between:

1. the eigenring E(L);

2. the endomorphism algebra End

G

V ;

3. the set of matri
es P 2M

n

(k) satisfying A

L

P = �(P )A

L

.

Proposition 3 ([4℄). Let L be a 
ompletely redu
ible operator with solution spa
e V . Then V is

isomorphi
 to a dire
t sum V

n

1

1

� � � � � V

n

l

l

where no V

i

and V

j

are isomorphi
 for i 6= j; the

eigenring E(L) is isomorphi
 to the dire
t sum

L

l

i=1

M

n

i

�

C(k)

�

.

Corollary 2 ([4℄). Let L be a di�eren
e operator with eigenring E(L). Then:

1. L is irredu
ible implies that E(L) is isomorphi
 to C(k);

2. L is 
ompletely redu
ible and E(L) is isomorphi
 to C(k) imply that L is irredu
ible.

5. Algorithms

Eigenring. An algorithm to 
ompute the eigenring of a di�erential operator was given by Singer

[11℄. A similar algorithm 
omputes the eigenring in the di�eren
e 
ase. The method pro
eeds by

undetermined 
oeÆ
ients: an element of the eigenring of an operator L of order n is viewed as a

residue U modulo L; it is thus represented by n undetermined rational fun
tion 
oeÆ
ients. One

then performs the multipli
ation by L on the left, then the Eu
lidean division by L on the right.

This yields a �rst-order linear di�eren
e system in the n unknowns. This system is then solved for

rational fun
tion solutions by algorithms based on Abramov's algorithm [1℄.

1

Linear Di�eren
e Equations of Order 2. We 
onsider the sear
h for Liouvillian solutions

of linear di�eren
e operators in the 
ase of order 2. As follows from the analysis in Se
tion 3,

the sear
h for Liouvillian solutions redu
es to sear
hing for hypergeometri
 solutions of asso
iated

equations. Petkov�sek gave an algorithm for this purpose [8℄, but with exponential 
omplexity.

Bomboy's algorithm pro
eeds by determining hypergeometri
 solutions from the 
omputation of

su

essive eigenrings, so as to derive the shape of the Galois group G little by little, while avoiding

Petkov�sek's algorithm as mu
h as possible.

In order to help to solve for hypergeometri
 solutions, note that ea
h non-trivial element U +AL

of E(L) yields a right fa
tor of L. Indeed, viewed as an element of End

G

V , it ne
essarily has an

eigenvalue � and a 
orresponding eigenve
tor v. The right g
d G of U � � and L 
an be expressed

by a B�ezout relation and satis�es G � v = 0. It is therefore a non-
onstant right-hand fa
tor of L.

1

Note that the same idea was used in the 
ontext of symboli
 summation/integration in Chyzak's work [5℄.
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Let x be a hypergeometri
 solution: there exists a 2 C (z) su
h that �(x) = a �x. For all g in the

Galois group G we have

�

�

g(x)

�

= g

�

�(x)

�

= g(a � x) = a � g(x):

Therefore the subspa
e C x is globally invariant under the a
tion of G. This entails that the spa
e

of hypergeometri
 solutions is a G-module, as is the total solution spa
e of L. From this and

Proposition 3, it follows that the eigenring is either not a semi-simple G-module, or has dimension

1, 2, or 4.

If the spa
e of hypergeometri
 solutions is 2-dimensional, G is isomorphi
 to the group of di-

agonal matri
es with two independent non-zero entries, and E(L) has dimension 2 or 4. If there

is only a 1-dimensional spa
e of hypergeometri
 solutions, a 
lassi�
ation of the algebrai
 sub-

groups of GL

2

(C ) then shows that G is isomorphi
 to the group of upper triangular matri
es

�

a b

0 a

�

;

moreover, either the solution spa
e V is semi-simple as G-module and the eigenring E(L) has di-

mension 2, or it is not semi-simple, and in view of E(L) ' End

G

(V ), E(L) 
onsists of matri
es

that 
ommute with all the upper triangular matri
es above, and has dimension 1 or 2. If there are

no hypergeometri
 solutions, the same 
lassi�
ation shows that the Galois group G 
ontains the

spe
ial linear group SL

2

(C ) of matri
es of determinant 1, and E(L) has dimension 1.

If L has a Liouvillian solution, it also has a one that is either hypergeometri
 or the interla
ing of

two hypergeometri
 sequen
es. Bomboy's algorithm to de
ide the existen
e of Liouvillian solutions

and 
ompute a basis of their ve
tor spa
e therefore �rst 
omputes the eigenring E(L). If it is

not trivial (i.e., does not redu
e to homotheties), it provides all hypergeometri
 solutions, then all

Liouvillian solutions; otherwise, the eigenring 
orresponding to the system �

2

�

A

L

is 
omputed and:

1. if it is not trivial, we obtain an hypergeometri
 solution of this system, whi
h gives a solution

of L by interla
ing of hypergeometri
 sequen
es;

2. otherwise, the 
lassi�
ation of algebrai
 groups shows that either L has a unique hypergeo-

metri
 solution, and it is ne
essary to sear
h this solution by Petkov�sek's algorithm, or L has

no hypergeometri
 solutions, and therefore L provedly has no Liouvillian solution.

6. Con
lusion

Finally, the authors of this summary wish to do full justi
e to Petkov�sek, and want to empha-

size that the sear
h for Liouvillian solutions 
an be entirely performed by means of (variants of)

algorithms by Petkov�sek, and with no need of Galois theory.

2

Indeed, Petkov�sek showed in an unpublished work [9℄

3

how to use his algorithm for �nding

hypergeometri
 solutions [8℄ in a re
ursive fashion and in 
ombination with redu
tion of order so

as to produ
e all Alembertian solutions of an operator. (The 
lass of Alembertian sequen
es is

obtained by the same 
losure operations as the Liouvillian 
ase, ex
ept for interla
ings.) This

algorithm 
orresponds to fa
torizations into �rst-order operators H

i

in Corollary 1.

In fa
t, Petkov�sek's hypergeometri
 algorithm extends in a simple way to an algorithm for �nding

the solutions of a re
urren
e

a

0

(n)u

n

+ � � �+ a

m�1

u

n+m�1

+ u

n+m

= 0

that are interla
ings of hypergeometri
 sequen
es:

1. derive a re
urren
e on u

n

in whi
h the index is shifted by multiples of m: sin
e we know that

the C (n)-ve
tor spa
e generated by u

n

is �nite-dimensional with basis (u

n

; u

n+1

; : : : ; u

n+m�1

),

2

This se
tion is the result of stimulating dis
ussions with Bruno Salvy.

3

seemingly subsumed by [2℄,
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the parti
ular shifts u

n

, u

n+m

, u

n+2m

, . . . rewrite onto this basis, and a linear dependen
y


an be found by Gaussian elimination;

2. for ea
h i between 0 and m� 1, derive a re
urren
e on v

(i)

p

= u

mp+i

by substituting mp+ i

for n in the obtained re
urren
e, and solve it for hypergeometri
 solutions;

3. return the interla
ing of the sequen
es v

(0)

p

, v

(1)

p

, . . . , v

(m�1)

p

.

A variant algorithm (
orresponding to Steps 1. and 2. above) is derived in [10℄ by a di�erent

approa
h.

Corollary 1, or equivalently a dire
t analysis mimi
king that in [9℄, 
an now be used to derive

an algorithm for �nding all Liouvillian solutions of a re
urren
e. This algorithm is essentially

Petkov�sek's algorithm for Alembertian solutions where sear
hes for hypergeometri
 solutions|

and �rst-order right-hand fa
tors|is repla
ed with sear
hes for interla
ings of hypergeometri


solutions|and higher-order right-hand fa
tors. The main di�eren
e is that redu
tion of order is

simultaneously performed by as many independent parti
ular solutions as the order of the interla
-

ings, instead of by just 1.

One 
an thus view Bomboy's 
ontribution as providing a variant algorithm in terms of eigenrings.

A 
omplexity of both approa
hes still has to be performed so as to 
ompare them 
on
lusively.
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Di�eren
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h 3, 2000

Summary by Anne Fredet

Abstra
t

Let k be a di�eren
e �eld with automorphism �. Let b be an element of k, and L be

a linear ordinary di�eren
e operator with 
oeÆ
ients in k. A 
lassi
al problem in the

theory of di�eren
e equations is to 
ompute all the solutions in k of the equation L(y) = b.

If C denotes a 
onstant �eld and if k = C(n) and �n = n + 1 or �n = qn, there are

known algorithms (see [2℄ for example). Manuel Bronstein presents here a generalization to

monomial extensions of C(n) (see [5℄ for details and generalization).

1. Histori
al Context

The rational solutions of linear di�erential equations (equations of the form

P

n

i=0

a

i

y

(i)

) have

been �rst studied a long time ago, for example by Beke and S
hlesinger at the end of the last 
entury.

In the middle of this 
entury, R. H. Ris
h gave an algorithm to 
ompute elementary integrals (see

[11, 12, 13℄). In [8℄, M. Karr 
onsidered di�eren
e equations (equations of the form

P

n

i=0

a

i

y(x+i)).

The link between the linear di�erential equations and the linear di�eren
e equations is now 
lear,

and in [1℄, an algorithm to 
ompute the rational solutions of this two types of equations with


oeÆ
ients in C(x) is given. In [2℄, the author extends the previous algorithm to q-linear di�eren
e

equations (equations of the form

P

n

i=0

a

i

y(q

i

x)).

Algorithms to 
ompute the rational solutions of linear di�erential, di�eren
e and q-di�eren
e

equations with 
oeÆ
ients in C(x) are now available, and extensions of C(x) have been 
onsidered.

In [14℄, M. F. Singer gives an algorithm to 
ompute the rational solutions of linear di�erential

equations with 
oeÆ
ients in almost all the Liouvillian extensions of C(x), i.e., the extensions built

up using integral, exponential of integral, and algebrai
 fun
tions. In [7℄, the authors improve the

algorithm for the rational solutions of linear di�erential equations with 
oeÆ
ients in an exponential

extension of C(x). In [6℄, M. Bronstein adapts the algorithm given in [1℄ to monomial extensions,

and in [5℄, the author uses the methods given in [2, 6℄ to �nd the solutions of linear di�eren
e

equations in their 
oeÆ
ient �eld.

2. Introdu
tion

In [6℄, the author introdu
ed the splitting fa
torization: he de
omposed a polynomial in two

fa
tors, the normal part where every irredu
ible fa
tor is 
oprime with its derivative, and the spe
ial

part where every irredu
ible fa
tor divides its derivative. He then gave an algorithm to 
ompute the

normal part of the denominator of rational solutions of a linear di�erential equation with 
oeÆ
ients

in a monomial extension. In [2℄, S. Abramov proposed an algorithm to 
ompute a polynomial

whi
h is divisible by the denominator of any rational solution of a linear di�eren
e equation with
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oeÆ
ients in C(n), where �n = n+ 1 or �n = qn. In [7℄, a method to 
ompute the numerator of

the rational solution of a linear di�erential equation with 
oeÆ
ients in an exponential extension of

C(x) is given. Manuel Bronstein now 
onsiders di�eren
e equations with hypergeometri
 terms in

the 
oeÆ
ients (a term h(n) is hypergeometri
 if h(n+1)=h(n) is in C(n)). He adapts the previous

methods to di�eren
e equations with 
oeÆ
ients in an hypergeometri
 extension of C(n), and this

gives an eÆ
ient algorithm to 
ompute the rational solutions of su
h equations. Remark that an

algorithm to 
ompute the hypergeometri
 solutions of linear di�eren
e equation with 
oeÆ
ients

in C(n) is given in [10℄ and in [4℄ for q-hypergeometri
 solutions of q-di�eren
e equations.

3. Di�eren
e Equations and Hypergeometri
 Extensions

Let R be a 
ommutative ring of 
hara
teristi
 0. Let � be an automorphism of R. De�ne

{ R

�

= fx 2 R su
h that �x = x g (the set of invariant elements of R);

{ R

�

?

= fx 2 R su
h that �

n

x = x for some n > 0 g (the set of periodi
 elements);

{ R

�

= fx 2 R su
h that �x = ux for some u 2 R

?

g (the set of semi-invariant elements);

{ R

�

?

= fx 2 R su
h that �

n

x = ux for some n > 0; u 2 R

?

g (the set of semi-periodi


elements).

It is 
lear that we have the in
lusion R

�

� R

�

� R

�

?

. If R is a unique fa
torization domain

then R

�

?

is 
losed under taking fa
tors, i.e., for any polynomial q in R

�

?

, ea
h fa
tor p of q is

in R

�

?

. This property is false for R

�

and R

�

, as shown by the example R = Q [t℄ and �(t) = 1� t:

�(1 � t) = t and �(t � t

2

) = t� t

2

is in R

�

(and then in R

�

and in R

�

?

), whereas t and 1 � t are

in R

�

?

, but neither in R

�

nor in R

�

.

3.1. Monomial extensions. Let k be a di�eren
e �eld with automorphism �. Let (K;�) be an

extension of (k; �).

De�nition 1. t in K is a monomial over k if t is trans
endental over k with �t in k[t℄.

Let � be an automorphism of K su
h that �(t) is in k[t℄. Then � indu
es an automorphism

of k(t), an automorphism of k[t℄, and thus �(t) = at+ b for some a in k

?

and b in k

Proposition 1 ([9℄). If for all w in k

?

we have �w 6= aw + b, then t is trans
endental over k and

the following equalities hold: k(t)

�

= k

�

and k[t℄

�

= k[t℄

�

?

= k.

3.2. Hypergeometri
 extensions. Let � be su
h that �t = at for some a 2 k

?

.

Proposition 2 ([9℄). If for all w in k

?

and n > 0 we have �w 6= a

n

w, then t is trans
endental

over k and the following equalities hold: k(t)

�

= k

�

and k[t℄

�

= k[t℄

�

?

= f 
t

m

j 
 2 k; m � 0 g.

For example, in C[n℄, let � be su
h that �n = qn for some q 2 C

?

. The property holds whenever

q is not a root of unity. Or we 
an 
onsider C[n; t℄, with � su
h that �

jC

= id

C

, �n = n+ 1 and

�t = (n+ 1)t; in other words t represents n!.

4. Dispersion

De�nition 2. Let K be a �eld of 
hara
teristi
 0. Let � : K[X℄! K[X℄ be a fun
tion. Let p and

q be non-zero polynomials in K[X℄. One de�nes

{ the spread of p and q with respe
t to �:

Spr

�

(p; q) = fm � 0 su
h that p and �

m

q have a non trivial g
d g
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{ the dispersion of p and q with respe
t to �:

Dis

�

(p; q) =

8

<

:

�1 if Spr

�

(p; q) is empty;

max(Spr(p; q)) if Spr

�

(p; q) is a �nite nonempty set;

+1 if Spr

�

(p; q) is an in�nite set.

These de�nitions are spe
ialized to the 
ase p = q: Spr

�

(p) = Spr

�

(p; p) and Dis

�

(p) = Dis

�

(p; p).

Examples are:

{ Dis

d=dx

�

p(x)

�

is the maximum of the multipli
ity of a root of p minus 1;

{ Spr

n!n+1

�

p(n)

�

is �nite (and then Dis

n!n+1

�

p(n)

�

< +1);

{ Dis

n!qn

(n) is in�nite.

Let � be an automorphism of k[t℄ su
h that �k � k. Then the dispersion Dis

�

(q) is in�nite if and

only if there exists p in k[t℄

�

?

nk su
h that p divides q. Also, the dispersion Dis

�

(h; q) is in�nite if

and only if there exists p in k[t℄

�

?

nk su
h that p divides q and �

n

p divides h.

Example. Let a = 2n

7

+19n

6

+63n

5

+81n

4

+27n

3

be in Q [n℄ and � be the automorphism of Q [n℄

over Q that maps n to n+ 1. The resultant of a and �

m

a is

4m

19

(2m+ 5)

3

(2m+ 1)

3

(2m� 1)

3

(2m� 5)

3

(m� 3)

9

(m+ 3)

9

;

implying that Spr

�

(a) = f0; 3g and Dis

�

(a) = 3

4.1. Splitting fa
torization. One now extends the splitting fa
torization of polynomials to dif-

feren
e �eld: let q in k[t℄ be de
omposed into two fa
tors q = q

1

q su
h that

{ the g
d of q

1

and q is equal to 1,

{ for all irredu
ible fa
tor p of q, p divides q

1

if p is in k[t℄

�

?

,

{ and for all irredu
ible fa
tor p of q, p divides q if p is not in k[t℄

�

?

.

The polynomial q

1

is the in�nite part of q, and q is its �nite part. We note that the dispersion

Dis

�

(q) is �nite, the dispersion Dis

�

(q

1

) is in�nite, and for all h the dispersion Dis

�

(h; q) is �nite.

4.2. �-Orbits. Given � and � in a �eld K, the problem of the orbit is to �nd m � 0 su
h that

�

m

= �. A bound for the smallest m su
h that �

m

= � is given in [3℄. The main ideas are as

follows: if there exists d su
h that �

d

= 1 then one 
an test whether �

i

= � for 0 � i � d. If it

is not the 
ase, then the orbit problem has no solution, otherwise its solutions 
onsist of all the

integers of the form i

0

+ kd

0

where k � 0, i

0

is the smallest i � 0 su
h that �

i

= � and d

0

is the

smallest d > 0 su
h that �

d

= 1. One 
an now assume that � is not a root of unity, whi
h implies

that the orbit problem has at most one solution. If � is trans
endental over Q , the orbit problem

has a solution if and only if � is algebrai
 over Q(�). Looking at the degree at whi
h � appears

in � gives at most one 
andidate solution for the orbit problem. One 
an now assume that � is

algebrai
 over Q . This generalizes to �ndm � 0 su
h that �

m;�

= �(��) : : : (�

m�1

�) = � (see [3℄).

4.3. Computation of the dispersion. Let � : K[X℄ ! K[X℄ be an automorphism su
h that

�K � K. Then

Spr

�

�

Y

i

p

e

i

i

;

Y

j

q

f

j

j

�

=

[

i;j

Spr

�

(p

i

; q

j

) and Dis

�

�

Y

i

p

e

i

i

;

Y

j

q

f

j

j

�

= max

i;j

Dis

�

(p

i

; q

j

):

The 
omputation of the dispersion redu
es to the 
omputation of the dispersion of two irredu
ible

polynomials.

Let p and q be irredu
ible polynomials. Let m be in Spr

�

(p; q). This means that the greatest


ommon divisor of p and �

m

q is not trivial. The polynomials being irredu
ible, this is equivalent
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to the existen
e of u in K

?

su
h that �

m

q = up. This implies that deg p = deg q. One just has to


onsider irredu
ible polynomials with 
ommon degree.

Let p and q be moni
 irredu
ible polynomials of k[t℄ with degree n: p = t

n

+

P

n�1

i=0

p

i

t

i

and

q = t

n

+

P

n�1

i=0

q

i

t

i

. Assume that �t = at for some a 2 k

?

. Then m is in Spr

�

(p; q) implies

�

m;�

i

= �

i

for all i su
h that p

i

q

i

6= 0, where �

i

= q

i

=p

i

and �

i

= a

n�i

q

i

=�q

i

. Therefore, if

Spr

�

(p; q) is not empty then p

i

and q

i

vanish simultaneously. If p = q = t then Dis(p; q) = +1.

Otherwise, this redu
es to the orbit problem �

m;�

= � for �; � in k

?

and m in Spr(p; q). Remark

that if �w 6= a

d

w for all w in k

?

and d > 0 then �

d

6= 1 for all d > 0. So, the orbit problem has at

most one solution and then Spr

�

(p; q) has at most one element.

One 
an extend the 
omputation of the dispersion to rational fun
tions: let f = p=q with

relatively prime p and q in C[n℄. Let Dis

�

(f) = max

�

Dis

�

(p);Dis

�

(p; q);Dis

�

(q; p);Dis

�

(q)

�

and

�

1

(f) = deg q � deg p. Then �

1

(f

m;�

) = m�

1

(f). And if f is not in C then Dis

�

(f

m;�

) =

Dis

�

(f) +m� 1.

This last equality allows us to redu
e orbit problems to dispersions whenever � is not 
onstant.

5. Rational Solutions of Di�eren
e Equations

Let t be a monomial over k = C(n). Let � be su
h that �n = n+ 1 and �t = at for some a in k

su
h that �w 6= a

d

w, for all w in k

?

and d > 0. Let L =

P

N

i=0

a

i

�

i

be a linear di�eren
e operator,

with the a

i

's in k[t℄ and both a

0

and a

N

not equal to 0. Let b be in k[t℄. The aim of this se
tion is

to des
ribed an algorithm to �nd y in k(t) su
h that L(y) = b (if there exists su
h a y).

5.1. Denominator of a rational solution. The �rst problem is to �nd a bound for the �nite

part of any y in k(t) su
h that L(y) = b. This means to 
ompute a polynomial q in k[t℄ su
h that

if L(y) = b then yq = p=d

1

where p is in k[t℄ and d

1

in k[t℄

�

?

. We outline the ideas here, proofs

and te
hni
al details are given in [5℄.

Let a

0

be de
omposed: a

0

= a

0;1

a

0

. Let y be in k(t) su
h that L(y) = b, where y = p=d and

d = d

1

d. Then Dis

�

(d) � max

�

�1;Dis

�

(a

N

; a

0

)�N

�

. Let h > 0 be an integer. One 
an 
ompute

an operator L

h

= b

s

�

sh

+ b

s�1

�

(s�1)h

+ � � �+ b

0

su
h that L

h

= RL for some R in k(t)[�℄. It follows

that L

h

(y) = Rb for any b in k[t℄ and any solution y in k(t) of L(y) = b. We get that every solution

y in k(t) of L(y) = b satis�es an equation of the form




s

�

hs

(y) + � � � + 


1

�

h

(y) = d

h

where 


0

; : : : ; 


s

; d

h

are in k[t℄ and 


s

6= 0. If h was 
hosen su
h that Dis

�

(d) < h then d divides

g
d

0�i�s

(�

�ih




i

). This gives us a polynomial q su
h that if L(y) = b then qy = p=d

1

with p in k[t℄

and d

1

in k[t℄

�

?

Example. Consider y(n+ 2)� (n! + n)y(n+ 1) + n(n!� 1)y(n) = 0. If we de�ne � by �n = n+ 1

and �t = (n + 1)t then the asso
iated di�eren
e operator is �

2

� (t + n)� + n(t � 1). a

N

= 1,

a

0

= a

0

= n(t � 1) and Dis

�

(a

N

; a

0

) = �1. Then Dis

�

(d) � �1 and d 2 C(n). So, if there exists

y 2 C(n)(t) su
h that L(y) = b then y is in C(n)[t; t

�1

℄.

Remark. The same results holds for the q-di�eren
e equation: let q be trans
endental over Q . Let

� be su
h that �x = qx. Consider the q-di�eren
e equation

q

3

(qx+ 1)y(q

2

x)� 2q

2

(x+ 1)y(qx) + (x+ q)y(x) = 0(1)

We have a

0

= x+ q, a

2

= q

3

(qx+1). The resultant of a

2

and �

m

(a

0

) is q

3

(q

2

� q

m

), whi
h implies

that Dis

�

(a

2

; a

0

) = 2 hen
e that any solution of (1) has a denominator of the form x

n

d where

Dis

�

(d) � 0. Using the bound h = 1, we get L

h

= L and d divides the greatest 
ommon divisor of

g
d

0�i�2

(�

�i

a

i

) = g
d

�

x+q; �

�1

(q

2

(x+1)); �

�2

(q

3

(qx+1))

�

= g
d

�

x+q; q(x+q); q

2

(x+q)

�

= x+q.
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Therefore, any rational solution of (1) 
an be written as y = p=

�

x

n

(x + q)

�

where n � 0 and p is

in Q [x℄.

The indi
ial equation at x = 0 is qZ

2

�2q

2

Z+q

3

= 0 (see [2℄). Its only solution of the form Z = q

n

is for n = 1, whi
h implies that any rational solution of (1) 
an be written as y = p=

�

x(x + q)

�

.

Repla
ing y by this form, we get p(q

2

x)� 2p(qx) + p(x) = 0 (whose solution spa
e is Q(q), whi
h

implies that the general rational solution of (1) is y = C=

�

x(x+ q)

�

for any C in Q(q)).

5.2. Laurent polynomial solution. The problem of �nding rational solutions y of L(y) = b is

redu
ed to �nding y in k[t; t

�1

℄ su
h that L(y) = b, where b is in k[t; t

�1

℄ and L =

P

N

i=0

a

i

�

i

is a

di�eren
e operator, with a

i

2 k[t℄ and non-zero a

0

and a

N

. This de
omposes in two steps:

1. �nd a bound for the degree and the order in t of y;

2. 
ompute the 
oeÆ
ients of y, seen as a Laurent polynomial in t.

5.2.1. Bound for the degree and order of a polynomial solution. One rewrites L as

P

d

j=�

t

j

L

j

where

the L

j

's are in k[�℄ and L

�

and L

d

are not equal to zero. Let y = y

Æ

t

Æ

+ � � � + y




t




be in k[t; t

�1

℄

for integers 
 and Æ satisfying 
 � Æ and su
h that neither y

Æ

nor y




is equal to zero. Let b be in

k[t; t

�1

℄. If L(y) = b, then

1. either Æ � �(b)� �, or L

�

(y

Æ

t

Æ

) = 0;

2. either 
 � deg b� d, or L

d

(y




t




) = 0.

The problem is redu
ed to 
onsidering di�eren
e operators T =

P

M

i=m

A

i

�

i

with A

i

2 C[n℄ for

non-zero A

m

and A

M

, and to sear
hing bounds for 
 2 Z su
h that T (zt




) = 0 for some z in C(n).

Let e = ��

1

(�t=t) = �

1

(a). There are three possibilities:

{ if e > 0 then (deg

n

A

m

� deg

n

T )=e � 
 � (deg

n

T � deg

n

A

M

)=e;

{ if e < 0 then (deg

n

T � deg

n

A

m

)=e � 
 � (deg

n

A

m

� deg

n

T )=e;

{ if e = 0 then � = a(1) 2 C

?

. We de
ompose A

i

= a

i;�

i

n

�

i

+ � � � . We de�ne Q(z) =

P

ij�

i

=max

j

(�

j

)

a

i;�

i

z

i

. We have Q(�




) = 0. This problem 
an be solved if �

d

6= 1 for all

d � 0 (see se
tion 4.2).

5.2.2. CoeÆ
ients of a Laurent polynomial solution. This is a generalization of the spe
ialization

given in [7℄.

We have found 
 and Æ su
h that if y is in k[t; t

�1

℄ with L(y) = b then deg

t

(y) � 
 and val

t

(y) � Æ.

Let z = t

Æ

y. Note that deg

t

(z) � 
 � Æ = J . One has to 
onsider the problem L(z) = b where L is

in k[t℄[�℄ and b in k[t℄. Let L =

P

d

j=0

t

j

L

j

with L

j

in k[�℄, and L

0

; L

d

not equal to zero.

{ if J = 0 then L(z) =

P

d

j=0

t

j

(L

j

z). But L

j

(z) is in k so L(z) = b implies L

j

(z) = b

j

for all

j and this redu
es to di�eren
e equations with 
oeÆ
ients in C[n℄;

{ if J > 0 then one de
omposes z = z

0

+ tz where z

0

= z(0) is in C(n). Then L

0

(z

0

) = b

0

and

one 
an �nd z

0

. So, L(z) = (L� L

0

)(z

0

) + L(tz) + L

0

(z

0

) and L(z) = b implies

L(tz) = b� b

0

� (L� L

0

)z

0

t

~

L(z) = t

�

b� b

0

t

�

� t

(L� L

0

)z

0

t

This gives us a new di�eren
e equation with a solution z of degree stri
tly less than J . By

indu
tion, one 
an �nd z.

Example. Consider y(n + 2) � (n! + n)y(n + 1) + n(n! � 1)y(n) = 0, whi
h is asso
iated to the

di�eren
e operator

L = �

2

� (t+ n)� + n(t� 1) = t(n� �) + (�

2

� n� � n) = tL

1

+ L

0
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Using the same notations as previously, e = ��

1

(�t=t) = ��

1

(n+ 1) = 1 and then y = y

0

+ y

1

t.

One �rst 
onsiders L

0

(y

0

) = �

2

y

0

� n�y

0

� ny

0

= 0, and �nds that y

0

= 0. Then:

L(tz

1

) = (n+ 2)(n+ 1)t�

2

(z

1

)� (n+ 1)(t+ n)t�(y

1

) + n(t� 1)ty

1

;

from whi
h follows that

~

L(y

1

) = (n+ 2)(n+ 1)�

2

(y

1

)� (n+ 1)(t+ n)�(y

1

) + n(t� 1)y

1

= 0:

This implies that y

1

= 
=n. Then y = y

1

t = (
=n)n! = 
(n� 1)!.
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Summary by Marianne Durand

Abstra
t

Starting from 
ombinatorial stru
tures, one 
an study some of their 
hara
teristi
s by means

of attribute grammars [1, 2℄. This leads to multivariate generating fun
tions that permit us

to study the distribution of these 
hara
teristi
s, part of it automati
ally.

1. Attribute Grammars

The grammars 
onsidered here are built from atoms, Z, Z

1

,. . . of weight 1 and from an � of

weight 0. The produ
tion rules are des
ribed in terms of a few 
onstru
tors: union, 
artesian prod-

u
t, set, sequen
e and 
y
le. These 
onstru
tors 
an take pla
e in a labelled world (permutations)

or unlabelled (trees) and they are already present in the 
ombstru
t pa
kage. A grammar is


omposed of produ
tion rules of the type T = �(T

1

; : : : ; T

n

); T is said to be an an
estor of ea
h

T

i

and ea
h T

i

is a des
endant of T . The attributes on these grammars are values on the obje
ts

produ
ed by the grammar, here on 
ombinatorial stru
tures, like for example the size or the in-

ternal path length on a binary sear
h tree. An attribute is synthesized if it is a fun
tion of his

des
endants (size of a tree) and inherited if it is a fun
tion of his an
estors. An example of an

inherited attribute is the depth of a tree. The depth is de�ned by : the depth of the root is zero

and the depth of a subtree is the depth of its father plus one. An attribute is well-de�ned if there

are no 
ir
ular dependen
ies amongst the attributes, whi
h 
an be 
he
ked algorithmi
ally [5℄. The

attribute is linear if it is a linear fun
tion of the attributes of the des
endants. The size of a tree

is a linear attribute, but the height of a tree de�ned by the maximum of the height of the subtrees

plus one is not.

We now 
onsider linear synthesized and well-de�ned attributes. The general spe
i�
ation of a

stru
ture is:

(1) B = �

1

(B

1

1

; : : : ; B

1

k

1

) j : : : j �

n

(B

n

1

; : : : ; B

n

k

n

):

where �

i

is a standard 
onstru
tor, like 
artesian produ
t, set, sequen
e, or 
y
le, or a terminal.

The general form of the de�nition of an attribute F

i

then is

F

i

(B) =

[

1�m�n

�

�

Æ

m

i

+

X

j;k

�

m

i;j

F

j

(B

m

k

)

�

+ 


i

where lower 
ase indexed greek letters indi
ate integer 
onstants, and F

j


orresponds to other at-

tributes. The letter � stands for a general iterative operator 
oding the fa
t that all the subelements

of the stru
ture are 
onsidered. For example if � is the sequen
e 
onstru
tor, ea
h element of the

sequen
e is 
onsidered re
ursively. The non-planar trees are de�ned by T = N � Set(T) and there



72 Attribute Grammars and Automati
 Complexity Analysis

the internal path length is spe
i�ed by ipl(T ) = �(size(T ) + ipl(T )). Other examples are the area

below Dy
k paths, the number of 
y
les in a permutation or the number of parts in a partition.

All these attributes 
an be en
oded in multivariate generating fun
tions as follows. If the at-

tributes are named F

i

and the stru
ture is de�ned as in equation (1), the generating fun
tion in an

unlabelled world is

(2) B(z

0

; : : : ; z

k

) =

X

b2B

z

jbj

0

z

F

1

(b)

1

: : : z

F

k

(b)

k

:

Let z be the ve
tor (z

1

; : : : ; z

k

), �

m

be the matrix [�

m

i;j

℄, 


m

and Æ

m

be ve
tors, where m is an

index indi
ating the related 
onstru
tor �

m

. We use the following notations: z

Æ

= (z

Æ

1

1

; : : : ; z

Æ

k

k

) and

z

�

=

�

z

�

1;1

1

: : : z

�

1;k

k

; : : : ; z

�

1;k

1

: : : z

�

k;k

k

�

. This allows us to state the Attribute Grammars Generating

Fun
tion theorem.

Theorem 1. [6℄ Given the grammar spe
i�
ation B = �

1

(B

1

1

; : : : ; B

1

k

1

) j : : : j �

n

(B

n

1

; : : : ; B

n

k

n

)

where ea
h �

i

is a grammar 
onstru
tor or a terminal and given the set of attribute produ
tions

F

i

(B) =

S

1�m�n

�

�

Æ

m

i

+

P

j;k

�

m

i;j

F

j

(B

m

k

)

�

+


i

the multivariate generating fun
tion B(z) satis�es

B(z) =

X

m

z




m

G

�

m

�

z

Æ

m

B

m

k

(z

�

m

)

�

where G

�

m

is the 
lassi
al generating fun
tion transformation on stru
tures.

Proof. The proof requires a study of ea
h 
onstru
tor. We give here a simpli�ed proof where

B = �(C). As in equation (2) the generating fun
tion is de�ned by

B(z) =

X

b2B

z

F

1

(b)

1

: : : z

F

k

(b)

k

:

By repla
ing with the de�nition of F

i

, i.e., F

i

(B) = �

�

Æ

i

+

P

j;k

�

i;j

F

j

(B

k

)

�

+ 


i

, we obtain

(3) B(z) =

X

b2B

Y

l

z




l

l

:

Y

a2b

Y

i

z

Æ

i

+

P

k

j=1

�

ij

F

j

(b)

i

;

whi
h simpli�es into

B(z) = z




X

b2B

z

Æ

Y

a2b

Y

j

�

Y

i

z

�

ij

i

�

F

j

(b)

:

In view of C(z) =

P


2C

Q

j

z

F

j

(
)

j

and B(z) =

P

b2B

Q

a2b

z

jbj

= G

�

B(z)

�

, we now have the �nal

result

B(z) = z




G

�

�

z

Æ

C(z

�

)

�

:

We obtain a simple formula to express the generating fun
tion of a stru
ture given the type of its

attributes.

�

2. Automati
 Complexity Analysis

The idea of working on 
ombinatorial properties is not new, it has already been exploited in

�

�




[3, 7℄, part of whi
h is implemented in the 
ombstru
t pa
kage. Given a 
ombinatorial

stru
ture and a 
lass of algorithms based on programming primitives like sequen
e of programs,

test on unions, partial program des
ent and full 
omponent iteration, �

�




returns the asymptoti


value of the 
ost of the program on all stru
tures of size n. It is then possible to get the average value

of the 
ost of the 
onsidered program. The programs analysed by �

�





an be viewed as attributes
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Figure 1. The binary sear
h tree and in
reasing tree asso
iated with [521634℄.

on a grammar 
orresponding to the stru
ture. In fa
t the expressivity of �

�




is en
ompassed by

the attribute grammar system. The attribute grammars are well implemented and will be in the


ombstru
t pa
kage soon. For example it is possible to 
ompute the 
ost of di�erentiating a

regular expression based on plus, times and exp and to get the average and the varian
e of this


ost, whi
h is not possible in �

�




.

These te
hniques 
an also be applied to other 
onstru
tors, if their translation into generating

fun
tion is known. For instan
e the Qui
ksort algorithm 
an be studied using attribute grammars.

The Qui
ksort algorithm takes as input a random permutation, 
hooses a pivot, sorts the elements

a

ording to their position with respe
t to the pivot and then sorts re
ursively the two subarrays.

The run of the algorithm 
an be visualised by a binary sear
h tree, the root being the pivot, and

the two sons being the two subarrays. The 
omplexity is the number of 
omparisons done, whi
h


orresponds to the internal path length of the binary sear
h tree. This 
orrespondan
e between

exe
utions of the algorithm and binary sear
h trees is not a bije
tion, be
ause the inputs 231 and 213

yield the same tree. The solution to this problem is to keep the shape of the tree and to label it with

the order in whi
h the nodes are �lled, as shown on Figure 1. This gives a bije
tion between runs

of Qui
ksort and in
reasing trees. To des
ribe in
reasing trees with attribute grammars, we need

to introdu
e the Greene operator also 
alled box operator [4℄. In a labelled stru
ture, the Greene

operator spe
i�es where the minimum label is to be. For example the in
reasing trees are de�ned

by T = � j T

1

�Min(N) � T

2

whi
h spe
i�es that the minimum is in the root N . The generating

fun
tion has been determined by Greene:

T (z) =

Z

z

0

T

2

(x)

�N(x)

�x

dx:

It is now possible to de�ne the internal path length as an attribute on the in
reasing tree stru
ture

by the relation

ipl(T ) = 0 j ipl(T

1

) + size(T

1

) + ipl(T

2

) + size(T

2

);

assuming that the internal path length of a node is 0, whi
h is 
oherent with the 
omplexity model

of the number of 
omparisons. The multivariate generating fun
tion is

T (z; u) = 1 +

Z

z

0

�

�

�x

x

�

T (xu; u)

2

dx:

The average is therefore

[z

n

℄T

u

(z; u)j

u=1

[z

n

℄T (z; 1)

= 2H

n

� 3 +

H

n

n

with T (z; 1) =

1

1� z

where H

n

is the nth harmoni
 number.
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All this work has been implemented in Maple in su
h a way that the syntax of attributes gram-

mars use the same basi
 fun
tions as 
ombstru
t. For example if a grammar rule is A = B j C

then an attribute for A follows the equation, in 
ombstru
t syntax,

F(A)=Union(b_1*F_1(B)+...+b_k*F_k(B),
_1*F_1(C)+...+
_k*F_k(C))

+ a_1*F_1(A)+...+a_k*F_k(A)+a_0.

Similar rules apply for produ
t and set. Sin
e 
ombstru
t 
an verify if a grammar is well de�ned,

the same algorithm 
an tell if an attribute grammar is linear and syntheti
. For example if one

looks again at the internal path length but this time of a binary Catalan tree, using two lines to

de�ne the grammar (B = �+ zB

2

) and the attribute 
oding internal path length (ipl = size(B) +

ipl(B

1

) + ipl(B

2

)) and �ve to 
ompute the generating fun
tions and the �rst moments, one gets

automati
ally that the average equals

p

�n

3=2

+O(n) and the varian
e equals (10=3��)n

3

+O(n

5=2

).

This 
omputation 
an also be done on examples like the grammar de�ning the expressions based

on zero, one, x, sum, produ
t and exponentiation. It is possible to de�ne the attribute 
oding

the size of an expression after di�erentiation. This leads to an automati
 proof that on average

di�erentiating an expression of size n yields an expression of size 0:8n

3=2

.

Attribute grammars provide a good way of des
ribing re
ursive properties of de
omposable stru
-

tures; a stru
ture is de
omposable if it 
an be expressed with basi
 atoms (�, Z) and basi
 
on-

stru
tors (union, produ
t, set, sequen
e, . . . ). The work that has been done on this subje
t 
an

be used to obtain algorithms for random generation of stru
tures with given attribute value, and

also to obtain the distribution of the attribute. It 
an be 
ontinued on other attribute types for

example heads or tails of sequen
es. From the aspe
t of attribute grammar resear
h, some theory

has been developed on the idea of 
oupling grammars. This simulates repeated appli
ation of a

fun
tion. This, for example, would allow a simple analysis of repeated di�erentiation, and other


omposed fun
tions. This requires a system where the attributes may be more than 
onstants, but

rather further stru
tures.
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Abstra
t

The 
omplexity the Eu
lidean algorithm and its variants is well studied. This work re�nes

the problem further by 
onsidering pre
ise average bit-
omplexity. The te
hnique is suÆ-


iently general as to apply to a wide 
lass of g
d-type algorithms. It determines elementary

transformations for ea
h algorithm and derives asymptoti
 information from their analyti


behaviour. The methods rely on properties of transfer operators adapted from dynami
al

systems theory. The use of Ergodi
 Theorems in the 
ontinuous 
ase (
ontinued fra
tion

algorithms) foreshadows the results, whi
h use Tauberian Theorems as repla
ement. This

is joint work with Ali Akhavi [1℄.

1. Why the Bit Case?

Sin
e the initial average 
ase analysis of the Eu
lidean algorithm in 1969 by Heilbronn and Dixon

a wide variety of approa
hes have been used to examine variants, the most re
ent of whi
h is the

method of using transfer operators [3, 4℄.

The te
hnique involves viewing the algorithm as a dynami
al system and ea
h iterative step as

a linear fra
tional transformation (LFT). Previous talks by the speaker [2℄ shed some light on this

te
hnique, how several 
lasses of GCD algorithms fell under a uni�ed approa
h and furthermore,

why they were naturally divided into two 
ategories: slow (�(log

2

n)) and fast (�(log n)).

This same te
hnique will now aid in the study of bit-wise 
omplexity. The motivation for this

re�nement is the following. It is not a priori evident whether the properties whi
h make the slow

algorithms slow extend to the bit 
ase. It is true that there are more iterations, but what of the size

of ea
h iteration? This work answers the question de�nitively, yielding the same divisions between

slow and fast algorithms, however with new 
omplexity des
riptions, �(log

3

n) and �(log

2

n).

Furthermore, it is of interest to 
onsider a pra
ti
al 
omplexity measure. The method o�ers pre
ise

insights on the distribution of 
osts. This enables a further re�nement on the 
lassi�
ation between

the fast and slow algorithms.

1.1. Standard algorithm. The standard Eu
lidean algorithm determines the g
d of v

0

and v

1

by a �nite number of steps of the form v

i

= m

i

v

i�1

+ v

i+1

, with �nal step v

k

= 0. De�ne

l(x) = blog

2

x
+ 1, the binary length of x. At ea
h step there is one \naive" division with bit


ost l(v

i

)l(m

i

), and two assignment steps involving v

i

and v

i+1

. The total bit-
omplexity of one

iteration is l(v

i

)l(m

i

) + l(v

i

) + l(v

i+1

). The 
ost for the standard algorithm is then

C(v

1

; v

0

) =

k

X

i=1

l(v

i

) �

�

l(m

i

) + 2

�

:
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2. Main Result: Bit-Wise Complexity

The following two sets are valid input to the Eu
lidean algorithm:


 = f (u; v) j g
d(u; v) = 1; 1 � u < v g and 


N

= f (u; v) j (u; v) 2 
; v � N g:

The goal is to estimate the mean value of a 
ost C : 
 ! R on 


N

. More pre
isely, to determine

the asymptoti
 value as N ! 1 of the mean value E

N

[C℄ satisfying E

N

[C℄ = C

N

=j


N

j, where

C

N

=

P

(u;v)2


N

C(v; u).

The fun
tion of interest in this presentation is the bit-
ost of the standard Eu
lidean algorithm,

and 
onsequently the 
ost is as de�ned in the previous se
tion, but the methods are suÆ
iently

general as to apply to a number of 
ases. The te
hnique views the algorithm as a dynami
al system

with ea
h iterative step a LFT. Modifying the LFT yields the

variants. The 
ontinued fra
tion expression of the problem

motivates the use of the transformations U(x) =

1

x

�

�

1

x

�

and

M(x) =

�

1

x

�

. Noti
e that m

i+1

= M

�

U

i

(v

1

=v

0

)

�

. The value

of k in the 
ontinued fra
tion to the right is the depth.

v

1

v

0

=

1

m

1

+

1

m

2

+

1

m

3

+ � � �+

1

m

k

2.1. Ergodi
 theory estimates. Gauss observed that the iteration of the transformation U has

invariant density 	(t) =

1

log 2

1

1+t

. For any A : N ! R su
h that

P

A(m)m

�2

< 1, de�ne

E

1

�

A(m)

�

=

R

1

0

A

�

m(t)

�

	(t) dt. This is equal to

E

1

�

A(m)

�

=

X

m�1

A(m)

�

log

2

�

1 +

1

m

�

� log

2

�

1 +

1

m+ 1

��

:

For example, when applied to l(m): E

1

�

l(m)

�

= (1= log 2) log

�

Q

k�1

1 + 2

�k

�

.

In the 
ontinuous 
ase, ergodi
 theory is appli
able and gives the result that the expe
ted value

E

N

�

P

m

k=1

A(U

k

(x))

�

approa
hes E

1

[A℄ almost everywhere. Although ergodi
 theory does not

apply in the dis
rete 
ase, it does give plausible estimates as to what to expe
t. The assign-

ment A(m) = l(m) gives the expe
ted size of m

i

in bits. The dis
rete version is formulated as

E

N

�

P

p(x)

k=1

A(U

k

(x))

�

; where p(x) is the depth of the ne
essarily �nite 
ontinued fra
tion expansion

of the rational x. In this framework one 
an study the aymptoti
 behaviour of several fun
tions

on 


N

, su
h as:

~

A(x) =

P

p(x)

k=1

A

�

m

k

(x)

�

and

~

C(x) =

P

p(x)

k=1

l

�

m

k

(x)

�

� log

2

v

k

(x).

One might anti
ipate that the value of E

N

�

~

A

�

under 
ertain 
onditions should relate to the

expe
ted depth and the expe
ted size of an iteration. The expe
ted depth, E[p℄, 
orresponds to the

number of iterations of the Eu
lidean algorithm on input 


N

, and is asymptoti
 to 6=�

2

log

2

N .

So, in the 
ase of A(m) = l(m),

E

N

�

~

A

�

� E

N

[p℄�E

1

�

A(m)

�

=

0

�

12

�

2

log

Y

k�0

�

1 +

1

2

k

�

1

A

log

2

N:

This is the mean size of the 
ontinued fra
tion en
oding of a rational number. A similar heuristi


analysis of E

N

[

~

C℄ shows the relation

E

N

�

~

C

�

� E

N

[p℄

1

2

log

2

N �E

1

�

l(m)

�

:

These observations give a 
ontext for the main result.
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Theorem 1. The average bit-
omplexity of the standard Eu
lidean algorithm on the set of valid

inputs of denominator less than N is asymptoti
ally of log-squared order:

E

N

[C℄ �

0

�

6 log 2

�

2

log

Y

k�1

�

1 +

1

2

k

�

1

A

log

2

2

N:

This agrees with the heuristi
 argument. Numeri
ally, this values satis�es E

N

[C℄ � 1:24237 log

2

2

N .

3. Summary of Methods

The general method for obtaining this result is similar to the speaker's analysis of g
d-type

fun
tions. The average is expressible by partial sums of 
oeÆ
ients of Diri
hlet series. Tauberian

theory transfers the analyti
 behaviour of the series near singularities into asymptoti
 behaviour

of 
oeÆ
ients. When seen as a dynami
al system the generating fun
tions of bit-
ost relate to the

Ruelle operators asso
iated to the algorithm. The singularities of the Diri
hlet series are related to

spe
tral proje
tions of the operators and are easy to des
ribe.

3.1. Diri
hlet generating fun
tions. De�ne !

n

to be the set of all pairs (u; v) in 
 with v = n

and C

n

as the 
umulative value of C over !

n

. Then the 
orresponding en
oding into Diri
hlet

generating fun
tions is

F

h
i

(s) =

X

n�1

C

n

n

s

=

X

(v

0

;v

1

)2


C(v

1

; v

0

)

v

s

0

:

Thus the expe
ted average 
ost is E

N

[C℄ =

�

P

n�N

C

n

�

=

�

P

n�N

j!

n

j

�

:

3.2. Tauberian theorem. The Tauberian theorems are a natural tool to 
onsider as they give

asymptoti
 information about the partial sums of 
oeÆ
ients of Diri
hlet series. They rely on the

nature and position of the singularities of F (s) =

P

a

n

n

�s

.

Theorem 2 (Delange). Let F (s) be a Diri
hlet series with non-negative 
oeÆ
ients su
h that F (s)


onverges for <(s) > � > 0. Assume that:

1. F is analyti
 on <(s) = �; where s 6= �;

2. F (s) = A(s)(s� �)

�
�1

+C(s) for some 
 � 0, and A(s) and C(s) analyti
 with A(�) 6= 0.

Then, as N !1, the partial sum of 
oeÆ
ients is

X

n�N

a

n

=

A(�)

��(
 + 1)

N

�

log




N

�

1 + �(N)

�

; where �(N)! 0:

However, the 
onditions are diÆ
ult to verify for F

h
i

(s) in its present form. A transformation

gives the required information about the singularities.

3.3. Ruelle operators. The 
lassi
al operator is

G

s

[F ℄(x) =

X

m�1

1

(m+ x)

s

F

�

1

m+ x

�

:

LetH = fh j h(x) = (m+x)

�1

;m � 1 g, the set of inverse bran
hes of U . IfD[h℄ is the denominator

of the LFT h(x), then sin
e D

�

h Æ g

�

(x) = D[h℄g(x) �D[g℄(x), the iterates of G

s

are given by

G

k

s

[F ℄(x) =

X

h2H

1

D[h℄(x)

s

F Æ h(x):
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Rationals of 
 
an be written x = h(0) for some h inH

k

where k � 0. Then the Diri
hlet generating

fun
tion for j!

n

j is equal to

P

n�1

j!

n

jn

�s

=

P

h2H

�

D[h℄(0)

�s

= (I �G

s

)

�1

[1℄(0). A 
ost version

of R

s;h

[F ℄(x) = D[h℄(x)

�1

F Æ h(x) is de�ned as R

[
℄

s;h

[F ℄(x) = 
(h)D[h℄(x)

�1

F Æ h(x). Similarly the


ost 
ompanion to G

s

=

P

h2H

R

s;h

is G

[
℄

s

=

P

h2H

R

[
℄

s;h

:

Re
all that C(v

0

; v

1

) �

P

i=1

log

2

(v

i

)
(m

i

). If x = v

1

=v

0

= h

1

Æ h

2

Æ � � � Æ h

k

(0), then 
(m

i

) only

depends on h

i

and v

i

only depends on h

i+1

Æ � � � Æ h

k

(0). That is, the fun
tion 
an be expressed as

h = (h

1

Æ � � � Æ h

i�1

) Æ h

i

Æ (h

i+1

Æ � � � Æ h

k

) = b

i

(h) Æ h

i

Æ e

i

(h):

De�ning C

s;h

= �

k

X

i=1

�

�s

R

s;e

i

(h)

ÆR

[
℄

s;h

i

Æ R

s;b

i

(h)

yields F

h
i

(s) =

X

h2H

�

C

s;h

[1℄(0).

3.4. Fun
tional analysis. The singularities of the 
ost fun
tion 
an now be des
ribed in terms of

the singularities of the C

s;h

, and subsequently of (I�G

s

)

�1

. Analysis of (I�G

s

)

�1

determines the

values for the Tauberian theorem to be � = 2 and 
 = 2. Using this, Theorem 1 now follows. In the


ase of the operators related to the slow algorithms, the 
orresponding result is 
 = 3, a

ounting

for the log-
ubed behaviour.

4. Variants and En
oding

As before, the te
hnique applies to a family of variants. For example, the bit-
omplexity of the


entred algorithm is asymptoti
 to

6 log 2

�

2

log

 

�

2

1

Y

k=3

�

2

+

2�

2

k

�1

�

2

�

2

2

k

�1

!

log

2

2

N; where � = (

p

5 + 1)=2:

Finally, the average length of a 
ontinued fra
tion en
oding is 
omputable. This is the room o

u-

pied in memory by (m

1

;m

2

; : : : ;m

k

; v

k

). The en
oding uses the same prin
iples as Fano{Shannon.

Theorem 3. The average Fano{Shannon 
ode-length D

N

of the 
ontinued fra
tion expansion pro-

du
ed by the standard algorithm on valid inputs with denominator size N satis�es

D

N

�

12 log

2

�

2

 

1 +

2

log 2

log

1

Y

k=1

�

1 +

1

2

k

�

!

log

2

N:

The numeri
al value is 2:04868 log

2

N , whi
h is 
lose to the optimal 2 log

2

N .
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Continued Fra
tions, Comparison Algorithms and Fine Stru
ture Constants
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t, INRIA Ro
quen
ourt
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Summary by Cyril Banderier

Abstra
t

The simple problems of 
omparing fra
tions (Gosper's algorithms for 
ontinued fra
tions

from the Ha
ker's Memorandum) and of de
iding the orientation of triangles in 
omputa-

tional geometry lead to a 
omplexity analysis with an in
ursion into a surprising variety

of domains: dynami
al systems (symboli
 dynami
s), number theory (
ontinued fra
tions),

spe
ial fun
tions (multiple zeta values), fun
tional analysis (transfer operators), numeri
al

analysis (series a

eleration), and 
omplex analysis (Riemann hypothesis). These domains

all eventually 
ontribute to a detailed 
hara
terization of the 
omplexity of 
omparison and

sorting algorithms, either on average or in probability. (Joint work with Brigitte Vall�ee.)

1. Introdu
tion

To 
ompare two rational numbers (or similarly, to determine the sign of a 2� 2 determinant, a

relevant problem in 
omputational geometry) is a deli
ate problem when you have to work with

a numeri
al 
al
ulator limited to a given number of digits. For example, sin
e

312689

99532

�

833719

265381

�

3� 10

�11

, a 
omputer with 10-digit a

ura
y 
annot 
ompare \naively" the two rational numbers.

In the \Ha
ker's Memorandum" [2℄, it is showed that it is always possible to solve this 
omparison

problem without ex
eeding the a

ura
y of the 
al
ulator. The algorithm 
onsists in expanding both

rational numbers in 
ontinued fra
tions, but stopping as soon as one gets two di�erent 
oeÆ
ients.

This algorithm is easily generalized to any number representation system (binary, d-ary, 
entered

or 
lassi
al 
ontinued fra
tion, et
.) and also to the 
omparison of n rational numbers.

2. Results

The fun
tions

�

U(x) = f1=xg and

^

U(x) = ff1=xgg (where ffygg stands for the distan
e to the

nearest integer from y) are the maps of 
lassi
al 
ontinued fra
tions and 
entred 
ontinued fra
tions

respe
tively. Under a uniform probabilisti
 model (over the set of legal inputs, that is, an interval

of the shape [ 0; � ℄), the number L of iterations needed to 
ompare two numbers satis�es P(L �

k + 1) =

P

jhj=k

�

�

h(0)�h(�)

�

�

�

2

and the moment sums of order l satisfy �

(l)

=

P

h

�

�

h(0)�h(�)

�

�

�

l

. These

sums are over the inverse bran
hes of U , whi
h appear to be linear fra
tion operators of a spe
i�


shape [6℄, thus:

Theorem 1. The expe
ted 
ost of the basi
 (��) and 
entred (�̂) 
omparison algorithms are express-

ible as sums over latti
e points in N

2

��

(l)

= 1 +

1

2

l

+

2

�(2l)

X

d<
<2d

1




l

d

l

and �̂

(l)

=

2

l

�(2l)

X

d�<
<d�

2

1




l

d

l

�

� =

�

1 +

p

5

�

=2

�

:
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With the help of double zeta values (also known as Euler{Zagier sums), de�ned as

�

++

(s; t) =

1

X

n=1

n�1

X

q=1

1

n

s

q

t

and �

�+

(s; t) =

1

X

n=1

n�1

X

q=1

(�1)

n

n

s

q

t

;

it is possible to rewrite ��

(2)

as a pe
uliar value of these multiple zeta values (this implies that ��

(2)


an be 
omputed to any pre
ision in polynomial time):

Theorem 2. The mean number ��

(2)

of 
omparisons in the 
lassi
al 
ontinued fra
tion 
an be

expressed in terms of double zeta values as

��

(2)

=

3

4

+

360

�

4

�

�+

(2; 2) = 17�

60

�

4

�

24Li

4

(1=2) � �

2

(ln 2)

2

+ 21�(3) ln 2 + (ln 2)

4

�

= 1:35113157:::

There exists a lot of alternative expressions, due to intriguing relations between multiple zeta

values, whi
h is a topi
 of a
tive resear
h (see [1, 5, 7℄), nowadays relevant to knot invariants,

Feynman diagrams and even the theory of perverse sheaves. For all the other moment sums,

polynomial time 
omputations are also possible, via some ni
e series/integral representations [6℄.

For the 
omparison of n real numbers, the 
ost of sorting n numbers depends on the position of the

nontrivial zeroes of the Riemann zeta fun
tion (see [3℄ for an approa
h by Diri
hlet depoissonization

and Mellin transform, using the Vall�ee se
ant operator or [6℄ for an approa
h by N�orlund{Ri
e

integrals, via a 
omplex lifting of the moment sums):

Theorem 3. The expe
ted 
ost of sorting n uniform real numbers given by their 
lassi
al 
ontinued

fra
tion representations satis�es

�

P (n) = n

n�1

X

l�1

(�1)

l�1

�

n� 1

l

�

��

(l+1)

= K

0

n lnn+K

1

n+Q(lnn) +O(1);

where K

0

is L�evy's entropy 
onstant and K

1

is a Porter-like 
onstant (see [4℄):

K

0

=

6 ln 2

�

2

and K

1

= 18


 ln 2

�

2

+ 9

(ln 2)

2

�

2

� 72

ln 2 �

0

(2)

�

4

�

1

2

:

The fun
tion Q(u) is an os
illating fun
tion with mean value 0 that satis�es Q(n) = O(u

Æ=2

); where

Æ is any number su
h that Æ > sup f<(s) j �(s) = 0 g.

For more details, we refer to Flajolet and Vall�ee's arti
les, available on their web pages:

http://algo.inria.fr/flajolet and http://www.info.uni
aen.fr/~brigitte.
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Continued Fra
tions and Modular Forms

Ilan Vardi

IHES

April 3, 2000

Summary by Cyril Banderier

Abstra
t

This in
ursion into the realm of elementary and probabilisti
 number theory of 
ontinued

fra
tions, via modular forms, allows us to study the alternating sum of 
oeÆ
ients of a


ontinued fra
tion, thus solving the longstanding open problem of their limit law.

1. Introdu
tion

For the readers of these pro
eedings,

1

it is not a se
ret anymore that the 
ontinued fra
tion

expansion of p=q, the Ja
obi symbol

�

p

q

�

, or the g
d of two integers (p; q), or even Gauss' latti
e

redu
tion algorithm 
over phenomena of similar 
omputational 
omplexity. However for 
ontinued

fra
tions, two distin
t 
ases have to be 
onsidered: the 
ontinuous and the dis
rete 
ase. The

dis
rete 
ase deals with 
ontinued fra
tion expansions of rational numbers whereas the 
ontinuous


ase deals with 
ontinued fra
tions of real (irrational) numbers.

For the 
ontinuous model, given the apparatus of ergodi
 theory, many basi
 results on 
ontin-

ued fra
tions fall as appli
ation of more general theorems (see Chapter 9 in Paul L�evy's book [11℄).

Ergodi
 theory, whi
h was guessed by Maxwell and formulated by Boltzmann, 
on
erns itself prin
i-

pally with quantifying how points in a 
ontinuous spa
e evolve under iteration of a transformation.

The ergodi
 theorem (due to Birkho� in 1931) states that for almost all initial points x

0

of the


ontinuous spa
e E with measure �,

lim

n!+1

1

n

n

X

j=1

f

�

T

j

(x

0

)

�

=

Z

E

f(y) d�(y):

For the dis
rete model, there is some kind of e�e
t that pre
ludes the use of ergodi
 theory. At

least, results from the 
ontinuous model may serve as a heuristi
 for guessing 
orresponding fa
ts

about the dis
rete world.

What one would need in order to make this heuristi
 rigorous is a kind of \ergodi
 theory with

an error term." This is to some extent a�orded by the introdu
tion of Ruelle operators (see the

works by Brigitte Vall�ee in 1995) and of modular forms (see the works by Ilan Vardi in 1987{1993)

in the dis
rete model.

The main obje
t of this le
ture is the alternating sum of 
oeÆ
ients of a 
ontinued fra
tion.

A motivation for studying this is the evaluation of Legendre symbol

�

d




�

, whi
h essentially expresses

whether d is a perfe
t square modulo 
. This symbol 
an be evaluated using the Eu
lidean redu
tion

1

For new
omers, I highly re
ommend the reading of summaries of previous talks by I. Vardi [3℄ and B. Vall�ee [1℄!
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�

d




�

=

�

d mod 





�

(where 
; d are odd) and the quadrati
 re
ipro
ity law

�




d

�

= (�1)

(
�1)(d�1)=4

�

d




�

:

In fa
t, it was shown by Radema
her [12℄ that

�

d




�

= (�1)

(3�a�d+


P

(�1)

i

a

i

)=4

;

where

d




= [0; a

1

; : : : ; a

r

℄ (bra
kets stand for the expansion in 
ontinued fra
tion) and 0 < a; d < 
,

ad � 1 mod 
 with 
 and r odd. Note that d

�1

mod 
 
an itself be 
omputed using the Eu
lidean

algorithm.

There is also a geometri
al motivation: the alternating sum expresses the number of times that

a geodesi
 winds around the 
usp of a modular surfa
e.

In the 
ontinuous 
ase, Guivar
'h and Le Jan [7℄ established that the average alternating sum


onverges to a Cau
hy distribution with 
hara
teristi
 fun
tion exp

�

��jtj=(2 ln 2)

�

. For the dis
rete


ase, the stumbling blo
k is that even the expe
ted asymptoti
s estimated �(d; 
) �

12

�

2

ln 
 ln ln 
 is

unproved (�(d; 
) stands for the sum of the 
oeÆ
ient of the 
ontinued fra
tion of

d




). The problem

remained open until Vardi found another approa
h (see [15℄) via Dedekind sums.

2. Dedekind Sums

The Dedekind sum appears to be have been mistakenly de�ned and instead should have been

de�ned as the alternating sum of 
ontinued fra
tion 
oeÆ
ients. Histori
ally, the Dedekind sum is

de�ned for relatively prime integers d and 
 as

s(d; 
) =


�1

X

h=1

((hd=
))((h=
));

with the notation ((x)) =

(

0; if x is an integer,

x� bx
 � 1=2; otherwise.

This sum was introdu
ed by Dedekind in 1876 while editing Riemann's 
olle
ted works. He used

this sum to express the fun
tional equation of the Dedekind � fun
tion

�(z) = e

�iz=12

1

Y

n=1

(1� e

2�inz

)

whi
h, he proved, satis�es

(1) ln �

�

az + b


z + d

�

=

(

ln �(z) +

1

2

ln(
z + d) +

�i

12

�

�3 +

a+d




� 12s(d; 
)

�

; for 
 > 0,

ln �(z) +

�ib

12

; when 
 = 0,

where =(z) > 0, g =

�

a b


 d

�

, and a, b, 
, d are integers satisfying ad� b
 = 1. Note that

ln �(z) =

�iz

12

�

1

X

m;n=1

e

2�imnz

m

;

so ln � is holomorphi
 for =(z) > 0. Using the fun
tional equation (1) Dedekind proved a funda-

mental identity for Dedekind sums, namely the re
ipro
ity law

s(
; d) =




d

+

d




+

1


d

� s(d; 
):
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Note that the de�nition of the Dedekind sum gives that s(d; 
) = s(d mod 
; 
) and the re
ipro
ity

law relates the value of s(d; 
) to s(
; d). It follows that s(d; 
) 
an be 
omputed by using the

Eu
lidean algorithm, so it should be expressible in terms of the 
ontinued fra
tion expansion of

d=
. In fa
t, this is the statement of a result found independently by three authors in 1977:

Theorem 1 (Barkan [2℄, Hi
kerson [9℄, Knuth [10℄). If [0; a

1

; a

2

; : : : ; a

r

℄ is the regular 
ontinued

fra
tion expansion of d=
 with r odd (with d < 
 and 0 < a < 
 su
h that ad � 1 mod 
) then

s(d; 
) =

1

12

�

�3 +

a+ d




�

r

X

i=1

(�1)

i

a

i

�

:

It remains to �nd the distribution of the values of the Dedekind sums when 
 and d range over

large intervals. Vardi did so by using Paul L�evy's theorem (details in Se
tion 4) and for this, needed

to justify several approximations. To this aim, let us re
all a few fa
ts about modular forms and

Kloosterman sums, sin
e these obje
ts appeared to be the key to the asymptoti
 analysis.

3. Modular Forms

The group SL(2;Z) a
ts on the upper half 
omplex planeH by

�

a b


 d

�

z =

az+b


z+d

. One now 
onsiders

subgroups G of SL(2;Z) 
ontaining every matri
es of SL(2;Z) 
ongruent to the identity matrix in

SL(2;Z=NZ). Every su
h group G has a fundamental domain: an open set D � H su
h that for

all z 2 H there is at most one g 2 G with g(z) 2 D and at least one g 2 G with g(z) 2 D.

De�nition. A modular form of weight k is a holomorphi
 fun
tion on H satisfying:

1) Modularity 
ondition: f(gz) = (
z + d)

k

f(z) for g 2 G,

2) Meromorphy 
ondition: f(z) is bounded in the 
usps (i.e., parts of D going o� to in�nity).

De�nition. A non-holomorphi
 modular form of weight r and multiplier system � is a fun
tion

f(z) on H satisfying:

1') f(gz) = �(g)

�


z + d

j
z + dj

�

r

f(z) (for g 2 G), and 2')

ZZ

D

�

�

f(x+ iy)

�

�

2

dxdy

y

2

<1:

Condition 2') shows that the non-holomorphi
 modular forms form a Hilbert spa
e L

2

(D;�; r)

under the Petersson inner produ
t

hf; gi =

ZZ

D

f(z)g(z)y

r

dxdy

y

2

:

The Kloosterman sum (introdu
ed by Kloosterman in 1927 in a re�nement of the Hardy{Littlewood


ir
le method) is de�ned by

S(m;n; 
) =

X

e

2�i(ma+nd)=


;

where the sum ranges over d < 
 for ad � 1 mod 
 and g
d(d; 
) = 1.

In 1948, Andr�e Weil proved the estimate S(m;n; 
) = O(


1=2+�

). Asymptoti
s of sums of Kloost-

erman sums is a vivid subje
t, e.g., this \kloostermania" re
ently su

eeded [5℄ to prove that

there are in�nitely many numbers of the form x

2

+ y

4

. Sums of Kloosterman sums exhibit strong


an
ellations that 
an be estimated by making use of modular forms.

Generalized Kloosterman sums (for some subgroup G of SL(2;Z)) are de�ned by

S(m;n; 
; �;G) =

X

�(g)e

2�i((m��)a+(n��)d)=(q
)

;

where the sums ranges over g =

�

a 



 d

�

2 G with 0 < a < q
 and 0 < d < q
. In the sum, q is the

smallest integer su
h that

�

1 q

0 1

�

2 G and � is de�ned by e

�2�i�

= �

�

1 q

0 1

�

with 0 � � < 1.
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Goldfeld and Sarnak's formulation (see [6℄) of Kuznetsov's tra
e formula gives

(2)

X


<N

S(m;n; 
; �;G) =

X

1=2<s

j

<1

�

j

(m;n; �;G)

N

2s

j

�1

2s

j

+O(N

�=3+"

);

where � is the best 
onstant that 
an be put in the estimate S(m;n; 
; �;G) = O(


�+"

); and the sum

is over ex
eptional eigenvalues s

j

(de�ned hereafter) of the operator �

r

= y

2

�

�

2

�x

2

+

�

2

�y

2

�

� iry

�

�x

.

Sin
e �

r

has a self-adjoint extension to L

2

(D;�; r), its spe
trum is dis
rete and real: there is

a sequen
e of eigenvalues going to in�nity, with only a �nite set of negative eigenvalues whi
h


orrespond to holomorphi
 modular forms if r is an even integer. The non-negative eigenvalues are

simple ex
ept the 
ase � = 1=4, whi
h 
ould have multipli
ity 2.

A

ording to Selberg's notation, one writes an eigenvalue as � = s(1 � s), with <(s) � 1=2. It

follows that there is a �nite number of ex
eptional eigenvalues for whi
h � < 1=4. An ex
eptional

eigenvalue 
orresponds to s > 1=2, while the other eigenvalues have <(s) = 1=2 (note the analogy

with the Riemann hypothesis).

For a given non-holomorphi
 Poin
ar�e series P

m

(see [4℄), the Petersson produ
t hP

m

; u

j

i gives

the mth Fourier 
oeÆ
ient �

j

(m) of the eigenfun
tion u

j

(whi
h is a modular form) asso
iated to

the eigenvalue s

j

(1� s

j

). This allows to make expli
it the �

j

's of the formula (2):

�

j

(m;n; �;G) =

q

2

�

j

(m)�

j

(n)

�

�

2

(m� �)(n� �)=q

2

�

1�s

j

�(s

j

+ r=2)�(2s

j

� 1)

(�i)

r

��(s

j

� r=2)

Finally, the following theorem provides the link between a sum of generalized Kloosterman sums

and a sum whose asymptoti
s allows the appli
ation of L�evy's theorem:

Theorem 2 (Vardi [14℄).

e

�ir=2

X

0<d<


g
d(d;
)=1

e

2�irs(d;
)

= S

�

1; 1; 
; �

r

;SL(2;Z)

�

;

where �

r

= e

2�ir

(

a+d




�3�12s(d;
)

)

.

4. Limiting Distribution

One says that an arithmeti
 fun
tion f(n) has a limiting distribution F (x) if

lim

N!1

1

N

�

�

fn < N : f(n) < x g

�

�

= F (x):

In other words, one takes a histogram of values of the fun
tion f(n) and looks at its shape. One

method of showing that an arithmeti
 fun
tion has a limiting distribution is due to Paul L�evy (see

examples in [13℄).

Theorem 3 (Paul L�evy). If there exists a fun
tion g(t) 
ontinuous in 0 su
h that

lim

N!1

1

N

X

n<N

e

itf(n)

= g(t);

then f(n) has a limiting distribution F (x) satisfying g(t) =

Z

1

�1

e

itx

dF (x).

This is simply the probabilist's terminology for the Fourier transform; g is the 
hara
teristi


fun
tion of the distribution.
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In order to prove the limiting distribution result for Dedekind sums (and thus for alternating

sums of 
ontinued fra
tion 
oeÆ
ients) one applies L�evy's theorem to s(d; 
)= ln 
. What we want

to prove is the estimate

(3) lim

N!1

X

0<d<
<N

g
d(d;
)=1

e

its(d;
)= ln 


�

�

f 0 < d < 
 < N : g
d(d; 
) = 1 g

�

�

= e

�jtj=(2�)

;

where the right-hand side 
orresponds to the 
hara
teristi
 fun
tion of the Cau
hy distribution

Z

1

�1

�e

ity

�

2

+ y

2

dy = e

��jtj

;

with � = 1=(2�). The well-known estimate [8℄

�

�

f 0 < d < 
 < N : g
d(d; 
) = 1 g

�

�

=

3N

2

�

2

+O(N lnN)

shows that the sought estimate (3) 
an be rewritten as

X

0<d<
<N

g
d(d;
)=1

e

its(d;
)= ln 


� e

�jtj=(2�)

3N

2

�

2

:

Proving su
h a formula presents a number of te
hni
al diÆ
ulties. For example, one would like

to remove the absolute values on the right hand side, and the bothersome 1= ln 
 term in the

exponential. The �rst point is solved sin
e s(
 � d; 
) = �s(d; 
) so that the left-hand side is

independent of the sign of t. Consequently, one may restri
t attention to t > 0. The se
ond point

is solved noting that the ln fun
tion does not vary very mu
h, and that for most values of 
 < N ,

ln 
 is almost equal to lnN . An estimate obtained by the 
ontinued fra
tion formula for Dedekind

sums and the subsequent upper bound of S(d=
) � (lnN)

3=2+"

for almost all d < 
 < N , shows

that

X

0<d<
<N

g
d(d;
)=1

e

its(d;
)= ln 


=

X

0<d<
<N

g
d(d;
)=1

e

its(d;
)= lnN

+O

�

N

2

(lnN)

�1=5+"

�

:

See [15℄ for details. The problem is therefore redu
ed to showing that

(4)

X

0<d<
<N

g
d(d;
)=1

e

its(d;
)= lnN

� e

�t=(2�)

3N

2

�

2

; t > 0:

Summing the relation of Theorem 2 leads to

X

0<d<
<N

g
d(d;
)=1

e

2�irs(d;
)

= e

�i�r=2

X

0<
<N

S

�

1; 1; 
; �

r

;SL(2;Z)

�

;

so it suÆ
es to obtain asymptoti
s of the last right-hand side when r = t=(2� lnN). This is given

by the spe
ialization of Kuznetsov's tra
e formula (2) with � = 1 (the trivial bound) whi
h yields

(1=4)

r

�A

r

(1� r=2)

N

2�r

+O(N

4=3+"

) =

1

�A

0

e

�t=(2�)

N

2

+O(N

2

= lnN)

where A

r

=

RR

D

y

r

j�(x + iy)j

4r

dxdy

y

2

is the Petersson norm of y

r=2

�

2r

(x + iy) (the eigenfun
tion of

the only ex
eptional eigenvalue

r

2

(1�

r

2

)).
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As one easily 
omputes A

0

= �=3, Equation (4) is satis�ed.

5. Con
lusion

This talk is based on [4℄, for more details, refer to Ilan Vardi's arti
les, available from

http://www.ihes.fr/~ilan/publi
ations.html.

The alternating sum of 
oeÆ
ients of a 
ontinued fra
tion seems to be the �rst example where one

needs not only upper bounds for sums of Kloosterman sums, but also their pre
ise asymptoti
s.

The following fa
t is noteworthy. Eu
lidean algorithms are fundamental is several bran
hes

of s
ien
e while 
ounting amongst the oldest known algorithms. It is another testimony of the

\unreasonable e�e
tiveness of mathemati
s" (a phrase due to Eugene Wigner [16℄) that they reveal

their �nest se
rets only with our re
ent knowledges of dynami
al systems and of analyti
al number

theory. Long live applied mathemati
s!
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Trans
enden
e of Numbers whose Expansion in Base b or into Continued

Fra
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J.-P. Allou
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Summary by Philippe Flajolet

1. Normality and Trans
enden
e

�

Emile Borel introdu
ed the 
on
ept of normal numbers: a real is normal in base b if its expansion

in this base 
ontains ea
h k-blo
k a \normal" number of times, that is, with a frequen
y asymptoti


to 1=b

k

. This 
on
ept of normality is 
losely related to the famous Borel{Cantelli lemma, a 
on-

sequen
e of whi
h is that almost all numbers (in a measure-theoreti
 sense) are normal [3℄. Borel

himself returned to the subje
t towards the end of his life and 
ondu
ted detailed statisti
al stud-

ies [4℄ on the �rst two thousand digits of

p

2 as well as on other numbers like e or �. For instan
e

the frequen
ies of appearan
e of 0{9 amongst the �rst 50 digits of the de
imal representation of �,

� = 3:14159 26535 89793 23846 26433 83279 50288 41971 69399 3751 : : :

are respe
tively 1, 5, 5, 9, 4, 5, 4, 4, 5, 8, and irregularities tend to be mu
h smoothed out when

more digits are 
onsidered. Every mathemati
ian believes that numbers like

p

2 or � are normal in

any base. However, su
h 
onje
tures, tested nowadays to billions of digits, seem well beyond the

rea
h of 
urrent mathemati
al knowledge.

A similar notion of normality 
an be de�ned for 
ontinued fra
tion expansions. Every number

has a 
ontinued fra
tion expansion, for instan
e,


 := lim

n!1

(H

n

� logn) =

1

1 +

1

1 +

1

2 +

1

.

.

.

= =1; 1; 2; 1; 2; 1; 4; 3; 13; 5; 1; 1; 8; 1; 2; 4; 1; 1; 40; 1; 11; 3; 7; 1; 7; 1; 1; 5; 1; 49; 4; 1; 65; : : : =:

The \law of Gauss" predi
ts the asymptoti
 frequen
y of digit k to be log

2

�

(k + 1)

2

=(k(k + 2)

�

for

a random real number, say, uniform over (0; 1); see [8, Se
. 4.5.3℄ for an agreeable introdu
tion.

Though it is observed numeri
ally on extensive data that many 
lassi
al 
onstants like

3

p

2, �, or 


obey the law of Gauss, proofs are 
urrently not in sight. (E.g., it is not even known whether

the 
ontinued fra
tion expansion of Euler's 
onstant 
 terminates, i.e., whether the 
onstant 
 is

irrational).

Very roughly, two 
onje
tures are believed by most to be true:

Conje
ture 1. The base b expansion of any irrational algebrai
 number is normal.
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Conje
ture 2. The 
ontinued fra
tion expansion of any algebrai
 irrational number that is not a

quadrati
 number is normal. In parti
ular the 
ontinued fra
tion digits of any su
h number should

be unbounded.

Given these 
onje
tures, one may then expe
t the following: base expansions or 
ontinued fra
tion

expansions that are in a sense \too regular" (hen
e fail to satisfy the strong normality 
ondition)

should determine trans
endental numbers. The resear
h des
ribed in this talk pro
eeds along these

lines; see [1℄ to whi
h we refer for an extensive bibliography.

Sin
e trans
enden
e of numbers is at stake it may be appropriate to start with a few basi
 fa
ts;

see Gel'fond's book [7℄ for a pleasant introdu
tion. Liouville was the �rst in 1844 to observe that

algebrai
 numbers are not well approximated by rationals: if � is algebrai
 of degree �, then the

inequality (a one-liner),

(1)

�

�

�

�

��

p

q

�

�

�

�

>

C

q

�

; C > 0;

is satis�ed for all integers p, q with � = �. By the 
onverse impli
ation, a trans
enden
e 
riterion

results and, in parti
ular, Liouville dedu
ed that numbers with \very sparse" non-zero digits in

some base representation, for instan
e,

� :=

1

X

n=0

1

10

n!

;

must be trans
endental. Thue, Siegel, and Roth in the twentieth 
entury re�ned Liouville's esti-

mate (1) by showing su

essively that one 
ould take � >

1

2

n+ 1, � > 2

p

n, and �nally any � > 2

(Roth, 1955); see the insightful des
ription of the story in [2, Ch. 7℄. Su
h improvements 
onsid-

erably enlarge the 
lass of numbers re
ognized to be trans
endental. For instan
e, the \sparse"

number

� :=

1

X

n=0

1

10

b�

n




; � > 1;

is now known to be trans
endental (its nonzero digits are denser than those of �). These 
lassi
al

examples thus provide a �rst 
lass of numbers with expli
it base representations (but very sparse

non-zero digits, though!) that are provably trans
endental. They also entail that 
ontinued fra
tion

whose digits grow \too fast" lead to trans
endental numbers.

For base representations and for 
ontinued fra
tion expansions, trans
enden
e thus be
omes

a

essible to proof whenever one 
an derive rational approximations that are \too good". This

will be the 
ase, in 
onne
tion with the results mentioned above, as soon as enough 
ombinatorial

regularities of sorts happen to be present in number representations.

2. Base Representations and Trans
enden
e

In 1997, Feren
zi and Mauduit [5℄ proved the following:

Theorem 1. Assume that the base b representation of � is for ea
h n of the form 0:U

n

V

n

V

n

V

0

n

: : : ,

where V

0

n

is a pre�x of V

n

, and the following length 
onditions are satis�ed:

jV

n

j ! 1; lim inf

n!1

jV

0

n

j

jV

n

j

> 0; lim sup

n!1

jU

n

j

jV

n

j

<1:

Then, the number � is trans
endental.
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This theorem states that a number is trans
endental if its base representation 
ontains \near-


ubes" (V

n

V

n

V

0

n

) that are \not too far" from the beginning and long enough (the length 
onditions).

Roughly, su
h numbers turn out to be too well approximated by numbers that are \
lose" to b-adi


rationals (i.e., rationals whose denominator is a power of b). They are proved to be trans
endental

by virtue of a theorem established by Ridout in 1957 (see [2, p. 68℄) that 
onstitutes a generalization

of the Liouville and Roth theorems to the p-adi
 domain.

1

Allou
he [1℄ noti
ed that the methods

of [5℄ give a bit more. First de�ne the 
omplexity of a sequen
e fu

n

g of digits as the fun
tion

k 7! p(k) that 
ounts the number of distin
t blo
ks of length k appearing in the sequen
e. A normal

number (in base b) 
ertainly has p(k) = b

k

. Thus, we might expe
t in view of Conje
ture 1 that

any number with p(k) < b

k

is trans
endental. A step in this dire
tion is provided by the following

theorem:

Theorem 2. Assume that p(k) is for k large enough dominated by a fun
tion of the form k + a.

Then x is either rational or trans
endental.

The proof relies on 
ombinatorial properties of sequen
es of low 
omplexity. The 
ase is redu
ed

by a suitable morphism

2

) to that of Sturmian sequen
es, that is, binary sequen
es su
h that p(k) =

k + 1. For these a suitable version of Theorem 1 
an be applied.

Extending Theorem 2 to sequen
es of 
omplexity p(k) = O(k) seems to be hard. Cases of

spe
ial interest amongst sequen
es of 
omplexity O(k) are those that are determined by iteration

of morphisms

3

that are \simple enough". For example:

1. the Fibona

i sequen
e, i.e., the �xed point of the morphism 0 7! 01, 1 7! 0 that starts as

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1;

2. the Thue{Morse sequen
e de�ned by the morphism 0 7! 01, 1 7! 10, that starts as

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1:

(Note: there seems to be gaps in te
hni
al results of Loxton and van der Poorten 
on
erning the

trans
enden
e of automati
 sequen
es.) Zamboni and Allou
he proved re
ently:

Theorem 3. If the binary expansion of a real number is the �xed point of a morphism that is either

\primitive" (e.g., the Fibona

i sequen
e) or of �xed length (e.g., the Thue{Morse sequen
e), then

this number is either rational or trans
endental.

There, the notion of primitivity is the one familiar from the theory of positive matri
es and

Markov 
hains [6℄.

3. Continued Fra
tion Expansions and Trans
enden
e

Somewhat similar results have been established for 
ontinued fra
tions (abbreviated as CF)

whose digits|one also says quotients|are too regular. Results here are due to Davison, Que��ele
,

Zamboni and Allou
he. A spe
ial rôle is played in this 
ontext by quadrati
 irrationals whose

CF expansion is eventually periodi
. A theorem of S
hmidt relates approximability by quadrati


irrationals to trans
enden
e. (It is in a sense the analogue of the re�nements of Liouville's 
riterion.)

Roughly, like what happens with base representations, too mu
h 
ombinatorial regularity is shown

to imply trans
enden
e.

1

Ridout's theorem is: If � is an algebrai
 number and � > 0 is arbitrary, then there exist only �nitely many integers

p, q 
omprised solely of a �xed set of primes su
h that j�� p=qj < q

��

.

2

A morphism here is a substitution of letters by words.

3

Note that a general sequen
e de�ned by iteration of a morphism may have 
omplexity of the order of k

2

.



92 Trans
enden
e of Numbers whose Expansion in Base b or into Continued Fra
tions is \Too Regular"

We shall only quote here two typi
al results surveyed in [1℄ that are relative to CF digit sequen
es

of 
omplexities (k + 1) and O(k).

Theorem 4. 1. If the sequen
e of CF digits of a number � is a Sturmian sequen
e (i.e., a

binary sequen
e of 
omplexity k + 1), then the number � is trans
endental.

2. Let � be irrational and let the sequen
e of CF digits of a number � be de�ned as

a

n

= 1 +

�

bn�
 mod 2

�

;

Then, the number � is trans
endental.

Thus CF representations 
orresponding to digit sequen
es of low 
omplexity produ
e trans
en-

dental numbers. This is supplemented by other results (see [1, 9℄) implying for instan
e that the

numbers (in CF representation) de�ned by any nontrivial rewriting of the Thue{Morse sequen
e is

trans
endental.
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hamps

Abstra
t

We study the problem of routing permutations on trees. We show that this problem is

NP-hard but that it is 5=3-approximable. For a linear network or for a star tree network,

the problem is polynomial and we give its average 
omplexity. We extend these results and

obtain an upper bound for arbitrary trees. This talk is based on a joint work with Mario

Valen
ia-Pabon, Dani�ele Gardy, Dominique Barth, and Alain Denise [4℄.

1. Introdu
tion

The routing problem on 
ommuni
ation networks 
onsists in the eÆ
ient allo
ation of resour
es

to 
onne
tion requests. In the 
ase of all-opti
al networks, data is transmitted on lightwaves

through opti
al �ber, and several signals 
an be transmitted through a �ber link simultaneously

provided that di�erent wavelengths are used in order to prevent interferen
es [3℄. As the number

of wavelengths is a limited resour
e, it is desirable to establish a given set of 
onne
tion requests

with a minimum number of wavelengths. Then the routing problem for all-opti
al networks 
an

be viewed as a path 
oloring problem: it 
onsists in �nding a desirable 
olle
tion of paths on the

network asso
iated with the 
olle
tion of 
onne
tion requests in order to minimize the number of


olors needed to 
olor these paths in su
h a way that any two di�erent paths sharing a same link

are assigned di�erent 
olors. For simple networks, su
h as trees, the routing problem is simpler, as

there is a unique path for ea
h 
ommuni
ation request.

Clearly, su
h a routing problem 
an be modeled as a permutation-path 
oloring problem on trees.

An instan
e of the permutation-path 
oloring problem on trees is given by a dire
ted symmetri


tree graph T on n nodes and a permutation � of the node set of T . Moreover, we asso
iate with

ea
h pair

�

i; �(i)

�

, i 6= �(i), 1 � i � n, the unique dire
ted path on T from node i to node �(i).

Thus, the permutation-path 
oloring problem for this instan
e 
onsists in assigning the minimum

number of 
olors to su
h a permutation-set of paths in su
h a way that any two paths sharing a

same ar
 of the tree are assigned di�erent 
olors.

2. De�nitions

We model the tree network as a rooted labeled symmetri
 dire
ted tree T = (V;A) on n verti
es,

where pro
essors and swit
hes are verti
es and links are modeled by two ar
s in opposite dire
tions.

Let P be a 
olle
tion of dire
ted paths on T . We assume that the verti
es of T are arbitrarily labeled

by di�erent integers f1; 2; : : : ; ng and that the vertex labeled n is the root vertex of T . We denote

i; j the unique dire
ted path from vertex i to vertex j. The ar
 from vertex i to its father (resp.
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from the father of i to i), 1 � i � n� 1, is labeled by i

+

(resp. i

�

). We 
all T (i) the subtree of T

rooted at vertex i, 1 � i � n.

For any i, 1 � i � n � 1, the load of an ar
 i

+

(resp. i

�

) of T , denoted by L

T

(P; i

+

)

(resp. L

T

(P; i

�

)), is the number of paths in P using su
h an ar
, and the maximum load among

all ar
s of T is denoted by L

T

(P ). We 
all the 
oloring number and we denote by R

T

(P ), the

minimum number of 
olors needed to 
olor the paths in P su
h that any two paths sharing a same

ar
 in T are assigned di�erent 
olors. Trivially, we have that R

T

(P ) � L

T

(P ).

We say that P is a permutation-path set on T if P represents a permutation � 2 S

n

of the vertex

set of T , where �(i) = j, i 6= j, if and only if i ; j 2 P . In the sequel we talk indi�erently

of a permutation-path set P or of the permutation � 2 S

n

that P represents. Thus, given a

permutation � 2 S

n

and a tree T on n verti
es, the load of the ar
 i

+

, resp. i

�

, 1 � i � n�1, 
an be

expressed by L

T

(�; i

+

) =

�

�

f j 2 T (i) j �(j) =2 T (i) g

�

�

, resp. L

T

(�; i

�

) =

�

�

f j =2 T (i) j �(j) 2 T (i) g

�

�

.

Let T be a tree on n verti
es. The average load of all permutations � 2 S

n

on T , denoted by

�

L

T

,

is de�ned as

�

L

T

= (n!)

�1

P

�2S

n

L

T

(�).

Proposition 1 ([7℄). There is a polynomial time algorithm to 
olor any 
olle
tion P of paths on

any tree su
h that L

T

(P ) � R

T

(P ) �

�

(5=3)L

T

(P )

�

.

Let T be a tree on n verti
es. We denote by

�

R

T

the average number of 
olors needed to 
olor

all permutations in S

n

on T .

Proposition 2. Let T be a tree on n verti
es. Then

�

L

T

(P ) �

�

R

T

(P ) � (5=3)

�

L

T

(P ) + 1.

Let T be a tree on 2n verti
es. We denote by

~

R

T

the average number of 
olors needed to 
olor

all involutions in I

2n

on T .

Proposition 3. Let T be a tree on 2n verti
es and let

~

L

T

be the average load of all involutions

in I

2n

on T . Then

~

L

T

�

~

R

T

� (3=2)

~

L

T

.

3. Complexity of Computing the Coloring Number

We show the NP-hardness of the symmetri
-path 
oloring problem on binary trees, answering

an open question in [2℄. For this, we use a redu
tion similar to the one used in [6, 10℄ for proving

the NP-hardness of the general path 
oloring problem on binary trees. We extend this redu
tion to

obtain NP-hardness results on very restri
tive instan
es like involutions on both binary trees and

trees having only two verti
es with degrees greater than two.

Theorem 1. Let T be a dire
ted symmetri
 tree and let P be a 
olle
tion of dire
ted paths on T .

Then, 
omputing R

T

(P ) is NP-hard in the following 
ases:

{ T is a binary tree and P is a 
olle
tion of symmetri
 paths on T .

{ T is a binary tree and P represents an involution of the verti
es of T .

{ T is a tree with maximum degree greater or equal to 4, and P represents a 
ir
ular permu-

tation of the verti
es of T .

{ T is a tree having only two degrees greater than two and P represents an involution of the

verti
es of T .

4. A Lower Bound for the Average Coloring Number

Let G = (V;A) be a dire
ted symmetri
 graph on n verti
es and r a routing fun
tion in G whi
h

assigns a set of paths on G to route any permutation � 2 S

n

. Let

�

L

G;r

be the average load of all

permutations in S

n

indu
ed by the routing fun
tion r, and let U � V be a subset of the vertex set

of G. We denote by 
(U) the 
ut (U;

�

U ), i.e., the set of ar
s f (u; v) 2 A j u 2 U; v 2 V n U g.
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Proposition 4. For any graph G = (V;A) on n verti
es, and any routing fun
tion r in G,

�

L

G;r

�

1

n

max

U�V

�

jU j(n� jU j)

j
(U)j

�

:

Let T be a tree on n verti
es. By the previous proposition, we 
an dedu
e that the average load of

any ar
 i

+

of T , 1 � i � n� 1, denoted by

�

L

T

(i), satis�es

�

L

T

(i) = jT (i)j

�

n� jT (i)j

�

=n. Moreover,

for any vertex i of T , let v

T

(i) = jT (i)j=n and ~v

T

(i) = min

�

v

T

(i); 1 � v

T

(i)

�

. Let ~v

T

= max

i

~v

T

(i).

Proposition 5. Both inequalities

�

L

T

� n~v

T

(1� ~v

T

) and

�

R

T

� n~v

T

(1� ~v

T

) hold.

5. Average Coloring Number on Linear Networks

The main result is the following:

Theorem 2. The average 
oloring number of the permutations in S

n

to be routed on a linear

network on n verti
es is n=4 + (�=2)n

1=3

+O(n

1=6

) where � = 0:99615 : : :

To prove this result, we use enumerative and asymptoti
 
ombinatorial te
hniques (Theorems

3 and 4 below and results of Lou
hard [12℄ and Daniels and Skyrme [5℄). Our approa
h uses the

same methodology as Lagarias et al. [11℄ who studied involutions with no �xed point routed on the

linear network.

Let W

n

be the set of Motzkin walks of length n labeled as follows:

{ ea
h South-East step of height i is labeled by an integer between 1 and (i+ 1)

2

,

{ ea
h East step of height i is labeled by an integer between 1 and 2i+ 1.

Theorem 3. [9℄ There is a one-to-one 
orresponden
e between the elements W

n

and those of S

n

.

We use Biane's bije
tion [1℄ be
ause it preserves the height of our obje
ts, i.e., the height of

a labeled Motzkin walks is equal to the height of the 
orresponding permutation. Moreover, the

height of a permutation is equal to its load.

Let S

n;�k

be the number of permutations in S

n

of height at most k and let S

n;k

be the number

of permutations in S

n

of height exa
tly k.

Theorem 4. [8, 13℄ We have the identities H

k

(z) =

X

n�0

X

�2S

n;k

z

n

=

(k!)

2

z

2k

P

?

k+1

(z)P

?

k

(z)

and

H

�k

(z) =

X

n�0

X

�2S

n;�k

z

n

=

1

1�

z

2

1� 3z �

4z

2

1� 5z �

.

.

.

1� (2k � 1)z �

k

2

z

2

1� (2k + 1)z

;

with P

0

(z) = 1, P

1

(z) = z� 1 and P

n+1

(z) = (z� 2n� 1)P

n

(z)�n

2

P

n�1

(z) for n � 1, where P

?

is

the re
ipro
al polynomial of P , that is P

?

n

(z) = z

n

P

n

(1=z) for n � 0.

6. Average Coloring Number on Arbitrary Tree Networks

We 
an extend the average 
omplexity results on linear networks to arbitrary tree networks.

Theorem 5. The average load indu
ed by all permutations of S

n

on T is

�

L

T

= n~v

T

(1 � ~v

T

) +

O(n

1=2

).
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Theorem 6. For all �, there exists n

0

= n

0

(�) su
h that, for all n � n

0

and any tree T on n

verti
es, the average number of 
olors

�

R

T

needed to 
olor any permutation � 2 S

n

on T satis�es

�

R

T

� (5=3 + �)n~v

T

(1� ~v

T

).

Let ST (n) denote the dire
ted symmetri
 star graph on n verti
es (i.e., the tree having only

one internal vertex 
onne
ted to n � 1 leaves). We 
all generalized star graph that we denote

by GST (�), a dire
ted symmetri
 tree on n verti
es having k bran
hes 
onne
ted to ea
h other

by one vertex, where � = (�

1

; : : : ; �

k

) is a partition of the integer n� 1 into k parts (k > 2) and

where �

i

denotes the length of the ith bran
h (i.e., a bran
h of length �

i

is a path graph on �

i

+ 1

verti
es). We 
an also obtain the same type of results for generalized star trees and involutions

instead of permutations.

Theorem 7. Let k be a �xed integer greater than 2. The average number of 
olors needed to 
olor

any permutation � 2 S

nk+1

on a generalized star tree GST (�) having nk+1 verti
es and k bran
hes

of length n is n(k � 1)=k +O(n

1=2

).

Theorem 8. Let T be a tree on 2n verti
es. The average load indu
ed by all involutions with no

�xed points � 2 I

2n

on T is

�

L

T

= 2n~v

T

(1� ~v

T

) +O(n

1=2

).
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Summary by Philippe Dumas and Philippe Flajolet

Abstra
t

Binary Diagrams (BDD's) are an important way to represent boolean fun
tions, that is,


ombinational 
ir
uits. Vuillemin proposes Syn
hronous De
ision Diagrams (SDD's) that

are 
apable of representing all 
ausal 
ir
uits with �nite memory. The framework provides

a general basis for the analysis and synthesis of digital 
ir
uits. On the mathemati
al side,

it provides unexpe
ted 
onne
tions between hardware design and the 
lassi
al notion of

automati
 sequen
es in number theory.

Resear
hers working in 
ir
uit theory are 
on
erned with design (given a fun
tion, how 
an it

be realized eÆ
iently?) and analysis (what is the fun
tion 
omputed by a given 
ir
uit?). This

talk presents a mathemati
al framework for the design and analysis of boolean 
ir
uits, either


ombinational (i.e., without memory) or sequential (i.e., with memory). It is superbly elegant as

well as 
on
eptually simple. We shall start here with a review of Binary De
ision Diagrams (BDD's)

that 
onstitute a 
anoni
al way to represent boolean fun
tions and serve the purpose of a gentle

introdu
tion to the subje
t. Then, we shall pro
eed with Syn
hronous De
ision Diagrams (SDD's)

that 
an represent any type of 
ir
uit likely to be en
ountered in pra
ti
e (i.e., 
ir
uits with �nite

memory of the past whose output does not depend on the future). Due to severe time 
onstraints

imposed by the editor of the seminar pro
eedings,

1

the authors of this summary regret that they


annot do full justi
e to the work presented and refer to the paper [8℄ for an introdu
tion to the

main ideas.

1. Binary De
ision Diagrams

Let B be the boolean domain B = f0; 1g. A boolean fun
tion of n variables is a fun
tion from B

n

into B. Su
h a fun
tion may be spe
i�ed by its truth table that is the sequen
e of its values on

its 2

n

possible inputs. Let �

n

be the set of n-ary fun
tions and �

n

the 
orresponding 
ardinality.

Clearly, one has �

n

= 2

2

n

, hen
e the identity

�

n+1

= 2

2

n+1

�

�

2

2

n

�

2

= (�

n

)

2

:

This trivial identity suggests the existen
e of a fundamental isomorphism

�

n+1

' �

n

� �

n

:

1

Editor's Note. I a
knowledge the promptitude of the authors of the summary. Espe
ially their promptitude to

renego
iate deadlines.
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Indeed any boolean fun
tion f(x

1

; : : : ; x

n

; x

n+1

) with f 2 �

n+1


an be spe
i�ed by a pair (f

0

; f

1

),

where f

0

2 �

n

and f

1

2 �

n

are \spe
ializations" of f ,

f

0

(x

1

; : : : ; x

n

) := f(x

1

; : : : ; x

n

; 0); f

1

(x

1

; : : : ; x

n

) := f(x

1

; : : : ; x

n

; 1):

Consequently, when the de
omposition is iterated, any boolean fun
tion of n variables be
omes

representable as a perfe
t binary tree, the binary de
ision tree bdt(f), whose height is n, whose

internal nodes 
orrespond to partial spe
ializations of f , and whose external nodes are either the


onstant fun
tion 0 or the 
onstant fun
tion 1. Observe that reading the B labels of the extrenal

nodes of bdt(f) from left to right produ
es pre
isely the truth table of f .

The binary de
ision diagram

2

of f , bdd(f), is then nothing but the dire
ted a
y
li
 graph (dag)

representation of this tree obtained in the usual way by sharing repeated subtrees and representing

them only on
e. It is 
lassi
ally known that su
h a dag representation of a tree of size N 
an

always be 
onstru
ted in time O(N); see for instan
e [5℄ for a dis
ussion. Here, one has N = 2

n

for

fun
tions in �

n

, so that the sharing algorithm approa
h is of exponential time 
omplexity when f

is given by its truth table or, equivalently, by its tree bdt(f). In many 
ases, fortunately, one 
an

operate with polynomial time 
omplexity.

Here is an example. Consider the adder fun
tion on three variables,

f(a; b; 
) = a� b� 
:

We purposely refrain from operating with the truth-table des
ription of f in order to emphasize

that BDD's are dire
tly a

essible via a symboli
 
al
ulus on boolean fun
tions. Here, two \sub-

fun
tions" are �rst obtained upon setting the variable 
 to either 0 or 1:

f

0

(a; b) = a� b; f

1

(a; b) = a� b� 1:

Next, spe
ialize b, whi
h yields here only two (and not four!) distin
t fun
tions, namely,

f

00

(a) = a; f

10

(a) = a� 1 (with f

01

� f

10

and f

11

� f

00

).

Finally, spe
ialize a, whi
h eventually leads to a redu
tion to the two 
onstant fun
tions

f

000

() = 0; f

010

() = 1 (with f

100

� f

010

and f

110

� f

000

):

This example shows, more generally, that the BDD of the n-fold adder f(x

1

; : : : ; x

n

) 
an be

determined in time linear in n via basi
 boolean algebra alone, this despite the fa
t that the truth

table has size 2

n

. The 
onstru
tion in the 
ase of the fun
tion f(a; b; 
) = a� b� 
 is des
ribed in

Figure 1.

Bryant has invented the BDD 
on
ept in 1986 (see [1, 2℄). The BDD of an n-ary fun
tion 
an

often be 
omputed in time mu
h less than O(2

n

) (
f. the adder example), sin
e it 
aptures the

regularities that are likely to be present in most fun
tions o

urring in pra
ti
e.

3

Also, given the

BDD's of f and g it is possible, in low polynomial time, to determine BDD's for various 
ompositions

of f and g like f � g, f Æ g, et
. Finally, on
e an ordering on variables has been �xed,

4

the BDD

2

The BDD's des
ribed here are sometimes 
alled OBDD's, where the `O' stands for \ordered" and refers to a �xed

ordering on boolean variables.

3

In the worst 
ase, a BDD 
ontains up to O(2

n

=n) nodes. A similar bound [6℄ even holds on average, for a random

boolean fun
tion. Su
h properties are also related to a famous theorem of Shannon and Muller [7, p. 763℄ to the e�e
t

that almost all boolean fun
tions have minimal 
ir
uit 
omplexity of the order of 2

n

=n. This theoreti
al dis
ussion

is however to be 
ounterbalan
ed by the fa
t that fun
tions destined to be realized in sili
on are seldom 
hosen at

random!

4

The stru
ture and size of a BDD depends on the ordering of variables. Several heuristi
s have been developed in

order to try and 
ome up with \good" orders.
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()
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111
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f
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(a) = a

f

1

(a; b) = a� b� 1

f

110

()

= 0

f

010

()

= 1

f

100

()

= 1

f

000

()

= 0

f

10

(a) = a� 1f

00

(a) = a

f

0

(a; b) = a� b

f(a; b; 
) = a� b� 


a� b� 1a� b

a� b� 


a

a� 1

0 1

Figure 1. The adder fun
tion, f(a; b; 
) = a � b � 
: its Binary De
ision Tree

(left) and its Binary De
ision Diagram (right).
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�
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0 1
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a� 1
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�
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b
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a� b� 1

b

0 1

a� b� 





Figure 2. A realization of the adder fun
tion based on the BDD representation

and multiplexers.

be
omes a 
anoni
al representation of the fun
tion it represents, so that equivalen
e of boolean

fun
tions be
omes de
idable in time linear in the sizes of the 
ompa
t BDD representations. In

parti
ular, this observation makes it possible to 
ompare any 
ombinational 
ir
uit design against

a 
anoni
al spe
i�
ation (the \semanti
s" of the fun
tion) in a 
omputationally eÆ
ient manner.

This 
onstitutes one of the powerful impli
ations of the BDD 
on
ept.

Finally, we mention that on
e the BDD form of a boolean fun
tion has been obtained, a 
ir
uit

realization of proportional size is immediate: all that is needed is \Shannon's swit
h" also known
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as \multiplexer,"

mux (x; f; g) := `if x then f else g' = (x ^ f) _ (x ^ g);

together with entries grounded at 0 and 1. A diagrammati
 representation is as follows:

0

1

g

f

mux(x; f; g)

x

The way the BDD of the adder fun
tion \
ompiles" into a 
ir
uit based on multiplexers is displayed

in Figure 2.

2. Polynomial Representations of BDD's

As a preparation for the treatment of syn
hronous de
ision diagrams, we now introdu
e a repre-

sentation of boolean fun
tions by means of univariate polynomials with 
oeÆ
ients in the binary

�eld F

2

. Let f be a boolean fun
tion in n variables. Its truth-table polynomial F = Tf is de�ned

as follows: interpret ea
h n-tuple (x

1

; x

2

; : : : ; x

m

) of boolean values as the binary representation of

an integer,

�(x

1

; : : : ; x

n

) := (x

1

x

2

: : : x

n

)

2

= x

1

2

n�1

+ � � � + x

n

;

(observe the 
onvention that lower order bits are on the right), and set

Tf(z) =

X

x

1

;:::;x

n

2B

f(x

1

; x

2

; : : : ; x

n

)z

�(x

1

;:::;x

n

)

:

For instan
e the adder fun
tion f(a; b; 
) = a� b� 
 has the standard truth table

x

1

x

2

x

3

000 001 010 011 100 101 110 111

�(x

1

; x

2

; x

3

) 0 1 2 3 4 5 6 7

f(x

1

; x

2

; x

3

) 0 1 1 0 1 0 0 1

so that its truth-table polynomial is

Tf(z) = z + z

2

+ z

4

+ z

7

:

The BDD algorithm is amenable to interpretation in this formalism. De�ne the two \se
tioning"

operators on polynomials F

2

[z℄ by

S

0

�

X

k

f

k

z

k

�

=

X

k

f

2k

z

k

; S

1

�

X

k

f

k

z

k

�

=

X

k

f

2k+1

z

k

:

(The de�nition is also valid for power series of F

2

[[z℄℄, a fa
t to be used later.) The spe
ialization

of the last bit in a fun
tion f(x

1

; : : : ; x

n

) is then seen to be isomorphi
 to se
tioning. Indeed, a

simple 
al
ulation shows that

S

0

T

�

f(x

1

; : : : ; x

n�1

; x

n

)

�

= T

�

f(x

1

; : : : ; x

n�1

; 0)

�

S

1

T

�

f(x

1

; : : : ; x

n�1

; x

n

)

�

= T

�

f(x

1

; : : : ; x

n�1

; 1)

�

:

Consequently, the BDD 
onstru
tion 
an be regarded as being equivalent to de
omposing a poly-

nomial by means of S

0

, S

1

until an eventual redu
tion to the 
onstants 0 and 1 is attained. In

this framework, the BDD algorithm applied to the adder example 
orresponds to the tree and the

diagram of Figure 3.
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S

0

S

1

S

0

S

1

S

1

S

0

S

0

S

1

S
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1

S

1

S

0

S

1

S

0

1 0 0 1

1

z

1 + z

3

0110

1

z

z + z

2

z + z

2

+ z

4

+ z

7

S

0

S

1

S

0

S

1

S

1

S

0

S

0

S

1

S

1

S

0

1 + z

3

z + z

2

z + z

2

+ z

4

+ z

7

z

1

0 1

Figure 3. Polynomial representations of the Binary De
ision Tree and the Binary

De
ision Diagram of the ternary adder.

3. Syn
hronous De
ision Diagrams

In all generality, a sequential fun
tion maps in�nite sequen
es of binary inputs into in�nite

sequen
es of binary outputs. It thus takes as input a \stream" of bits (x

t

)

t�0

and produ
es another

\stream" (y

t

)

t�0

. In other words, a sequential fun
tion is a mapping from B

1

to B

1

. For pra
ti
al

purposes, additional 
onstraints must 
learly be imposed on the sequential fun
tions 
onsidered.

First, we say that a fun
tion f from B

1

to B

1

is 
ausal when the output at time t depends

ex
lusively upon the input values from times 0 through t. In what follows, only 
ausal fun
tions are


onsidered. (For the mathemati
ally in
lined reader, we note that 
ausal fun
tions are parti
ular


ontinuous fun
tions on the set B

1

endowed with the topology indu
ed by the metri
 d(a; b) =

2

�minf t ja

t

6=b

t

g

.)

For f 
ausal, we let f

t

be the output at time t:

y

t

= f

t

(x

0

; : : : ; x

t

):

By analogy with the spe
ialization of 
ombinational fun
tions, we de�ne the predi
tors, $

0

f

and $

1

f , by the properties:

($

0

f)

t+1

= f

t

(x

0

; : : : ; x

t

; 0); ($

1

f)

t+1

= f

t

(x

0

; : : : ; x

t

; 1):

These predi
tors tabulate whi
h value of f will be taken when the input bit to arrive next is

spe
ialized to 0 or 1. For b

0

: : : b

r

a sequen
e of bits, we then have the (generalized) predi
tor of

order r + 1,

$

b

0

:::b

r

f = $

b

r

: : : $

b

0

f:

By in�nite iteration, we 
an then 
onstru
t the syn
hronous de
ision tree (SDT) denoted by sdt(f)

as the tree where the nodes are the quantities � = $

w

(f) and the des
endents of node � are

$

0

(�), $

1

(�). The tree sdt(f) 
an be realized by an in�nite tree 
ir
uit using only multiplexers and

registers (i.e., 
ir
uits 
apable of storing one binary value), mu
h in the same way as 
ombinational


ir
uits are realized by �nite tree 
ir
uits. See Figure 4 for an illustration.

Next, in order to be 
omputable by some physi
al devi
e, a digital fun
tion must be 
ausal,

but also representable by some �nite system. To formalize this, we introdu
e the notion of on-line


omputable fun
tion: by this is meant a fun
tion su
h that the 
olle
tion of all predi
tors of all
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f

$

0

f $

1

f

$

00

f $

01

f $
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f $

11

f

$

000

f $

001

f $

010

f $

011

f $

100

f $

101

f $

110

f $

111

f

$

0000

f $

0001

f $

0010

f $

0011

f $

0100

f $

0101

f $

0110

f $

0111

f $

1000

f $

1001

f $

1010

f $

1011

f $

1100

f $

1101

f $

1110

f $

1111

f

y = f(x)

x

Figure 4. The in�nite syn
hronous de
ision tree (top) and its 
ir
uit realization (bottom).

orders forms a �nite set. In this 
ase, the (in�nite) tree 
an be 
onverted to a (�nite) graph

5

by

identifying nodes of the SDT asso
iated with fun
tions that are equal. The resulting graph is 
alled

the syn
hronous de
ision diagram (SDD) and it is obtained by a simple algorithm: (i) build the

in�nite SDT for f ; (ii) systemati
ally share all the subexpressions generated during this pro
ess.

(Optionally, one may also 
onsider fun
tions f , g to be isomorphi
 if either f = g or f = :g; in

that 
ase the SDD will also involve logi
al negation gates but will be more 
ompa
t.)

When presented as above, the SDD algorithm looks like an in�nite pro
ess. However, it 
an be

seen [8℄ that if a fun
tion is realizable by a �nite transdu
er (i.e., an automaton with output), then

the SDD algorithm terminates in �nite time. In fa
t, the SDD algorithm provides an integrated

alternative to the 
lassi
al design of sequential 
ir
uits.

6

In order to illustrate the SDD 
on
ept, we apply it now to the design of a 
ir
uit that takes as

input a stream of bits (x

t

) meant to represent the real number � =

P

t�0

x

t

2

�t

and produ
es as

output the stream (y

t

) where the real number � =

P

t�0

y

t

2

�t

satis�es � = (1=3) �. Introdu
e the

integers

x

(t)

= 2

t

X

s�t

x

s

2

s

; y

(t)

= 2

t

X

s�t

y

s

2

s

; t � 0;

and the 
arry r

t

de�ned by

x

(t)

= 3y

(t)

+ r

t

; 0 � r

t

< 3; t � 0:

An easy 
al
ulation that mimi
s high s
hool arithmeti
s yields

2r

t

+ x

t+1

= 3y

t+1

+ r

t+1

; t � 0:

5

Observe that, as opposed to the 
ase of 
ombinational 
ir
uits, the 
orresponding graph is no longer a
y
li
 sin
e

nodes at di�erent levels in the tree may be 
ollapsed.

6

A 
lassi
al 
onstru
tion starts from a spe
i�
ation of a �nite automaton and stores the 
urrent state of the

automaton in binary registers while realizing the transition fun
tion by means of a 
ombinational 
ir
uit (itself

possibly optimized via BDD's).
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These formul� show that the fun
tion � = �=3 is 
ausal and that the bit y

t+1

= f

t+1

(x

0

; : : : ; x

t+1

)

depends only on the last input bit together with the \
arry" r

t

that is inherited from past history.

The 
arry 
an only assume three values and a

ordingly the number of predi
tors is �nite, to the

e�e
t that the SDT has only six nodes. Thus, f is on-line 
omputable. Figure 5 shows the result

of the 
onstru
tion. (In the diagram, a transition denoted by �=� is triggered by reading the bit �

and results in produ
ing the bit �.)

f

$

0

f $

1

f

$

00

f $

01

f $

10

f

0=0 1=0

0=0 1=0 0=0

0=0

1=0

1=1

0=0

0=1

1=1

1=1

0 1

y = f(x)

0 1

0 1

0 1

0 1

0 0

0 1

0 1

0 1

1 1

0 1

0 1

� �

�

�

�

� �

x

Figure 5. The `(1=3) �' fun
tion: its abstra
t SDD representation (top) and the


ir
uit realization (bottom).
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4. Formal Power Series Representations of SDD's

A 
ausal fun
tion f is 
hara
terized by its truth table. This is the power series representation Tf ,

an element of F

2

[[z℄℄ de�ned as

Tf(z) :=

X

t�0

X

x

0

;:::;x

t

2B

f

t

(x

0

; : : : ; x

t

)z

�(1x

0

:::x

t

)�2

:

(The 
orre
tion of �2 in the exponent is a 
onvenien
e 
hosen to ensure that exponents start at 0.)

We shall refer to Tf as the truth-table representation of f . This notion extends in a natural way

the 
orresponding de�nition for 
ombinational fun
tions. Indeed, an alternative de�nition of Tf

for 
ausal fun
tions is as follows: take F

t

as the truth table of f

t

in \listed" form, and build the

truth table of f in \listed" form by

F

0

F

1

F

2

: : : =

�

f

0

(0)f

0

(1)

��

f

1

(00)f

1

(01)f

1

(10)f

1

(11)

��

f

2

(000)f

2

(001) : : : f

2

(111)

�

: : : ;

then F (z) = Tf(z) satis�es a sort of a \generating fun
tion relation,"

F (z) =

�

f

0

(0) + zf

0

(1)

�

+ z

2

�

f

1

(00) + zf

1

(01) + z

2

f

1

(10) + z

3

f

1

(11)

�

+ z

6

�

f

2

(000) + zf

2

(001) + � � � + z

7

f

2

(111)

�

+ � � � ;

so that there is a simple relation between truth tables of 
ombinational fun
tions and of sequential

fun
tions:

F (z) =

X

t�0

z

2

t+1

�2

Tf

t

(z):

Equipped with these de�nitions, we observe the a
tion of se
tions,

S

0

F (z) =

�

f

0

(0)

�

+ z

�

f

1

(00) + zf

1

(10)

�

+ z

3

�

f

2

(000) + zf

2

(010) + � � � + z

3

f

2

(110)

�

+ � � � ;

S

1

F (z) =

�

f

0

(1)

�

+ z

�

f

1

(01) + zf

1

(11)

�

+ z

3

�

f

2

(001) + zf

2

(011) + � � � + z

3

f

2

(111)

�

+ � � � ;

whi
h entails

S

0

F (z) =

X

t�0

z

2

t

�1

S

0

F

t

(z) = f

0

(0) + z

X

t�0

z

2

t+1

�2

S

0

F

t+1

(z);

S

1

F (z) =

X

t�0

z

2

t

�1

S

1

F

t

(z) = f

0

(1) + z

X

t�0

z

2

t+1

�2

S

1

F

t+1

(z):

This provides a dire
t relation between the se
tions of the truth table of any 
ausal f and the

predi
tors of f , namely,

S

0

(Tf)(z) = f

0

(0) + zT($

0

f)(z); S

1

(Tf)(z) = f

0

(1) + zT ($

1

f)(z):

Now, by de�nition, f is on-line 
omputable when its predi
tors lie in a �nite set. The equation

above shows that this is equivalent to the �niteness of ve
tor spa
e over F

2

(z) of all the (iterated)

se
tions of the truth table. The 
onne
tion is thereby established with what is otherwise known as

automati
 series;

7

see the foundational paper by Christol et al. [3℄, Dumas's thesis [4℄, and several

summaries in previous issues of the Algorithms Seminar Pro
eedings. We state:

Theorem 1. The truth table Tf of an online 
omputable fun
tion f is a 2-automati
 series.

Consequently, it is an algebrai
 fun
tion over the �eld F

2

(z).

7

A sequen
e is de�ned to be automati
 if its nth element is produ
ed by a �nite transdu
er applied to the binary

representation of n; a series is automati
 if its sequen
e of 
oeÆ
ients is automati
. Equivalent 
hara
terizations of

automati
 series are as algebrai
 elements over F

2

(z) or as solutions to Mahlerian equations; refer to [3, 4℄.
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Ea
h 
ausal �nite fun
tion f may thus be represented by a bivariate 
hara
teristi
 polynomial

P (z; y) so that the truth table Tf is the only root y 2 F

2

[[z℄℄ of P (z; y) = 0. Con
eivably, this

theorem opens an avenue to 
ir
uit design and veri�
ation by means of polynomial elimination

algorithms|typi
ally, Gr�obner bases. Given the superexponential 
omplexity of algebrai
 elimina-

tion, it seems however to the authors of the summary that a dire
t approa
h based on linear algebra

(in a

ordan
e with standard te
hniques of 2-automati
 series [4℄) should yield de
ision pro
edures

of lower 
omplexity.

5. From Cir
uits to Fun
tions

In this se
tion, we show how to put to good use the formalism introdu
ed above in order to analyse


ir
uits: starting from a given 
ir
uits, the goal is to determine a mathemati
al spe
i�
ation of what

it does. Note that the dual problem of synthesis has been already impli
itly ta
kled on the o

asion

of the \one-third" fun
tion (� 7! �=3).

Let us �rst 
onsider a 
ir
uit that takes as input a stream of bits (g

t

) and produ
es the stream (h

t

)

whi
h is the same stream delayed by 1 in time. In other words, we have h

0

= z

0

(the initialization

value) and h

t

= g

t�1

for t � 1. In the 
ontext of a �nite 
ir
uit, the values h

t

are des
ribed by

their truth table and they depend on the global input sequen
e x = (x

t

)

t�0

of the 
ir
uit. Thus, in

terms of the �nite boolean fun
tions g

t

(x

0

; : : : ; x

t

) and h

t

(x

0

; : : : ; x

t

), we have

h

0

= z

0

; h

t

(x

0

; : : : ; x

t

) = g

t�1

(x

0

; : : : ; x

t�1

) for t � 1.

This relation translates into a relation between the truth tables of the input (G) and the output (H)

of the register,

(1) H(z) = (1 + z)

�

z

0

+ z

2

G(z

2

)

�

:

Thus, in the formal power series representation, a register operates by way of the \Mahlerian

operator," G(z) 7! G(z

2

).

Consider next a multiplexer that takes as input two streams of bits a(x) and b(x) (themselves


ausal fun
tions of the input stream x) and assume that 
ontrol is a
hieved by the input stream x.

The output m(x) is a 
ausal fun
tion de�ned by

m

t

(x

0

; : : : ; x

t

) = mux

�

x

t

; a

t

(x

0

; : : : ; x

t

); b

t

(x

0

; : : : ; x

t

)

�

;

whi
h we abbreviate as

m(x) = mux

�

x; a(x); b(x)

�

:

A little re
e
tion shows that the truth table of m is obtained by suitably merging the truth tables

of a and b as follows

A a

0

(0) a

0

(1) a

1

(00) a

1

(01) a

1

(10) a

1

(11) a

2

(000) a

2

(001) : : :

B b

0

(0) b

0

(1) b

1

(00) b

1

(01) b

1

(10) b

1

(11) b

2

(000) b

2

(001) : : :

M b

0

(0) a

0

(1) b

1

(00) a

1

(01) b

1

(10) a

1

(11) b

2

(000) a

2

(001) : : : .

This relation translates into

(2) M(z) = (S

0

B)(z

2

) + z(S

1

A)(z

2

);

whi
h now involves a blend of se
tioning and Mahlerian operators.

Now, a �nite 
ir
uit 
an be translated into a system of �xed-point equations: to ea
h entity

is asso
iated its truth table; then relations (1) and (2) (used repeatedly) provide the system of

equations. Here is an appli
ation to a 
ir
uit dis
ussed in [8℄. This 
ir
uit 
omprises one inverter

(represented by a 
ir
le), two multiplexers, and one register that is initially set at 0. The upper

entry of the leftmost multiplexer re
eives a 
ontinuous stream of 1's whi
h is represented by 1.
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0

1

1

0

w

0

1

v

y

x

�

�

What is required is to verify that the 
ir
uit 
omputes the fun
tion

� 7! � = � + 1;

where the input and output streams are now interpreted as dyadi
 numbers, that is

� =

X

t�0

x

t

2

t

; � =

X

t�0

y

t

2

t

; x; y 2 Z

2

:

To ea
h of the 
ows, y, v, w, one asso
iates its truth table, respe
tively Y (z); V (z);W (z). Given

the rules (1) and (2), the stru
tural des
ription of the 
ir
uit is translated (
ompiled!) into the

system of equations:

Y (z) =

�

S

0

�

1

1� z

+ V

��

(z

2

) + z (S

1

V ) (z

2

) =

1

1� z

2

+ (S

0

V ) (z

2

) + z (S

1

V ) (z

2

)

=

1

1� z

2

+ V (z);

V (z) = (1 + z)z

2

W (z

2

);

W (z) =

�

S

0

1

1� z

�

(z

2

) + z (S

1

V ) (z

2

) =

1

1� z

2

+ z (S

1

V ) (z

2

):

In order to understand the fun
tion 
omputed by the 
ir
uit, we pro
eed to solve this system. The

se
ond equation provides S

1

V (z) = zW (z), a relation that, when 
arried into the third equation,

gives:

W (z) =

1

1� z

2

+ z

3

W (z

2

):

Su
h a fun
tional equation is now easily solved by iteration,

W (z) =

+1

X

k=0

z

3(2

k

�1)

1� z

2

k+1

;

and this form entails in turn

Y (z) =

+1

X

k=0

z

3�2

k

�1

1� z

2

k+1

+

+1

X

k=0

z

3�2

k

1� z

2

k+1

=

�

1

�

+ z

2

�

z + z

2

�

+ z

6

�

z + z

3

+ z

5

+ z

6

�

+ z

14

�

z + � � �

�

+ � � � :

From there, it is an easy exer
ise (left to the reader) to 
he
k that the truth table Y (z) is equal to

the truth table 
orresponding to the dyadi
 fun
tion � 7! � + 1.
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6. Con
lusion

Due to 
onstraints already evoked, we 
ould only s
rat
h the surfa
e in this brief

8

seminar sum-

mary. The point of view developed in the talk bases itself further on the existen
e of isomorphisms

between various domains. For instan
e, as we have seen, the boolean domain may be viewed as

B or F

2

; boolean fun
tions are representable as elements of F

2

[z℄; on-line 
omputable fun
tions

are equivalent to algebrai
 elements of F

2

[[z℄℄ and to 2-automati
 series. There exist several other

interesting 
onne
tions, for instan
e, with the ring of dyadi
 integers Z

2

that form one of the 
on-


eptual basis of the original paper [8℄. Su
h isomorphisms do in
rease the expressive power of the

SDD formalism that we have opted to develop here only over B while making use of representations

in F

2

[[z℄℄.

There is also great pra
ti
al potential in the algorithms asso
iated with the SDD 
on
ept. Quot-

ing from Vuillemin: The SDD of f is a 
y
li
 data stru
ture, whi
h represents the minimal �nite

state ma
hine for f . In the worst 
ase, its size is doubly exponential in the size of f . However,

eÆ
ient algorithms exist to operate on the SDD representations with the following 
hara
teristi
s:


onstant time

9

for f(�x), f(1 + �x); linear time for :f(x), �f(x), the inverse g

�

f(x)

�

= x, and

the �xed point y = �g(x; y); quadrati
 time for the 
omposition f

�

g(x)

�

and for boolean operations,

f(x) ^ f(y), et
; 
ubi
 time for the more general 
omposition f

�

g(x); h(x)

�

. The SDD opens an

approa
h to sequential 
ir
uit synthesis and veri�
ation whose implementation is straightforward in

a high-level language, and whi
h 
an 
ope automati
ally with syn
hronous 
ir
uits of limited size.
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Bayesian Approa
h to DNA Segmentation into Regions with Di�erent Average

Nu
leotide Composition

Vsevolod Makeev

Engel'hard Institute of Mole
ular Biology, Mos
ow

O
tober 7, 1999

Summary by Mireille R�egnier

1. Biologi
al Motivation

Lo
al nu
leotide 
omposition, that is, the distribution of nu
leotides A, C, G, T along a 
hromo-

some, is important for many biologi
al issues. Moreover, lo
al nu
leotide 
omposition is a

ounted

for in many algorithms developed to sear
h for di�erent patterns in DNA sequen
es. We present

a method of segmentation of nu
leotide sequen
es into regions with di�erent average 
omposition.

The sequen
e is modelled as a series of segments; within ea
h segment the sequen
e is 
onsidered

as a random Bernoulli pro
ess. The partition algorithm pro
eeds in two stages. In the �rst stage

the optimal partition is found, whi
h maximizes the overall produ
t of marginal likelihoods 
om-

puted for ea
h segment and prevents segmentation into short segments. In the next stage, optimal

boundaries are �ltered, and segments with 
lose 
ompositions are merged. This allows us to study

segments with the 
hosen length-s
ale.

2. Optimal Segmentation

2.1. Probabilisti
 formulation. A symboli
 sequen
e over an alphabet 
 of V letters is 
onsid-

ered as a series of segments. Ea
h segment is modelled as a Bernoulli random sequen
e. Bernoulli

probabilities are estimated from the ve
tor n = (n

1

; : : : ; n

V

) where n

j

denotes the number of o
-


urren
es of the jth symbol in the segment. In the Bayesian approa
h [1℄ estimated parameters

are random variables. The probability distribution of these random variables is estimated from

the data by a bootstrapping approa
h. First, one assumes an initial probability distribution|the

so-
alled prior distribution|that may be 
hosen rather arbitrarily. These probability distributions

are re-estimated from the data using the Bayes formula. The results of Bayesian estimation are

always some probability distributions of the estimated quantity. Bayesian and 
lassi
al statisti
s,

however, agree for large samples be
ause Bayesian distributions 
onverge to the maximal likelihood

estimation for any reasonable prior distribution. Denote the set of letter probabilities (the segment


omposition) as � = (�

1

; : : : ; �

V

) with

P

V

k=1

�

k

= 1. The likelihood of the individual sequen
e

is L(�) =

Q

V

k=1

�

n

k

k

. Given a 
omposition � = (�

1

; : : : ; �

V

), one writes the probability density

fun
tion p(�), with normalisation 
ondition

R

p(�) d� = 1.

One starts from some prior distribution p(�), say the uniform distribution on

P

k

�

k

= 1. The


omposition � of the Bernoulli random pro
ess is pi
ked up a

ording to this prior distribution, p(�).

The estimated probability density fun
tion p(�=n) satis�es Bayes's theorem:

p(�=n) =

L(n=�)p(�)

P (n)
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where P (n) =

R

L(n=�)p(�) d�. The normalisation 
onstant P (n) is 
alled marginal likelihood [3℄.

It re
e
ts the overall probability of the given sequen
e in the two stage random pro
ess. For a

uniform prior distribution, one has:

P (n) =

(V � 1)!

(N + V � 1)!

n

1

! : : : n

V

!:

Surprisingly, this quantity is also obtained in a 
on
eptually similar but di�erent probabilisti


model (G. Shae�er, 1999). For a sequen
e of length N , the probability of this sequen
e in the

shu�ing pro
edure is 
omputed. Numbers (n

1

; : : : n

V

) are pi
ked up a

ording to uniform distribu-

tion. With the assumption that segments as independent, the 
omplete likelihood of the sequen
e

segmentation into k segments with known boundary lo
ation is:

P =

Y

k

P

k

(n

k

):

This quantity is optimized over the set of all possible boundary 
on�gurations yielding the optimal

segmentation.

2.2. Dynami
 programming. The maximization algorithm is as follows. Consider a sequen
e

S = s

1

s

2

s

3

: : : s

N

of length N , where s

i

2 
. For every segment S(a; b) = s

a

: : : s

b

, one introdu
es

a weight W (a; b): for example, W (a; b) 
an be lnP

�

S(a; b)

�

. A segmentation R in m blo
ks is

determined as a set of boundaries R = fk

0

= 0; k

1

; : : : ; k

m�1

; k

m

= Ng, where k

i

separates s

k

and s

k+1

. Its weight is:

F (R) =

m

X

j=1

W (k

j�1

+ 1; k

j

):

For fun
tions determined on the segmentations, one also uses another set of variables, the indi-


ators of the boundary positions q

k

, 1 � k � N . By de�nition, q

k

= 1 if there exists a segment

boundary after the kth letter, otherwise it is 0. Below, we use the notations F (R) and F (q

1

; : : : ; q

k

)

indi�erently. The segmentation R

�

with maximal weight is 
omputed in a re
ursive manner. De-

note by R

�

(k) the optimal segmentation of the fragment S(1; k), 1 � k � N . R

�

(1) is trivial.

When optimal segmentations R

�

(1), . . . , R

�

(k � 1) are known, the optimal segmentation R

�

(k) is

found using the following re
urren
e expression:

(1) F

�

R

�

(k)

�

= max

0�i�k�1

�

F

�

R

�

(i)

�

+W (i+ 1; k)

�

;

with F

�

R

�

(0)

�

= 0. This equation yields the algorithm. Sin
e the segmentation R

�

(k) is built in

time O(k), the total time 
an be estimated as O(N

2

).

2.3. Flu
tuations in lo
al 
omposition. It appears that segments in optimal segmentation are

usually very short. Even a random uniform Bernoulli sequen
e is divided into many segments.

More generally, when the sequen
e 
onsists of several random homogeneous domains, the optimal

segmentation may in
lude many borders lo
ated within the domains. This phenomenon is due

to statisti
al 
u
tuations of the lo
al nu
leotide 
omposition in random sequen
es. Thus it is

advantageous to extra
t boundaries, whi
h separate long regions with di�erent 
ompositions from

those that re
e
t statisti
al 
u
tuations. This 
an be done by penalizing those segmentations

that 
ontain more boundaries. The 
orre
t penalty 
hoi
e was initially 
hosen from 
omputer

simulations.
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3. Filtration of Boundaries

3.1. Partition fun
tion. To study the relative signi�
an
e of a boundary, one 
an 
al
ulate a

s
ore, that re
e
ts how the addition of this parti
ular boundary in
uen
es weights of segmentations.

Given the probability �(q) of ea
h segmentation q = (q

1

; : : : ; q

N

), one de�nes the partition fun
tion

of the segmentations in a standard way [2℄ by summing the probabilities of all possible partitions:

(2) Z(N) =

X

q

1

;:::;q

N�1

�(q

1

; : : : ; q

N�1

)

With the partition fun
tion at hand, one 
an 
ompute the probability of a boundary to be lo
ated

after a parti
ular letter k. One 
omputes two partition fun
tions for the regions to the left and to

the right of this border, Z

L

and Z

R

respe
tively:

(3) �(k) =

Z

L

(k)Z

R

(N � k)

Z(N)

:

3.2. Dynami
 programming. The partition fun
tion in (2) rewrites as follows [2℄:

(4) Z(N) =

X

q

1

;:::;q

N�1

e

F (q

1

;:::;q

N�1

)

:

To 
ompute the probability of a boundary after the letter k, we also need the partition fun
tions

of the segments to the left and to the right of this boundary, and re
ursive formul� to 
ompute

Z

L

(k) and Z

R

(k) are analogous to (1). They are obtained through the formal substitution of

operations. Summation is used instead of taking the maximum, and multipli
ation is used instead

of summation [2℄. Equation (1) be
omes:

Z

L

(k) =

k�1

X

j=0

e

W (j+1;k�1)

Z

L

(j);

Z

R

(k) =

N

X

j=k

e

W (k;j)

Z

R

(j);

with boundary 
onditions Z

L

(0) = Z

R

(N+1) = 1 andW (k�1; k) =W (N;N+1) = 0. An obvious

modi�
ation of dynami
 programming 
al
ulates the partition fun
tion in the 
ase when only the

given set of boundaries is allowed.

3.3. Filtration strategy. For the best result one should 
ombine 
al
ulation of optimal segmen-

tation with �ltration. At the �rst stage, an optimal segmentation is found. Then a 
ut-o� value

is 
hosen and all the boundaries with probabilities (3) lower than that 
ut-o� value are removed.

The resulting set of boundaries usually is not optimal in the sense that some boundaries 
an also

be removed, yielding a 
on�guration with a higher probability P . So an additional round of opti-

misation is performed, removing some boundaries. Iterations 
onverge rapidly to the stable set of

boundaries all of whi
h have the partition fun
tion probabilities greater than the 
ut-o� value.
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Enumeration of Auto
orrelations and Computation of Their Populations

�

Eri
 Rivals

LIRMM, Universit�e Montpellier II

November 22, 1999

Summary by Pierre Ni
od�eme

Abstra
t

This talk presents in a �rst part Guibas and Oldlyzko's 
hara
terization of auto
orrela-

tions and in a se
ond part algorithms developed by

�

Eri
 Rivals with Sven Rahmann (TBI,

DKFZ, Heidelberg) to enumerate the auto
orrelations and to simultaneously 
ompute their

populations.

1. Introdu
tion

An interesting statisti
s about a random text of size N is the number of di�erent words of a

given size n it 
ontains, or, equivalently, how many words of size n are missing in the random text.

These statisti
s are 
losely linked with the auto
orrelations of the words, that are sets of periods

of the words. We 
onsider here the enumeration of auto
orrelations and the populations of the

auto
orrelations, originally studied by Guibas and Odlyzko [3℄. The original motivation of Rivals

and Rahmann 
omes from sear
hing genomi
 databases with q-grams [1℄.

2. De�nitions

We 
onsider a �nite alphabet �. Let w = w

1

w

2

� � �w

n

where w

i

2 �. A period of w is an integer

p su
h that for all i between 1 and n�p we have a

i

= a

i+p

. As an example, the word abra
adabra

has for periods 0, 7, and 10. Its fa
tor abra has for periods 0 and 1. The auto
orrelation ve
tor

of a word w, denoted by V (w), is the binary ve
tor V = (v

0

; v

1

; : : : ; v

n�1

) su
h that v

i

is equal to

one if i is a period of w and to zero otherwise. Alternatively, the auto
orrelation will be denoted

by the 
orresponding binary word v

0

v

1

� � � v

n�1

. We denote �(w) the set of auto
orrelations of the

word w.

We are interested in statisti
s about the whole set of words of size n and therefore denote �(n)

the set of auto
orrelations of size n and �(n) its 
ardinality.

The periods have the following properties:

1. 0 is always a period;

2. if i is a period, then for all i in the range

�

1; bn=p


�

the integer ip is a period;

3. if p and q are periods of w, with p < q, then q � p is a period of the pre�x of length n � p

of w.

Theorem 1 (Fine andWilf). Let p and q be periods of a word w, with p < q. If p+q � jwj+g
d(p; q)

then g
d(p; q) is a period of w.

See [2, 3℄ for this theorem.
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3. Periods in Strings

This se
tion follows the lines of Guibas and Odlyzko [3℄.

In order to give equivalent 
hara
terizations of auto
orrelations ve
tors within binary ve
tors in

Theorem 2 below, we now give the de�nitions of the forward and ba
kward propagation rules and

of the � predi
ate that are used in this theorem.

If p < q are periods of a word w, then q + (q � p) is also period. This gives the following rule.

De�nition 1 (Forward Propagation Rule). A binary ve
tor V = (v

0

; v

1

; � � � ; v

n

) satis�es the

forward propagation rule if, whenever we have v

p

= v

q

= 1 with p < q, we also have v

t

= 1 for all t

in [ p; n) su
h that t = p+ i(q � p) with i = 0; 1; 2; : : : .

The ba
kward propagation rule asserts that if p and q are periods with p < q and if p� (q � p)

is not a period, then none of the positive integers p� i(q � p) may be a period.

De�nition 2 (Ba
kward Propagation Rule). A binary ve
tor V = (v

0

; v � 1; � � � ; v

n�1

) satis�es

the ba
kward propagation rule if the following 
ondition holds. Consider every p and q su
h that

p < q � 2p with v

p

= v

q

= 1, but v

2p�q

= 0; then for all t in the range [ 0; 2p � q ℄ su
h that

t = p� i(q � p) and i belongs to the interval

h

1;

j

n�p

q�p

ki

we have v

t

= 0.

We now introdu
e a re
ursive predi
ate on binary ve
tors that is equivalent to the 
ondition that

the binary ve
tor is an auto
orrelation ve
tor. In the following, we note the shortest period of a

word v by �(v).

De�nition 3 (Re
ursive Predi
ate �). Let V = (v

0

; v

1

; : : : ; v

n�1

) be a non-empty binary ve
tor.

De�ne p = �(v

0

v

1

� � � v

n�1

). The ve
tor V satis�es the predi
ate � if and only if V is su
h that

v

0

= 1 and V satis�es one of the following two 
onditions:

{ Case (A), p �

�

n

2

�

.

Let r = n mod p and q = p+r and let w = w

1

� � �w

q

be the suÆx of v

0

v

1

� � � v

n�1

of length q.

Then:

1. for all j in the range [ 1; n� q ℄, v

j

= 1 if j = ip for some i, and v

j

= 0 otherwise;

2. w

p

= 1 or r = 0;

3. if �(w) < p then �(w) > (q � p) + g
d

�

p; �(w)

�

;

4. the ve
tor (w

1

; : : : ; w

q

) satis�es predi
ate �.

{ Case (B), p >

�

n

2

�

.

Let w = w

1

� � �w

n�p

be the suÆx of v

0

� � � v

n�1

of length n � p. Then for all j in the range

[ 1; n� p ℄ we have v

j

= 0 and the ve
tor (w

1

; : : : ; w

n�p

) satis�es predi
ate �.

The algorithmi
 
he
k of the predi
ate � requires O(n) operations on a ve
tor V of size n.

Theorem 2. Let V = (v

0

; v

1

; � � � ; v

n

) be a non-empty binary ve
tor. Then the following four

statements are equivalents:

1. V is a 
orrelation ve
tor of a binary string;

2. V is a 
orrelation ve
tor of some string;

3. v

0

= 1 and V satis�es the forward and ba
kward propagation rules;

4. V satis�es the predi
ate �.

Note that equivalen
e between statements 1 and 2 implies that the 
hara
terization of an auto-


orrelation ve
tor is independent of the size of the alphabet.
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Auto
orrelations(n)

if n = 1 then return f1g

elif n = 2 then return f11; 10g

else

�(n) := fg

# Case (A), p �

�

n

2

�

for p for

�

n

3

�

to

�

n

2

�

do

r := n mod p

q := p+ r

�(q) := Auto
orrelations(q)

j

0

:= min f j j j + p > q + g
d(j; p) g

for w in �(q) do

if �(w) > j

0

and p mod �(w) 6= 0 then

�(q) := �(q) [

�

�

10

p�1

�

b

n

p




�1

w

�

�

od

od

# Case (B), p >

�

n

2

�

for p for

�

n

2

�

to n do

�(n� p) := Auto
orrelations(n� p)

for w in �(n� p) do

�(n) := �(n) [

�

10

p�1

w

	

od

od

return �(n)

�

end

u

p

is the word u � � �u where u is repeated p times

Figure 1. Re
ursive algorithm Auto
orrelations.

4. An Algorithm to Enumerate all Auto
orrelations of Size n

We use the predi
ate � to build a re
ursive bottom-up pro
edure that 
onstru
ts auto
orrelation

ve
tors. To this end, note that the 
ondition (2) of Case (A) of the predi
ate � is equivalent to

�(w) does not divide p and �(w) > j

0

= minf j j j + p > q + g
d(j; p) g:

Algorithm Auto
orrelation to enumerate all auto
orrelations until size n is given in Figure 1.

Implementation. The auto
orrelations are stored as binary ve
tors. The implementation has been

done as an iterative pro
edure, although the algorithm presented in Figure 1 is re
ursive. Note

that in Case (A) of the algorithm the tests of 
onditions (a) and (b) of the � predi
ate 
an be done

in O(1) operations. Moreover only the valid subset of �(q) is 
omputed.

Complexity and optimality. Ea
h bit of an auto
orrelation is 
omputed only on
e. The 
omplexity

is unknown, no 
lose formula for the number of auto
orrelations of size n being known.
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Asymptoti
 bounds. Guibas and Odlyzko [3℄ give the following bounds for the logarithm of the

number �(n) of auto
orrelations of size n:

b

l

=

�

1

2 log 2

+ o(1)

�

log

2

n � log �(n) �

�

1

2 log(3=2)

+ o(1)

�

log

2

n:

For numeri
al 
omputations up to n = 200, Rivals and Rahmann obtain �(n) < b

l

. They 
onje
ture

that the asymptoti
 value of �(n) is b

l

, the lower bound of Guibas and Odlyzko.

5. Computation of the Populations of Auto
orrelations

In this se
tion, the size n of the auto
orrelations ve
tors is �xed.

De�nition 4. The population N of an auto
orrelation ve
tor V is de�ned as

N(V ) = Card fw j V is the auto
orrelation ve
tor of w g:

We de�ne a partial order � on the auto
orrelation ve
tors by V = v

0

v

1

� � � v

n�1

� V

0

=

v

0

0

v

0

1

� � � v

0

n�1

if for all i in [ 0; n � 1 ℄, v

0

i

= 1 whenever v

i

= 1. We also de�ne the total order

� by V � V

0

if the word v

0

v

1

� � � v

n�1

pre
edes lexi
ographi
ally the word v

0

0

v

0

1

� � � v

0

n�1

. Then

V � V

0

implies V � V

0

. Auto
orrelation ve
tors of size n are sorted along the total order � and

numbered along this order from 1 to �(n). The notation V

k

refers to the ve
tor at rank k in this

order.

De�nition 5. The number �

k

of free 
hara
ters of the auto
orrelation V

k

is the number of 
har-

a
ters that we 
an 
hoose freely to build a word with the 
orrelation V

k

. The other 
hara
ters are

determined by the periods of the auto
orrelation.

With an alphabet of size �, for k from � (= �(n)) to 1, we get

N(V

k

) = �

�

k

�

X

k<j<� and V

j

�V

k

N(V

j

):

The implementation is quadrati
 in �(n).
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Abstra
t

Two algorithmi
 s
hemes are broadly used to 
onstru
t a tree distan
e based on a dissim-

ilarity. The �rst one, initially used for hierar
hies, 
onsists in iteratively agglomerating

pairs of leaves until only three leaves remain, whi
h 
orresponds to a unique tree stru
ture.

The se
ond one starts with a tree on three leaves and iteratively grafts the obje
ts on the

previously build tree. On top of those two 
onstru
tion s
hemes, the ex
hange of subtrees

is used to iteratively improve the trees obtained by either of the s
hemes above. We show

that, independently of the optimized 
riterion, these s
hemes generally indu
e trees of quite

di�erent shapes. The agglomerative s
heme tends to produ
e 
ompa
t trees with low diam-

eter, whereas grafting and ex
hange tend to generated more outstret
hed trees with high

diameter. This phenomenon is explained by the di�eren
e between prior probability distri-

butions indu
ed by ea
h of these s
hemes. We illustrate this very distin
t di�eren
e by the

data of the mito
hondrial Eve.
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Summary by Alain Denise and Matthieu RaÆnot

Abstra
t

The aim of this work is to design eÆ
ient algorithms for string mat
hing. For this purpose,

we introdu
e a new kind of automaton: the fa
tor ora
le, asso
iated with the string p to

be re
ognized in a text. This leads to simple algorithms whi
h are as eÆ
ient in time as

already known ones, while using less memory. This is a joint work with Cyril Allauzen and

Maxime Cro
hemore.

1. Introdu
tion

The eÆ
ien
y of string mat
hing algorithms depends on the underlying automaton whi
h rep-

resents the string p to be found in the text. Ideally, this automaton A should satisfy the following

properties:

1. A is a
y
li
;

2. A re
ognizes at least the fa
tors of p;

3. A has the fewer states as possible;

4. A has a linear number of transitions a

ording to m, the length of p. (Su
h an automaton

has at least m+ 1 states.)

The suÆx or fa
tor automaton [3, 5℄ satis�es 1., 2., and 4. but not 3. whereas the subsequen
e

automaton [2℄ satis�es 1., 2., and 3. but not 4. We present in Se
tion 2 an intermediate stru
ture


alled fa
tor ora
le: an automaton with m + 1 states that satis�es all the above requirements.

Se
tion 3 is devoted to the study of a string mat
hing algorithm based on the fa
tor ora
le.

2. Constru
tion of the Fa
tor Ora
le

The fa
tor ora
le of a word p = p

1

p

2

: : : p

m

, denoted Ora
le(p), is the automaton built by the

algorithm Build Ora
le (Figure 1). All the states of the automaton are �nal. Figure 2 gives the

fa
tor ora
le of the word p = abbbaab. On this example, the reader will noti
e that the word aba is

re
ognized whereas it is not a fa
tor of p.

Here are some notations whi
h are used in the following. The set of all pre�xes (resp. suÆxes)

of p is denoted by Pref(p) (resp. Su�(p)). The word pref

p

(i) is the pre�x of length i of p for

0 � i � m. For any u 2 Fa
t(p), we de�ne

po

ur(u; p) = min

�

jzj

�

�

z = wu and p = wuv

	

;

the ending position of the �rst o

urren
e of u in p. For any u 2 Fa
t(p), we de�ne the set

endpos

p

(u) = f i j p = wup

i+1

: : : p

m

g:
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Build Ora
le(p = p

1

p

2

: : : p

m

)

For i from 0 to m

Create a new state i

For i from 0 to m� 1

Build a new transition from i to i+ 1 by p

i+1

For i from 0 to m� 1

Let u be a minimal length word in state i

For all � 2 �; � 6= p

i+1

If u� 2 Fa
t(p

i�juj+1

: : : p

m

)

then build a new transition from i to i+ po

ur(u�; p

i�juj+1

: : : p

m

) by �

Figure 1. High-level 
onstru
tion of the Ora
le.

0

a

1 2 3 4 5 6 7

aa

b b b

a b

b

a

a

Figure 2. Fa
tor ora
le of abbbaab.

Given two fa
tors u and v of p, we write u �

p

v if endpos

p

(u) = endpos

p

(v).

The authors prove in [1℄ the following lemmas.

Lemma 1. Given a state i of Ora
le(p), let u 2 �

�

be a minimal length word among the words

re
ognized in i. Then u 2 Fa
t(p) and i = po

ur(u; p).

Corollary 1. For any state i of Ora
le(p), there exists an unique minimal length word among the

words re
ognized in state i.

We denote min(i) the minimal length word of state i.

Corollary 2. Let i and j be two states of Ora
le(p) su
h that j < i. Then min(i) 
annot be a

suÆx of min(j).

Lemma 2. Let i be a state of Ora
le(p). Then min(i) is a suÆx of any word 
 2 �

�

whi
h is the

label of a path leading from state 0 to state i.

Lemma 3. Any word w 2 Fa
t(p) is re
ognized by Ora
le(p) in a state j � po

ur(w; p).

Corollary 3. Let w 2 Fa
t(p). Every word v 2 Su�(w) is re
ognized by Ora
le(p) in a state

j � po

ur(w).

Lemma 4. Let i be a state of Ora
le(p). Any path ending by min(i) leads to a state j � i.

Lemma 5. Let w 2 �

�

be a word re
ognized by Ora
le(p) in i. Any suÆx of w is re
ognized in a

state j � i.

Lemma 6. The number T

Or

(p) of transitions in Ora
le(p = p

1

p

2

: : : p

m

) satis�es m � T

Or

(p) �

2m� 1.

The high-level 
onstru
tion of the fa
tor ora
le is equivalent to the on-line algorithm given in

Figure 3. An example of this 
onstru
tion is shown in Figure 4.

Exemple. The on-line 
onstru
tion of Ora
le(abbbaab) is given Figure 4.
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Fon
tion add letter(Ora
le(p = p

1

p

2

: : : p

m

), �)

Create a new state m+ 1

Create a new transition from m to m+ 1 labeled by �

k  S

p

(m)

While k > �1 and there is no transition from k by � Do

Create a new transition from k to m+ 1 by �

k  S

p

(k)

End While

If (k = �1) Then s 0

Else s where leads the transition from k by �.

S

p�

(m+ 1) s

Return Ora
le(p = p

1

p

2

: : : p

m

�)

Ora
le-on-line(p = p

1

p

2

: : : p

m

)

Create Ora
le(�) with:

one single state 0

S

�

(0) �1

For i 1 �a m Do

Ora
le(p = p

1

p

2

: : : p

i

) add letter(Ora
le(p = p

1

p

2

: : : p

i�1

); p

i

)

End For

Figure 3. On-line 
onstru
tion of Ora
le(p = p

1

p

2

: : : p

m

).

0

(a)

10
a

(b) Add a.

b

0 1 2
a b

(
) Add b.

b

0 1 2 3
a b b

(d) Add b.

b

0 1 2 3 4
a b b b

(e) Add b.

b

0 1 2 3 4 5
aa b b b

a

a

(f) Add a.

b

0 1 2 3 4 5 6
aa b b b a

a

a

a

(g) Add a.

b

0 1 2 3 4 5 6 7
aa b b b a b

a

a

a

(h) Add b.

Figure 4. On-line 
onstru
tion of Ora
le(abbaba).
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3. String Mat
hing

The authors repla
e the suÆx automaton with a fa
tor ora
le in the BDM (for ba
kward dawg

mat
hing) [4, 6℄, obtaining the BOM (for ba
kward ora
le mat
hing) algorithm.

The BOM algorithm 
onsists in shifting a window of size m on the text. For ea
h new position

of this window, the fa
tor ora
le of the mirror image of p is used to sear
h the suÆx of the window

from right to left. The basi
 idea is that if this ba
kward sear
h fails on a letter � after the reading

of a word u then �u is not a fa
tor of p and the beginning of the window 
an be shifted just after �.

The worst-
ase 
omplexity of BOM is O(nm).

The average 
omplexity of the original BDM is in O

�

n log

j�j

(m)=m

�

under a uniform Bernoulli

model. In view of the experimental results (see [1℄), the authors 
laim that their new BOM algorithm

is also optimal on average:

Conje
ture 1. Under a model of independen
e and equiprobability of letters, the BOM algorithm

has an average 
omplexity of O

�

n log

j�j

(m)=m

�

.

The authors show in [1℄ how to obtain a linear (in n) worst 
ase algorithm from the BOM.
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Abstra
t

The study of Lips
hitz fun
tions on graphs and metri
 spa
es is rather advan
ed. Uniform

measure on graph homomorphisms into Z provides a model for looking at typi
al Lips
hitz

fun
tions. Given a bipartite 
onne
ted �nite graph G = (V;E) and a vertex v

0

2 V , we


onsider a uniform probability measure on the set of graph homomorphisms f : V ! Z

satisfying f(v

0

) = 0. This measure 
an be viewed as a G-indexed random walk on Z,

generalizing both the usual time-indexed random walk and tree-indexed random walk. We

will present several general inequalities for G-indexed random walks, in
luding an upper

bound on 
u
tuations implying that the distan
e d

�

f(u); f(v)

�

between f(u) and f(v), is

sto
hasti
ally dominated by the distan
e to 0 of a simple random walk on Z having run for

d(u; v) steps. We will also dis
uss various spe
ial 
ases, some 
onje
tures and algorithmi


aspe
ts of these models.
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Summary by El
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1. Basi
 Algorithms

We 
onsider re
ords whi
h belong to a k-dimensional region D = D

1

� � � � � D

k

� R

k

. A �le

is a �nite subset F of D. Given a query q 2 (D

1

[ f�g) � � � � � (D

k

[ f�g), the obje
tive is to

�nd all the re
ords r 2 F su
h that r

i

= q

i

when q

i

6= �. The probabilisti
 assumption is that all

the 
oordinates of the re
ords and the queries (whi
h are not �) are independent uniform random

variables. For the dis
ussion below, it is easy to see that this assumption may be repla
ed by a

weaker assumption that all variables are independent with the same 
ontinuous distribution. The

spe
i�
ation pattern 
onsists of the 
on�guration in f�; Sg

k

of spe
i�ed and unspe
i�ed variables.

There exist several 
omparison-based trees:

{ Quadtrees. Ea
h re
ord x has 2

k

subtrees whi
h 
orrespond to all possible elements of

f<;>g

k

. Thus (y

0

; y

1

; y

2

) will belong to the (<;>;<) subtree of (x

0

; x

1

; x

2

) if y

0

< x

0

; y

1

>

x

1

; y

2

< x

2

. See Figure 1.

{ kD trees. Ea
h re
ord x at level l has two subtrees 
orresponding to x

l mod k

> y

l mod k

and

x

l mod k

< y

l mod k

, respe
tively.

{ Randomised kD trees. Ea
h re
ord x at level l has two 
hildren 
orresponding to x

l(x)

> y

l(x)

and x

l(x)

< y

l(x)

where l(x) are i.i.d. uniform variables in the range 0; : : : ; k � 1.

The Quadtree

The data partition the unit-cube recursively into qua-

drants. The quadtree corresponds to this partitioning.

x
x

x

x

x

1

5

3

4

2

x

x x x

x

1

2 3

4

5I =2 I =0 I =1 I =11 2 3 4

(1)

(2) (4)

(3)

 

Figure 1. A quadtree: the data partition the unit-
ube re
ursively into quadrants;

the quadtree 
orresponds to this partitioning.
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{ Squarish kD trees. This is another version in whi
h every node has two subtrees, but the


oordinate with respe
t to whi
h we split depends more strongly on the tree stru
ture.

The basi
 quantity we are after is the limit law of C

n

where C

n

is the random number of nodes

we traverse when �nding all re
ords whi
h mat
h the query. Here n is the size of F .

2. Quadtrees in Two Dimensions

We let W = (U; V ) be the �rst key to be inserted and q = (Y; �) be the query. So U , V , and Y

are uniform i.i.d. variables. We also let I

n

be the ve
tor of 
ardinalities for the subtrees of the root.

We thus derive the following re
ursive distributional equation:

C

n

= 1

Y <U

�

C

1

I

n

1

+C

2

I

n

2

�

+ 1

Y >U

�

C

3

I

n

3

+ C

4

I

n

4

�

+ 1;

wherein the variables Y , U , V , and C

j

i

are independent and all the C

j

i

have the distribution of C

i

.

Given (U; V ) the variable I

n

is multi-monomial with parameters (U; V ) and n.

By previous works [1, 2, 6℄ there are known 
onstants �, �, and 
 for whi
h

E[C

n

℄ � 
n

��1

; Var[C

n

℄ � �n

2��2

:

Looking for a limit, we 
onsider the variable: X

n

= (C

n

�E[C

n

℄)=n

��1

.

In this way we obtain the equation:

(1) X

n

= 1

Y <U

 

�

I

n

1

n

�

��1

�

X

1

I

n

1

+ 


�

!

+ 1

Y <U

 

�

I

n

2

n

�

��1

�

X

2

I

n

2

+ 


�

!

+ 1

Y >U

 

�

I

n

3

n

�

��1

�

X

3

I

n

3

+ 


�

!

+ 1

Y >U

 

�

I

n

4

n

�

��1

�

X

4

I

n

4

+ 


�

!

� 
 + o(1):

By the law of large numbers we have

I

n

=n!W =

�

UV;U(1 � V ); (1 � U)V; (1 � U)(1 � V )

�

in probability. We thus obtain the following limiting equation:

(2) X = 1

Y <U

W

��1

1

(X

1

+ 
) + 1

Y <U

W

��1

2

(X

2

+ 
)

+ 1

Y >U

W

��1

3

(X

3

+ 
) + 1

Y >U

W

��1

4

(X

4

+ 
)� 
;

where the X

i

are independent 
opies of X.

This suggests that we should 
onsider the following operator on random variables Z:

T (Z) = 1

Y <U

W

��1

1

�

Z

1

+ 


�

+ 1

Y <U

W

��1

2

�

Z

2

+ 


�

+ 1

Y >U

W

��1

3

�

Z

3

+ 


�

+ 1

Y >U

W

��1

4

�

Z

4

+ 


�

� 
;

where the Z

i

's are independent 
opies of Z.

We now work with the following metri
 (on the spa
e of variables with zero mean and �nite

varian
e): l

2

(Z;Z

0

) = inf

�

E[Z�Z

0

℄

2

�

1=2

where the in�mum is taken over all 
ouplings of Z and Z

0

.

It turns out that this spa
e equipped with this metri
 is a Bana
h spa
e. Moreover, using the

representation of T one 
an see that T is a 
ontra
tion on this spa
e. It therefore follows that there

exists a unique random variable Z whi
h satis�es T (Z) = Z.

The main te
hni
al part of the proof is showing that we obtain the same limit if we work with

the exa
t equations (1) instead of the approximate equations (2). This essentially uses the known

estimates that E[C

n

℄ = 
n

��1

�

1 + o(1)

�

. In this way we obtain the following theorem.
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Theorem 1. Let X

n

be the normalised number of traversed nodes and X the variable su
h that

T (X) = X, then l

2

(X

n

;X)! 0.

3. Other Trees

3.1. Multidimensional quadtree. In a similar manner one 
an prove the same kind of result for

multidimensional quadtree. One of the di�eren
es is that in this 
ase the varian
e Var[C

n

℄ is not

known beforehand. Instead, we guess that the right normalisation should be

X

n

=

C

n

�E[C

n

℄

n

��1

:

In this way we obtain again a limit law similar to the above: the limit X depends only on the

number of �'s in the query. Given this limit law we 
an now 
ompute a 
onstant whi
h depends

only on the number of �'s in the query su
h that Var[C

n

℄ = �n

2��2

.

3.2. kD Trees. Vaguely speaking, the di�eren
e between quadtrees and kD trees, is that for

kD trees di�erent levels behave di�erently. Thus, in order to obtain a theorem similar to the above,

a single re
ursion step should go k levels forward instead of just one. Doing that, we obtain a result

similar to the above.

3.3. Randomised kD tree. The randomisation allows one to use one-level re
ursion, therefore

obtaining a theorem and a proof similar to the 
ase of quadtrees.

3.4. Squarish kD tree. It seems like the above methods do not work in this 
ase. This is be
ause

the 
oordinate with respe
t to whi
h we split depends on the stru
ture of the tree and on the data

stored in it.

4. Internal Path Length in Random Trees

In the previous se
tions we studied the 
ost of a query. In this se
tion we 
onsider the 
ost of

building the tree whi
h is nothing but the sum of depths of nodes in the tree. For the quadtrees

we obtain the following re
ursive equation:

Y

n

=

2

d

�1

X

k=0

Y

k

I

n

k

+ n:

The arti
le [3℄ gives the expe
tation E[Y

n

℄ = (2=d)n lnn + u

d

n + o(n), but the varian
e was not

derived there. We guess the normalisation: X

n

=

�

Y

n

�E[Y

n

℄

�

=n. We therefore obtain the equation:

X

n

=

2

d

�1

X

i=0

I

n

k

n

X

k

I

n

k

+ C

n

(I

n

)

where

C

n

(i

0

; : : : ; i

2

d

�1

) = 1 +

1

n

2

d

�1

X

i=0

E[Y

i

k

℄�E[Y

n

℄:

Using the expe
tation formula we obtain:

C

n

(i) = 1 +

2

d

2

d

�1

X

i=0

i

k

n

ln

i

k

n

+ o(1):

We now 
ontinue in the same route as before to obtain the l

2

limit and the asymptoti
 varian
e.
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5. Find Algorithm

We 
onsider the following version of qui
ksort. We want to sort the values f1; : : : ; ng whi
h are

given in a random uniform permutation. In order to perform the sort we pi
k a pivotal element

p and 
ontinue sorting the elements larger than this element, and the elements smaller than this

element. The way to pi
k p is by taking three independent uniform keys k

1

, k

2

, k

3

and taking p to

be their median. We thus obtain the following re
ursion equation:

C

n

= 1

Z

n

>M

n

C

0

Z

n�1

+ 1

Z

n

<M

n

C

00

n�Z

n

+ n� 1

where M

n

is uniform in f1; : : : ; ng and Z

n

is a median of three uniform variables in f1; : : : ; ng. We

now 
ontinue in a similar way: it is known [4, 5℄ that E[C

n

℄ = 5n=2 + O(lnn), we guess that the

normalisation is: Y

n

=

�

C

n

� E[C

n

℄

�

=n to obtain a limit law. This limit law enables us to give

asymptoti
 form for all the moments: E[C

k

n

℄ � m

k

n

k

where we have a 
losed formula for m

k

.

Bibliography

[1℄ Flajolet (Philippe), Gonnet (Gaston), Pue
h (Claude), and Robson (J. M.). { The analysis of multidimensional

sear
hing in quad-trees. In Pro
eedings of the Se
ond Annual ACM-SIAM Symposium on Dis
rete Algorithms

(San Fran
is
o, CA, 1991). pp. 100{109. { ACM, New York, 1991.

[2℄ Flajolet (Philippe), Gonnet (Gaston), Pue
h (Claude), and Robson (J. M.). { Analyti
 variations on quadtrees.

Algorithmi
a, vol. 10, n

�

6, 1993, pp. 473{500.

[3℄ Flajolet (Philippe), Labelle (Gilbert), Laforest (Louise), and Salvy (Bruno). { Hypergeometri
s and the 
ost

stru
ture of quadtrees. Random Stru
tures & Algorithms, vol. 7, n

�

2, 1995, pp. 117{144.

[4℄ Kirs
henhofer (P.), Prodinger (H.), and Mart��nez (C.). { Analysis of Hoare's FIND algorithm with median-of-

three partition. Random Stru
tures & Algorithms, vol. 10, n

�

1-2, 1997, pp. 143{156. { Average-
ase analysis of

algorithms (Dagstuhl, 1995).

[5℄ Kirs
henhofer (Peter), Mart��nez (Conrado), and Prodinger (Helmut). { Analysis of an optimized sear
h algorithm

for skip lists. Theoreti
al Computer S
ien
e, vol. 144, n

�

1-2, 1995, pp. 199{220. { Spe
ial volume on mathemati
al

analysis of algorithms.

[6℄ Mart��nez (Conrado), Panholzer (Alois), and Prodinger (Helmut). { On the number of des
endants and as
endants

in random sear
h trees. Ele
troni
 Journal of Combinatori
s, vol. 5, n

�

1, 1998, pp. Resear
h Paper 20, 36 pp.

[7℄ Neininger (Ralph). { Asymptoti
 distributions for partial mat
h queries in kD trees. { 1999. Preprint.

[8℄ Neininger (Ralph) and R�us
hendorf (Ludger). { On the internal path length of d-dimensional quad trees. Random

Stru
tures & Algorithms, vol. 15, n

�

1, 1999, pp. 25{41.



Algorithms Seminar 1999{2000,

F. Chyzak (ed.), INRIA, (2000), pp. 133{136.

Available online at the URL

http://algo.inria.fr/seminars/.

Analyti
 Information Theory and the Redundan
y Rate Problem

Woj
ie
h Szpankowski

Department of Computer S
ien
es, Purdue University

February 13, 2000

Summary by Philippe Flajolet

1. Information, Entropy, and Codes

One of the most basi
 problems of information theory [1℄ is that of sour
e 
oding. A sour
e is

by de�nition a me
hanism that produ
es messages over a �nite alphabet A, a message of length n

being 
onventionally denoted by x

n

1

= (x

1

; : : : ; x

n

). A 
ode C is a translation me
hanism (an

inje
tive fun
tion, an algorithm) that, for ea
h n, takes as input a message from A

n

and transforms

it into a binary sequen
e. Su
h a translation is thus a �xed-length to variable-length en
oding.

Messages have some stru
ture. For the English language sour
e, the sequen
e `Rzqxwa gkvzzxq

wzd aaaaaaa rxbleurp' is mu
h less likely than the sequen
e `It rained yesterday over England'.

Indeed, some letters are more frequent than others, 
ertain letter 
ombinations are impossible, et
.

It is then 
ustomary to try and 
apture the prin
ipal features of the sour
e by some probability

distribution of sorts over A

n

. The main models 
onsidered in the talk are the following.

M1. A memoryless model 
onsiders letters as independent identi
ally distributed random vari-

ables, with letter i 2 A having probability p

i

. (This is sometimes 
alled the Bernoulli model.)

M2. A Markov model assumes an underlying �nite set of states with transition probability p

i;j

between states i and j and a mapping from states to letters.

As dis
overed by Shannon around 1949, information is measured by entropy. The entropy of a

probability distribution P = fp

s

g

s2S

over any �nite set S is de�ned as

H(P ) := �

X

s2S

p

s

lg p

s

;

where lg x = log

2

x. (Roughly, the de�nition extends the fa
t that an element in a set of 
ardi-

nality m needs to be en
oded by about lgm bits in order to be distinguished from its 
ompanions

elements.) Most \reasonable" sour
e models have an entropy rate h; namely, if x

n

1

is randomly

drawn a

ording to the sour
e model P , then the following limit exists,

h = lim

n!1

�

1

n

X

x

n

1

2A

n

P (x

n

1

) lgP (x

n

1

):

For instan
e, the entropy rate of a sequen
e drawn a

ording to the memoryless model equals the

entropy of the distribution of individual 
hara
ters. For a Markov 
hain with transition probabili-

ties p

i;j

, the entropy rate is

h =

X

i

�

i

X

j

p

i;j

lg p

i;j

;

with �

i

the stationary probability distribution of the 
hain. The entropy rate of written English is

estimated to be about 1.3 bits per 
hara
ter.
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Sour
es produ
e messages whi
h are not uniformly random and this lies at the basis of data 
om-

pression|the fa
t that one may �nd 
odes that tend to be shorter than the original message. (E.g.,

the present summary is 
ompressed by gzip at a rate of about 3.5 bits per 
hara
ter.) We 
annot


ompress arbitrarily however. The most fundamental theorem of information is due to Shannon

and asserts the following: You 
annot beat entropy. In other words, any 
ode has an expe
ted length

per 
hara
ter that is at least as large as the entropy rate of the sour
e.

Another famous theorem of Shannon goes the other dire
tion and asserts: The entropy rate

is asymptoti
ally a
hievable. This leaves plenty of room for algorithmi
 design. As a matter

of fa
t, 
oding algorithms separate into two groups: (i) 
odes that are designed for a spe
i�


(known) probability distribution over the inputs; (ii) universal 
odes that do not assume su
h a

probabilisti
 distribution to be known a priori and do their best to 
ome 
lose to the optimum over

an entire 
lass of models. Amongst the �rst group, we �nd Hu�man 
odes [3, pp. 402{406℄ and

Shannon{Fano

1


odes [1, pp. 101{103℄. Amongst the se
ond group, the best known algorithms are

the ones due to Lempel and Ziv

2

in 1977 and 1978.

2. Redundan
y of Classi
al Codes

The 
odes normally 
onsidered are at least near-optimal with respe
t to the entropy lower bound.

De�ne �rst the pointwise redundan
y of a 
ode C with respe
t to a model P as

R

n

(C;P ;x

n

1

) := L

�

C(x

n

1

)

�

+ lgP (x

n

1

);

where L is length. Two 
riti
al parameters are then the average redundan
y and the maximal

redundan
y de�ned by

(1)

�

R

n

(C;P ) = E

�

R

n

(C;P ;x

n

1

)

�

; R

�

n

(C;P ) = max

x

n

1

�

R

n

(C;P ;x

n

1

)

�

:

where both average and maximum are meant with respe
t to x

n

1

. In other words, the question

asked is: How far are we from the information theoreti
 optimum, either on average or in the worst


ase? There, we assume the sour
e distribution to be known and the 
ode to be �xed, and analyse

the redundan
y parameters of the given 
ode.

In this perspe
tive, the talk �rst reviews results relative to the 
lassi
al Hu�man 
ode and to a

version of Fano{Shannon 
odes, this in the 
ase of a memoryless sour
e. Redundan
y is then O(1)

but with 
u
tuations that depend on the �ne arithmeti
 stru
ture of the parameters of the model

under 
onsideration; see Figure 1. The methods use Fourier analysis and Glei
hverteilung mod 1.

Lou
hard and Szpankowski (1997), Savari (1997), Wyner (1998), and Ja
quet{Szpankowski

(1995) proved that the Lempel{Ziv algorithms under either a memoryless or a Markov model

have rates that are �(n= logn) for LZ'78

3

and �(n log log n= log n) for LZ'77. The proofs provide

detailed asymptoti
 information on the redundan
y. The results again involve subtle 
u
tuations.

The analysis is 
lose to that of digital tries, with Mellin transforms playing a prominent rôle.

1

To design a Shannon{Fano 
ode for the distribution P on S, partition S as S = S

0

[ S

1

in su
h a way that the

probabilities of S

0

and S

1

di�er by as little as possible from 1=2. All elements of S

j

are assigned a 
ode that starts

with j. Pro
eed re
ursively.

2

Roughly, the LZ algorithms re
ognize, as 
hara
ters 
ow, the frequently repeated blo
ks of letter and avoid


opying these over and over again, but instead output pointers to the lo
ation of the �rst o

urren
e of su
h a blo
k.

3

LZ'78 parses a sequen
e into \phrases" and outputs a pointer to the longest phrase already en
ountered; LZ'77

outputs a pointer to the longest fa
tor already en
ountered.
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Figure 1. Hu�man 
ode redundan
y for a memoryless sour
e with 
ontrol param-

eter � = lg(1=p� 1): (a) irrational 
ase (p = 1=�); (b) rational 
ase (p = 1=9).

3. Minimax Redundan
y for Classes of Sour
e Models

The strong redundan
y-rate problem asks what 
an be a
hieved when the sour
e model ranges

over a whole 
lass of sour
es S. Thus, the sour
e model is a bit 
onstrained but basi
ally unknown

and the question be
omes information-theoreti
 rather than algorithmi
 (no 
oding algorithm is

�xed any more). Consider redundan
ies in the sense of (1) and de�ne the minimax redundan
ies,

(2)

�

R

n

(S) = min

C

max

P2S

�

R

n

(C;P ); R

�

n

(S) = min

C

max

P2S

�

R

�

n

(C;P );


orresponding to an average-
ase or a worst-
ase s
enario, respe
tively. By their de�nitions, these

quantities represent the additional 
ost on top of entropy in
urred (at least) by any 
ode (this

is min

C

) in order to be able to 
ope with all sour
es (this is max

P2S

).

It would seem that the minimax problem of estimating the quantities in (2) is intra
table.

However, Shtarkov proved in 1978 that the (worst-
ase) minimax redundan
y is narrowly bounded

by the (Shtarkov) inequalities

(3) lg

X

x

n

1

2A

n

sup

P2S

P (x

n

1

) � R

�

n

(S) � 1 + lg

X

x

n

1

2A

n

sup

P2S

P (x

n

1

):

There the quantity supP (x

n

1

) 
ould be termed a \maximum likelihood 
oeÆ
ient" sin
e it des
ribes

the probability of any individual realization x

n

1

under the model P 2 S that assigns to it the

highest probability. Take for instan
e a binary word x

n

1

2 f0; 1g

n


omprising k letters 0 and n� k

letters 1, and S the 
lass of all memoryless models with P(0) = p and P(1) = 1 � p. Clearly, the

maximum likelihood 
oeÆ
ient is given by the Bernoulli distribution whose parameter is p = k=n

(maximum likelihood probabilities equal frequen
ies), and its value is

�

k=n

�

k

�

(n� k)=n

�

n�k

. The

sum appearing in (3) then evaluates to

A

n

:=

X

x

n

1

2A

n

sup

P2S

P (x

n

1

) =

n

X

k=0

�

n

k

��

k

n

�

k

�

n� k

n

�

n�k

:

This has the same 
avour as Abel's identities. Indeed, we have

A

n

=

n!

n

n

[z

n

℄

1

�

1� T (z)

�

2

where T (z) = ze

T (z)

is the tree fun
tion. It is then a simple matter, by singularity analysis of the tree fun
tion, to get

A

n

�

1

2

n!e

n

n

n

�

r

�n

2

and lgA

n

=

1

2

lgn+ lg

r

�

2

+ o(1):
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The quantity lgA

n

is at most 1 from the minimax redundan
y as results from inequalities (3).

Renewal sour
es. Another topi
 of the talk is to analyse redundan
y for the 
lass of renewal

sour
es de�ned as follows.

M3. A renewal model starts with a random sequen
e (x

i

)

+1

�1

of `0's and `1's, in�nite in both

dire
tions and su
h that the spa
ings between the `1's are independent identi
ally distributed

random variables. Then extra
t the window 
orresponding to x

n

1

= x

1

: : : x

n

. (You're sitting

under a bus shelter and re
ord every minute whether you're seeing a bus passing or not.)

This 
lass of sour
es makes for an interesting study sin
e minimax redundan
y turns out to

be O(

p

n ); see [2℄ for a 
omplete analysis.

The maximal likelihood approa
h leads to the 
onsideration of the sum

r

n

=

X

k

X

P(n;k)

�

k

k

0

; : : : ; k

n�1

��

k

0

k

�

k

0

�

k

1

k

�

k

1

: : :

�

k

n�1

k

�

k

n�1

:

There, the summation 
ondition P(n; k) is n = k

0

+2k

1

+ � � � , k = k

0

+k

1

+ � � � . The 
omputation

heavily involves the tree fun
tion T (z) and pro
eeds in several steps.

First, one disposes of the normalizing fa
tor of k!=k

k

� e

�k

p

2�k by introdu
ing as an artefa
t

a random variable K

n

and relating r

n

to E

�

p

2�K

n

�

. Se
ond, the distribution of K

n

is des
ribed

by the bivariate generating fun
tion

S(z; u) :=

1

Y

i=1

�(z

i

u) where �(z) =

1

1� T (ze

�1

)

:

This has roughly the 
hara
ter of (the square root of) a partition generating fun
tion with u

marking the number of parts. Third, the saddle-point method is applied to extra
t 
oeÆ
ients.

Fourth, the saddle-point analysis 
ondu
es to a lo
al analysis near 1 that is solved by Mellin

transform te
hniques. The eventual result is that

lg r

n

=

2

log 2

s

�

�

2

6

� 1

�

n�

5

8

lgn+

1

2

lg log n+O(1);

and this quantity 
losely approximates the minimax redundan
y of renewal sour
es by Shtarkov's

inequalities. Note the asymptoti
 form r

n

� e

p

n

that is typi
al of partition estimates.

Con
lusion. The redundan
y problem is typi
al of situations where se
ond-order asymptoti
s are

essential. Su
h problems of information theory are thus 
andidates par ex
ellen
e for the methods

of analyti
 information theory. By this, it is meant the study of randomness in words and 
odes by

means of the 
lassi
al methods of analyti
 
ombinatori
s. The reader interested in these questions

will be well-advised to 
onsult the forth
oming book by Szpankowski [4℄ and referen
es therein.
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Iteration of the logisti
 map

F

�

(x) = 4�x(1� x); � 2 [ 0; 1)

is a 
lassi
al example of a dis
rete dynami
al system exhibiting 
haos. Depending on the value of �,

the iterates of an arbitrary x 2 I = [ 0; 1 ℄ are attra
ted to a limit 
y
le of size a power of 2 (see [3℄).

Figure 1 displays the values of F

50

�

(1=2); : : : ; F

100

�

(1=2) as � in
reases from 0 to 1, where F

k

denotes

the kth iterate of F . Figure 2 shows an example of a traje
tory with an attra
ting 4-
y
le.

To ea
h x 2 I is asso
iated the in�nite word a(x) 2 f0; 1g

?

whose kth letter is 0 if F

k

�

(x) � 1=2

and 1 otherwise. The aim of Cristopher Moore and Porus Lakdawala [6℄ is to study the language L

formed by the set of pre�xes of all a(x) for x 2 I (the symboli
 dynami
s of F

�

) and its evolution

as � in
reases from 0 to 1. For instan
e, the language 
orresponding to � in Figure 2 is

L = 0

?

1

?

(10)

?

(1011)

?

:

This 
an be interpreted as follows: the �rst iterates 
an be smaller than 1/2, but apart from the

�xed point at 0 (where a(0) = 0

?

) they eventually get larger. Then, apart from the se
ond �xed

point of F

�

(where a is 1

?

) the iterates are attra
ted by the 4-
y
le, but they may �rst have a few

iterates on the other side of 1=2, hen
e the (10)

?

. One should also a

ount for those pre�xes whi
h

0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. The period-

doubling phenomenon.
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Figure 2. 100 iterates

for � = 0:884.
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Figure 3. Limit 
y
le

for � = 0:887.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1x

Figure 4. Limit 
y
le

for � = 0:89.

do not end exa
tly at the end of a period; this is obtained by 
on
atenating (�j1j10j101) at the end

of L and removing (1j10) whi
h otherwise would be 
ounted twi
e. However, these modi�
ations

introdu
e unne
essary te
hni
alities and will be ignored in what follows. When � in
reases further,

the 4-
y
le be
omes repelling and gives rise to an attra
ting 8-
y
le. This does not 
hange L until

the third element of the 
y
le be
omes smaller than 1/2, and then

L = 0

?

1

?

(10)

?

(1011)

?

(10111010)

?

:

Examples of 
orresponding 8-
y
les are given in Figure 3 and 4.

1. Trans
endentality at the Transition to Chaos

This pro
ess leads to a sequen
e of languages

(1) L

0

= 0

?

; L

1

= L

0

w

?

0

; L

2

= L

1

w

?

1

; : : : ;

with w

0

= 1 and w

n+1

= R(w

n

) where R is the substitution

(2) R : 0 7! 11; 1 7! 10:

Ea
h of these languages is regular. Their generating fun
tions are obtained by translation from (1):

L

0

(z) =

1

1� z

; L

n

(z) = L

n�1

(z)

1

1� z

2

n

:

The transition to 
haos 
orresponds to letting � approa
h 1. The limiting value of w

n

is the

�xed point of R, the Morse sequen
e. The limiting value of L has a generating fun
tion de�ned by

(3) L

1

(0) = 1; L

1

(z) =

L

1

(z

2

)

1� z

:

From this it follows that L

1

(z) has an in�nite number of singularities on the unit 
ir
le, thus L

1

(z)

is not algebrai
 and the 
orresponding language is not 
ontext-free. This generating fun
tion is


lassi
al: it is the generating fun
tion of binary partitions studied by Mahler [5℄ and de Bruijn [2℄
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who showed that the logarithm of the nth Taylor 
oeÆ
ient of L

1

behaves asymptoti
ally like

1

2 log 2

�

log

n

log n

�

2

+

�

1

2

+

1

log 2

+

log log 2

log 2

�

logn

�

�

1 +

log log 2

log 2

�

log log n+ F

�

logn� log log n

log 2

�

+ o(1);

where F is a periodi
 fun
tion with period 1 for whi
h a full Fourier expansion is known.

2. Sta
ks of Sta
ks

Sin
e the language L

1

is not 
ontext-free, it 
annot be re
ognized with a �nite amount of

memory. The question addressed by Moore and Lakdawala is to determine how simple a long-

term memory me
hanism re
ognizing L

1


an be. This in turn is expe
ted to give more pre
ise

information on the nature of the transition to 
haos. Two natural 
andidates for the me
hanism

are the queue (�rst in{�rst out) and the sta
k (last in{�rst out).

Sin
e 
ontext-free languages are those re
ognized by automata with a sta
k (pushed-down au-

tomata) [4℄, a sta
k is not suÆ
ient to re
ognize L

1

. A more general 
lass of languages is provided

by indexed languages [4, p. 389℄, whose grammars look like 
ontext-free grammars ex
ept for string

indi
es, whi
h 
an be appended to non-terminals. Produ
tion rule involving an indexed non-

terminal 
opies this index to all non-terminals it produ
es. For instan
e, f a

n

b

n




n

j n � 0 g is not


ontext-free but it is indexed, the grammar being

S ! T

fg

; T ! T

f

; T ! ABC;

A

f

! aA; B

f

! bB; C

f

! 
C;

A

g

! a; B

g

! b; C

g

! 
:

From the start state, the �rst rule introdu
es a �nal g, the se
ond one sta
ks any number of f 's to

produ
e T

f

n

g

. The third rule then produ
es A

f

n

g

B

f

n

g

C

f

n

g

, the rules on the se
ond line pop these

indi
es and the �nal g is popped by the rules on the third one. More generally, these languages are

re
ognized by nested sta
k automata whi
h resemble sta
ks of sta
ks.

It turns out that L

1


an be re
ognized by su
h a grammar:

S ! 0S j T; T ! A

g

j A

g

T j T

f

;

A

f

! AB; B

f

! AA;

A

g

! 1; B

g

! 0:

The �rst rule takes 
are of the initial 0

?

, the se
ond one �rst sta
ks a number k of f 's at the end

and then either produ
es an A

f

k

g

or an A

f

k

g

T

f

k

. To this �nal T

f

k

, more f 's 
an then be sta
ked

by that same rule. To see that L

1

is the end result, it is then suÆ
ient to show why A

f

k

g

a
tually

produ
es the word w

k

from (1). This follows from produ
tions in the se
ond line performing the

substitution R from (2).

3. Queues

Automata with k queues 
an simulate the k tapes of a multi-tape Turing ma
hine. However,

restri
ting the way the queues are a

essed by imposing a bound on the number of transitions per-

formed for ea
h symbol of the input string leads to the 
lass of quasi-real-time queue automata [1℄.

The 
orresponding grammars are breadth-�rst grammars. In these grammars, a produ
tion of the

form A! sB where s is a string of terminals and B a string of non-terminals rewrites a string xAy

into xsyB and the rule has to be applied to the leftmost non-terminals �rst. Thus the string of
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non-terminals represents the queue and the string of terminals represents the part of the input that

has been read so far.

By storing the 
urrent w

n

on the queue and applying R when ne
essary to expand it, Moore and

Lakdawala show that L

1

is re
ognizable by a real-time deterministi
 queue automaton with one

queue.

4. Sta
ks

Again, with no time restri
tion, two sta
ks are suÆ
ient to simulate a universal Turing ma
hine.

Exploiting the fa
t that w

n

is a palindrome ex
ept for its last symbol, it 
an be shown [6℄ that L

1


an be re
ognized by a real time automaton with two sta
ks.

The 
on
lusion [6℄ is therefore that sin
e one queue is suÆ
ient while two sta
ks are ne
essary,

the long-term memory of the system has more of a FIFO 
hara
ter. It is un
lear however how

mu
h of this work 
an be generalized to other dynami
al phase transitions.
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Abstra
t

We will dis
uss the three-
olor model on the square latti
e, and the four-
olor model on

the triangular latti
e, from a physi
ist's point of view (the so-
alled antiferromagneti
 Potts

models). Both of these have a height representation whi
h allows us to idealize them, at large

length s
ales, as being des
ribed by an elasti
 surfa
e. In the latter 
ase the height is two-

dimensional, leading to a four-dimensional surfa
e. We will review how su
h a representation

gives rise to power-law 
orrelations in the system, and how defe
ts or vorti
es of opposite

type attra
t ea
h other with an entropi
 for
e|a for
e whi
h is driven by the fa
t that there

are more ways for the surrounding latti
e to be 
olored when the defe
ts are 
loser together.
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