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Fr�ed�eri
 Chyzak

(Editor)

Abstra
t

These seminar notes 
onstitute the pro
eedings of a seminar devoted to the analysis of

algorithms and related topi
s. The subje
ts 
overed in
lude 
ombinatori
s, symboli
 
om-

putation, probabilisti
 methods, and average-
ase analysis of algorithms and data stru
tures.

This is the tenth in our series of seminar pro
eedings. The previous ones have appeared as Inria

Resear
h Reports numbers 1779, 2130, 2381, 2669, 2992, 3267, 3504, 3830, and 4056. The 
ontent

of these annual pro
eedings 
onsists of summaries of the talks, usually written by a reporter from

the audien
e.

2

The primary goal of the seminar is to 
over the major methods for the average-


ase analysis of algorithms and data stru
tures. Neighbouring topi
s of study are 
ombinatori
s,

symboli
 
omputation, asymptoti
 analysis, probabilisti
 methods, and 
omputational biology.

The study of 
ombinatorial obje
ts|their des
ription, their enumeration a

ording to various

parameters|arises naturally in the pro
ess of analysing algorithms that often involve 
lassi
al


ombinatorial stru
tures like strings, trees, graphs, and permutations. Beside the traditional topi
s

of 
ombinatori
s of words and algorithmi
s on words, over the years an in
reasing interest has

been given in the seminar to biologi
al appli
ations of 
ombinatori
s. Symboli
 
omputation, and

in parti
ular 
omputer algebra, plays an in
reasingly important role in these areas. It provides

a 
olle
tion of tools that allows one to atta
k 
omplex models of 
ombinatori
s and the analysis

of algorithms via generating fun
tions; at the same time, it inspires the quest for developing ever

more systemati
 solutions and de
ision pro
edures for the analysis of well-
hara
terized 
lasses of

problems. Our seminar shares a large part of its audien
e with Al

�

ea, a working group dedi
ated to

the analysis of algorithms and to the analysis of properties of dis
rete random stru
tures. This year's

workshop, Alea'2001, started with a series of short 
ourses on various aspe
ts of probability and

enumerative 
ombinatori
s. It was de
ided to in
lude le
ture notes for the 
ourses in the seminar

pro
eedings.

The thirty-one arti
les in
luded in this book represent snapshots of 
urrent resear
h in the areas

mentioned above. A tentative organization of their 
ontents is given below. Three Al

�

ea le
ture

notes follow.

PART I. COMBINATORICS

Sand piles are integer partitions that 
an be obtained from a 
olumn of grains by moving grains

from left to right a

ording to a spe
i�
 set of rules; their enumeration for several models is atta
ked

in [1℄. The abelian sand-pile model is a di�erent, 2-dimensional model, with an underlying group-

theoreti
 stru
ture; several algorithms to determine the identity of this group, whi
h presents fra
tal

aspe
ts, are 
onsidered in [2℄. The \s-tennis ball problem" is a 
ombinatorial model of a tennis

1

Partially supported by the Future and Emerging Te
hnologies programme of the EU under 
ontra
t number

IST-1999-14186 (ALCOM-FT).

2

The summaries for the past nine years are available on the web at the URL http://algo.inria.fr/seminars/.
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player who re
eives s (labeled) new balls at ea
h of his servi
es. The problem of the enumeration of

all orders balls may be served is explored in [3℄ together with a generalization in whi
h several balls

are served simultaneously. The 
lassi
al 
oupon-
olle
tor problem is extended in [4℄ to the 
ase

where the 
olle
tor shares his harvest with other members of his phratry. In a di�erent dire
tion,

e�e
tive manipulations of sums is a very a
tive resear
h topi
. An old method by Ma
 Mahon

for the evaluation of sums over indi
es 
onstrained by linear homogeneous diophantine inequalities

and equations is revitalized in [5℄ and given an algorithmi
 status. Another intriguing type of

expansions of q-series is the topi
 of [6℄ and is another example of 
ombinatori
s that re
eived

re
ent ni
e symboli
 developments. A 
ombinatorial problem on permutation statisti
s is solved by


omputer algebra 
al
ulations in [7℄.

[1℄ Enumeration of Sand Piles. S. Corteel.

[2℄ On the Group of a Sandpile. D. Rossin.

[3℄ The Tennis Ball Problem. D. Merlini.

[4℄ Hyperharmoni
 Numbers and the Phratry of the Coupon Colle
tor. D. Foata.

[5℄ Ma
 Mahon's Partition Analysis Revisited. P. Paule.

[6℄ Engel Expansions of q-Series. P. Paule.

[7℄ Eulerian Cal
ulus: a Te
hnology for Computer Algebra and Combinatori
s. D. Foata.

PART II. ANALYSIS OF ALGORITHMS AND COMBINATORIAL

STRUCTURES

Probalisti
 methods are at the heart of the analysis of several 
ombinatorial stru
tures or pro-


esses on 
ombinatorial stru
tures: the asymptoti
 shape of \large" random partitions is studied

in [8℄; the 
overing time of random walks on graphs satisfying self-avoiding properties is addressed

in [9℄; various tail bounds for o

upan
y problems are derived in [10℄, with appli
ations to the

determination of the 
onje
tured satis�ability threshold in the random k-sat problem. Dynami-


al systems are a di�erent approa
h used in [11℄ to analyse parameters of the data stru
ture of

Patri
ia tries. Pattern mat
hing methods and their analysis are surveyed in [12℄. More re
ent

is the interest of our seminar to biologi
al appli
ations of 
ombinatori
s, and in parti
ular to the


ru
ial problem in genomi
 analysis of distinguishing \biologi
ally signi�
ant" signals in sequen
es

from those that are part of the ground noise. This problem has been dis
ussed in two talks this

year, both from the biologist's point of view [13℄ and from the 
ombinatorial point of view [14℄.

NP-hard problems 
annot be solved exa
tly and eÆ
iently at the same time, and polynomial-time

algorithms for these problems 
an only return approximate solutions. A general method to design

polynomial-time approximate algorithms for solving su
h problems is des
ribed in [15℄, together

with a survey on appli
ations. S
heduling loads between n agents trying to a
hieve a global goal is

a diÆ
ult task; the 
ase when no 
ommuni
ation is allowed between agents is studied in [16℄.

[8℄ Asymptoti
s for Random Combinatorial Stru
tures. A. Dembo.

[9℄ Random Walks and Heaps of Cy
les. Ph. Mar
hal.

[10℄ Tail Bounds for O

upan
y Problems. P. Spirakis.

[11℄ Patri
ia Tries in the Context of Dynami
al Systems. J. Bourdon.

[12℄ New and Old Problems in Pattern Mat
hing. W. Szpankowski.

[13℄ Genome Analysis and Sequen
es with Random Letter Distribution. M. Termier.

[14℄ Random Sequen
es and Genomi
 Analysis. A. Denise.

[15℄ The Primal-Dual S
hema for Approximation Algorithms: Where Does It Stand, and Where

Can It Go? V. Vazirani.

[16℄ Distributed De
ision Making: The Case of No Communi
ation. P. Spirakis.
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PART III. COMPUTER ALGEBRA AND APPLICATIONS

After integers, whose long-studied question of fa
torization is surveyed in [17℄, the most funda-

mental data stru
tures in 
omputer algebra are (sorted) polynomials and series. Fast algorithms

for them are dis
ussed in [18℄ in the univariate 
ase, and in [19℄ in the 
ase of multivariate series.

E�e
tive manipulations of sums by a 
ounterpart for re
urren
es to the theory of di�erential forms

are des
ribed in [20℄. A new linear algebra algorithm for matri
es with entries in skew rings is

presented in [21℄, and has many appli
ations to the solving of linear ordinary di�erential equa-

tions. Examples of Hamiltonian systems are 
onsidered in [22℄, whi
h is a show
ase for algorithms

to solve linear ordinary di�erential equations. Two talks dis
uss e�e
tive methods for 
ontrol the-

ory, a new topi
 in the seminar: e�e
tive tests to 
apture stru
tural properties of 
ontrol systems

are des
ribed in [23℄, leading to Gr�obner basis 
al
ulations, while series expansions and Newton

iteration are used in [24℄ to address the question of observability.

[17℄ Thirty Years of Integer Fa
torization. F. Morain.

[18℄ Variations on Computing Re
ipro
als of Power Series. A. S
h�onhage.

[19℄ Fast Multivariate Power Series Multipli
ation in Chara
teristi
 Zero. G. Le
erf.

[20℄ A Tutorial on Closed Di�eren
e Forms. B. Zimmermann.

[21℄ Transformations Exhibiting the Rank for Skew Laurent Polynomial Matri
es. M. Bronstein.

[22℄ A Criterion for Non-Complete Integrability of Hamiltonian Systems. D. Bou
her.

[23℄ E�e
tive Algebrai
 Analysis in Linear Control Theory. A. Quadrat.

[24℄ E�e
tive Test of Lo
al Algebrai
 Observability | Appli
ations to Systems and Control

Theory. A. Sedoglavi
.

PART IV. PROBABILISTIC METHODS

Brownian motion is a 
entral tool in probability. The area under a variant, the re
e
ted Brow-

nian bridge, is analysed in details in [25℄. Brownian motion 
an be viewed as the limit of some

simple random walk on integers. Two talks study other kinds of random walks: 
onje
tures on

the frequen
e of visits of points in a planar random walk are proved in [26℄; random walks on

groups are viewed in [27℄ from the point of view of probability theory, statisti
al physi
s, ergodi


theory, harmoni
 analysis, and group theory. A model of queues is studied in [28℄, together with

a link to random matri
es. The information-theoreti
 problem of sour
e 
oding had already been


onsidered in great generality over the past years in the seminar, the key question being to analyse

the redundan
y of a sour
e; in [29℄, di�erent models for redundan
y are detailed, and a general-

ized Shannon 
ode is introdu
ed in order to solve the minimax redundan
y problem for a single

memoryless sour
e.

[25℄ Re
e
ted Brownian Bridge Area Conditioned on its Lo
al Time at the Origin. G. Lou
hard.

[26℄ Cover Time and Favourite Points for Planar Random Walks. A. Dembo.

[27℄ Introdu
tion to Random Walks on Groups. Y. Guivar
'h.

[28℄ Random Matri
es and Queues in Series. Y. Baryshnikov.

[29℄ Information Theory by Analyti
 Methods: The Pre
ise Minimax Redundan
y. W. Sz-

pankowski.

PART V. ASYMPTOTICS AND ANALYSIS

Linear fun
tional equations and their spe
ial fun
tions solutions are a 
ommon denominator

to various topi
s addressed in the seminar|
ombinatori
s, the analysis of algorithms, 
omputer

algebra. Two talks in this year's seminar are analyti
 studies of some properties of solutions of linear

fun
tional equations: 
onne
tion formulae for a q-analog to the Bessel fun
tion equation are derived

iii



in [30℄, generalizing the asymptoti
 expansion of the Bessel J

�

fun
tions; the Borel summation

te
hnique is used in [31℄ to re
over 
onvergent representations for everywhere divergent formal

power series solutions to some \irregular singular" problems 
oming from di�erential equations.

[30℄ On Ja
kson's q-Bessel Fun
tions. C. Zhang.

[31℄ On the Convergen
e of Borel Approximants. D. Lutz.

PART VI. ALEA'2001 LECTURE NOTES

General algebrai
 methods to solve 
ombinatorial enumeration problems with ni
e de
ompos-

ability properties are des
ribed in [32℄, where a 
entral role is played by generating fun
tions.

The modern view of 
ombinatorial analysis also makes enumerative generating fun
tions its 
entral

obje
ts: the singularity stru
ture of the latter, now regarded as analyti
 fun
tions of the 
omplex

variable, 
ontains all information essential to the asymptoti
 enumeration of the 
ombinatorial ob-

je
ts. The basi
s of this approa
h, nowadays known by the name of analyti
 
ombinatori
s, are

introdu
ed in [33℄. Conne
tions between Brownian motion and related pro
esses (meander, bridge,

ex
ursion) on the one hand, and 
ombinatorial obje
ts like Dy
k words, trees, bi-sorted permuta-

tions, 
ombinatorial and algorithmi
 problems like hashing and the parking problems on the other

hand make the partial review of the numerous properties of Brownian motion proposed in [34℄ very

wel
ome.

[32℄ Enumerative Combinatori
s: Combinatorial De
ompositions and Fun
tional Equations.

M. Bousquet-M�elou.

[33℄ Symboli
 Enumerative Combinatori
s and Complex Asymptoti
 Analysis. Ph. Flajolet.

[34℄ Al�ea dis
ret et mouvement brownien (Dis
rete Randomness and Brownian Motion). Ph.

Chassaing.

A
knowledgements. The le
tures summarized here emanate from a seminar attended by a 
om-

munity of resear
hers in the analysis of algorithms, from the Algorithms Proje
t at Inria (the

organizers are Philippe Flajolet and Bruno Salvy) and the greater Paris area. The editor expresses

his gratitude to the various people who have a
tively supported this joint enterprise and o�ered to

write summaries. Thanks are also due to the speakers and to the authors of summaries. Many of

them have 
ome from far away to attend a seminar and kindly a

epted to write the summary. We

are also greatly indebted to Virginie Collette for making all the organization work smoothly.

The editor,

F. Chyzak
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Enumeration of Sand Piles

Sylvie Corteel

Prism, Universit�e de Versailles - Saint-Quentin-en-Yvelines (Fran
e)

O
tober 16, 2000

Summary by Mi
hel Nguy

~
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�
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Abstra
t

Sand piles are integer partitions that 
an be obtained from a 
olumn of n grains by moving

grains from left to right a

ording to rules de�ned by a model. We try to better understand

the stru
ture of those obje
ts by de
omposing and 
ounting them. For the model introdu
ed

by Goles, Morvan, and Phan, we �ng generating fun
tions a

ording to area, height, and

width. We establish a bound for the number of the sand piles 
onsisting of n grains in

IPM(k) for large n. We present the series a

ording to area and height for Phan's model

L(�). We introdu
e a more general model, where grains 
an also go to the left, that we 
all

Frobenius sand piles. (Joint work of S. Corteel with D. Gouyou-Beau
hamps (LRI, Orsay)).

1. Preliminaries and SPM(k) Model

After the ne
essary basi
 
on
epts, we present here the simplest model of sand pile, i.e., the

SPM(k) model, from whi
h all other models are derived.

1.1. De�nitions. A sand pile made of n grains is a partition of the integer n. A partition of an

integer n is a non-in
reasing sequen
e of positive integers � = (�

1

; : : : ; �

l

). The �

i

are 
alled the

parts of the partition. The area of the sand pile is the sum j�j = �

1

+ � � �+ �

l

= n. The height of

the sand pile is the number h(�) = l of parts of the partition. For any partition �, we will 
onsider

that �

i

= 0 for i < 1 and i > h(�). The width w(�) of the sand pile � is the largest part �

1

. The

Ferrers diagram of a partition � is a drawing of � su
h that the ith 
olumn is a pile of �

i

pa
ked

squares (
alled grains). The rows are labelled from bottom to top. The 
onjugate �

0

of � is the

partition whose ith part is the number of squares in the ith 
olumn of the Ferrers diagram of �.

Let � = (�

1

; : : : ; �

l

) be a sand pile and �

0

=

�

�

0

1

; : : : ; �

0

�

1

�

be its 
onjugate. The moves of the

sand grains are of two types (see Figure 1):

1. Verti
al rule: a grain 
an move from 
olumn i to 
olumn i+ 1 if �

0

i

� �

0

i+1

� 2, so that

�

�

0

1

; � � � ; �

0

�

1

�

is repla
ed with

�

�

0

1

; � � � ; �

0

i

� 1; �

0

i+1

+ 1; � � � ; �

0

�

1

�

:

2. Horizontal rule: a grain 
an move from 
olumn i to 
olumn j if j > i+1 and �

0

i

�1 = �

0

i+1

=

� � � = �

0

j

= �

0

j+1

+ 1, so that

�

�

0

1

; � � � ; �

0

�

1

�

is repla
ed with

�

�

0

1

; � � � ; �

0

i

� 1; �

0

i+1

; � � � ; �

0

j

; �

0

j+1

+ 1; � � � ; �

0

�

1

�

:

The shift is said to have length 0 or or j � i� 1, respe
tively.

In the SPM(k) model (Sand Pile Model), introdu
ed by Goles and Kiwi [3℄, the initial 
on�gu-

ration is made of one 
olumn of n grains, and the only available rule is the verti
al rule.



4 Enumeration of Sand Piles

(a) (b)

Figure 1. (a) Appli
ation of horizontal rule to (5,4,2,1) and (4,3,2,1,1); (b) appli-


ation of verti
al rule to (4,4,2,1) and (4,3,2,1,1,1).

Figure 2. L

B

(6)

1.2. Generating fun
tion. Let p(n; k) denote the number of partitions of n of width k. Then:

F (q; x) = 1 +

X

n;k�1

p(n; k)q

n

x

k

= xqF (q; x) + F (q; xq) =

1

Y

i=1

1

1� xq

i

:

1.3. Example of bije
tion. There is a bije
tion between partitions with odd parts and partitions

with distin
t parts, as is re
e
ted by the generating fun
tions identity

1

Y

i=1

1

1� q

2i+1

=

1

Y

i=1

1� q

2i

1� q

i

=

1

Y

i=1

�

1 + q

i

�

:

1.4. Order on partitions. Let � = (�

1

; �

2

; : : : ) and � = (�

1

; �

2

; : : : ) be two partitions of n. We

say that � � � if and only if there exists a sequen
e of moves of n indu
ed by the rules to go

from � to �. In the SPM(k) model, this order is equivalent to the dominan
e order L

B

(n) [1℄ on

the 
onjugates: � � � if and only if

P

j

i=1

�

0

i

�

P

j

i=1

�

0

i

for all j � 1. Brylawski [1℄ showed:

Theorem 1. Let n be an integer. The set of partitions of n with the previously de�ned order is a

latti
e, where the maximal element is (1; 1; : : : ; 1), and the minimal element is (n). Moreover, the

in�mum and the supremum of two partitions 
an be respe
tively de�ned as follows:

1. inf(�; �) = � su
h that �

0

j

= min

�

P

j

i=1

�

0

i

;

P

j

i=1

�

0

i

�

�

P

j

i=1

�

0

i

for all j � 1.

2. sup(�; �) = � su
h that �

0

j

= max

�

P

j

i=1

�

0

i

;

P

j

i=1

�

0

i

�

�

P

j

i=1

�

0

i

for all j � 1.

In Figure 2, the maximal element (1; 1; 1; 1; 1; 1) is on the left.

Length of a maximal 
hain. The length of a maximal 
hain is greater than 2n� 3 [1℄, and smaller

than 2

�

l+1

3

�

+ lj + 1 [3℄, where l and j are de�ned by n = j + l(l + 1)=2 and 0 � j � l. For n = 6,

the two bounds are equal to 9, whi
h shows that they both 
an be attained. The 
orresponding

maximal 
hain is displayed in Figure 2.
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Figure 3. De
omposition of a sand pile in IPM(1).

2. IPM(k) Model

A more realisti
 generalization of SPM(k) model limits the lengths of the possible horizontal

shifts of a grain.

2.1. De�nition. In [4℄, the sand piles in IPM(k) are 
hara
terized in the following way:

Proposition 1. A sand pile in IPM(k) is a partition � = (�

1

; : : : ; �

l

) of n su
h that

{ for 1 � i � l, 0 � �

i

� �

i+1

� k + 1;

{ for any i < j with �

i

� �

i+1

= k + 1 and �

j

� �

j+1

= k + 1, there exists z with i < z < j

su
h that �

z

� �

z+1

< k.

2.2. Generating fun
tions.

2.2.1. Area and height.

Theorem 2. The generating fun
tion S

k

(q; x) of IPM(k) sand piles, with q and x respe
tively


ounting area and height, satis�es

S

k

(q; x) = 1 +

X

�2IPM(k)

x

l(�)

q

j�j

= 1 +

k

X

i=1

xq

i

1� xq

i

S

k

(q; xq

i

) + xq

k+1

S

k

(q; xq

k

):

Proof. A sand pile in IPM(k) is either the empty partition, or a partition in IPM(k) where one

dupli
ates i times the highest 
olumn and adds to it at least one part i (1 � i � k), or a partition

in IPM(k) where one dupli
ates k times the highest 
olumn and adds to it one part of length k+ 1.

This de
omposition yields the last expression for S

k

(q; x) in the statement of the theorem, after

noting that S

k

(q; xq

r

) is the generating fun
tion obtained by dupli
ating r times the highest 
olumn

in ea
h sand pile. �

Note the parti
ular 
ases:

S

1

(q; x) = 1 +

X

n�1

x

n

q

n(n+1)=2

n

Y

i=1

�

q +

1

1� xq

i

�

; S

1

(q; x) =

n

Y

i=1

�

q +

1

1� xq

i

�

:

2.2.2. Area and width.

Theorem 3. The generating fun
tion S

k

(q; y) of IPM(k) sand piles, with q and y respe
tively


ounting area and width, satis�es:

S

k

(q; y) =

�

1� (yq)

k+1

1� yq

+ y

k

q

k�1

�

S

k

(q; yq) + y

k

q

k�1

�

S

k

(q; yq)� S

k

(q; yq

2

)

�

:
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0.4

0.42

0.44

0.46

0.48

0.5
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Figure 4. Evolution of the smallest root of the polynomial 1� 2x� 3x

k+2

+ x

k+3

+ x

k+1

.

In parti
ular:

S

1

(q; y) = 1 +

X

n�1

y

n

q

n(n�1)=2

n

Y

i=1

1 + q � q

i�1

1� q

i

:

2.2.3. Height and width. Let p

k

(h;w) be the number of sand piles in IPM(k) of height h and

width w and P

k;h

(y) the generating fun
tion

P

w�0

p

k

(h;w)y

w

.

Theorem 4. The generating fun
tion P

k;h

(y) follows the re
urren
e:

P

k;0

(y) = 1; P

k;1

(y) = y

1� y

k+1

1� y

; P

k;2

(y) = y

1� y

k+1

1� y

1� y

k+2

1� y

� y

2(k+1)

;

P

k;h

(y) =

�

1� y

k+1

1� y

+ y

k

�

P

k;h�1

(y)� y

k

P

k;h�2

(y) for h � 3.

Now, let P

k

(x; y) be the width (variable x) and the height (variable y) generating fun
tion

P

h�0

P

k;h

(y)x

h

. From the previous re
urren
e one gets:

Theorem 5. The generating fun
tion P

k

(x; y) is given by:

P

k

(x; y) =

1� x(y

k

+ 1� y

k+1

) + x

2

y

k

(1� y)

1� x

�

1�y

k+1

1�y

+ y

k

(1� x)

�

:

Let p

k

(n) be the number of sand piles in IPM(k) of half perimeter (width + height) n, and

P

k

(x) =

P

n�0

p

k

(n)x

n

be its generating fun
tion. As P

k

(x) = P

k

(x; x), its expression is:

P

k

(x) =

(1� x)

2

(1� x

k+1

+ x

k+2

)

1� 2x� 3x

k+2

+ x

k+3

+ x

k+1

:

When k grows, the quantity p

k

(n), asymptoti
ally equal for large n to 


k

=�

n

k

with 


k

2 R and �

k

the smallest root of the denominator 1� 2x� 3x

k+2

+ x

k+3

+ x

k+1

, gets 
loser to 2

n

, the number

of partitions of semi-perimeter n.
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2.3. Asymptoti
s. De�ne

p

k

= [q

n

℄

Y

i�1

1� q

ki

1� q

i

; B

k

=

r

k � 1

6k

; and C

k

=

1

2

�

k � 1

6k

3

�

1=4

:

Then p

k

(n) = C

k

n

�3=4

exp

�

B

k

n

1=2

�

O

�

1 + n

�1=4

�

. If I

k

(n) is the number of partitions of n in

IPM(k), then p

k+1

(n) � I

k

(n) � p

k+2

(n).

3. The Model L(�)

The model L(�) generalizes the SPM(k) by restri
ting its verti
al rule, instead of the horizontal

rule as IPM(k). Namely, the di�eren
e between the two 
onse
utive 
olumns involved must be

greater then �.

3.1. De�nition. In [4℄, the sand piles in L(�) are 
hara
terized in the following way:

Proposition 2. A sand pile in L(�) is a partition � = (�

1

; : : : ; �

l

) of n su
h that

{ for 1 � �

1

, �

0

i

� �

0

i+1

� � � 1;

{ for any i < j with �

0

i

��

0

i+1

= �� 1 and �

0

j

��

0

j+1

= �� 1, there exists z with i < z < j su
h

that �

z

� �

z+1

> �.

Let L

�

(q; x) = 1 +

P

�2L(�)

x

l(�)

q

jpij

the generating fun
tion of sand piles in L(�) a

ording to

their height and area.

Lemma 1. L

�

(q; x) satis�es the q-equation:

L

�

(q; x) =

1� (xq)

��1

1� xq

+

�

(xq)

��1

1� xq

+ x

��1

q

�

�

L

�

(q; xq):

Theorem 6. L

�

(q; x) is given by:

L

�

(q; x) =

X

n�0

x

�n

q

�n(n+1)=2

1� (xq

n+1

)

�

1� xq

n+1

n

Y

i=1

�

q +

1

1� xq

i

�

:

Bounds 
an be obtained for all � for the number l

n;�

of partitions in L(n; �).

4. Frobenius Model

Another generalization 
onsists in allowing the grains to move both to the left and to the right.

In [2℄, Corteel de�nes su
h a model, 
alled the Frobenius sand pile, in the following way:

De�nition 1. Let l be an integer. A Frobenius sand pile is a pair 
onsisting of a pivot indi
e

p(a) � l and a sequen
e of integers (a

1

; a

2

; : : : ; a

l

) su
h that

a

1

� a

2

� � � � � a

p(a)

� a

p(a)+1

� � � � � a

l

:

4.1. Order on Frobenius sand piles.

De�nition 2. Let a =

�

p(a); (a

1

; a

2

; : : : ; a

l

)

�

and b =

�

p(b); (b

1

; b

2

; : : : ; b

l

)

�

be two Frobenius sand

piles. Then a �

F

b if and only if, for all i; j � 0,

p(a)+j

X

l=p(a)�i

a

l

�

p(b)+j

X

l=p(b)�i

b

l

:

Proposition 3. Let L

F

(n) be the set of Frobenius partitions ordered by �

F

. Then L

B

(n) is a

suborder of L

F

(n).
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Length of a maximal 
hain. For n � 3, the length of a maximal 
hain is greater than 2n� 4, and

smaller than 2

�

l+1

3

�

+ lj + 1, where l and j are de�ned by n = j + l(l + 1)=2 and 0 � j � l.

De�nition 3. Let a =

�

p(a); (a

1

; a

2

; : : : ; a

l

)

�

be a sand pile. a

<

, a

>

, a

�

, and a

�

are de�ned by

a

<

=

�

a

p(a)�1

; a

p(a)�1

; : : : ; a

1

�

; a

>

=

�

a

p(a)+1

; a

p(a)+2

; : : : ; a

l

�

;

a

�

=

�

a

p(a)

; a

p(a)�1

; : : : ; a

1

�

; a

�

=

�

a

p(a)

; a

p(a)+1

; : : : ; a

l

�

:

If we 
onstrain horizontal shifts to be smaller than k, we 
an 
reate an in
reasing sequen
e

of orders IFPM(k) with the relations of order �

k

. The Frobenius sand piles of IFPM(k) are


hara
terized by:

Proposition 4. Let a =

�

p(a); (a

1

; a

2

; : : : ; a

l

)

�

be a sand pile. This sand pile belongs to IFPM(k)

if and only if both of a

<

and a

>

, and at least one of a

�

and a

�

belong to IPM(k).

4.2. Generating fun
tions. The only available generating fun
tion is the series of F -partitions

given by

1 +

X

k�1

q

k

k

Y

i=1

1

(1� q

i

)

2

:

For IFPM(k), we must so far satisfy ourselves with the bound F

k

(n) �

�

�

IFPM(n; k)

�

�

� F

k+1

(n) for

F

k

(n) = [q

n

℄

0

�

1 +

X

j�1

q

j

j

Y

i=1

1� q

(k+1)i

(1� q

i

)

2

1

A

:

5. Con
lusion and Open Questions

We have studied di�erent sand pile models related to integer partitions, and in parti
ular we

have 
omputed generating fun
tions and asymptoti
 bounds. A question of interest would 
onsist

in getting exa
t asymptoti
s instead of asymptoti
 bounds only. One 
ould start with the area

generating fun
tion in the SPM 
ase, given by

X

n�0

x

n

q

n(n+1)=2

n

Y

i=1

�

q +

1

1� q

i

�

:
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Abstra
t

The abelian sandpile model is a 
ellular automaton. Its rules generalize the sandpile rules for

general graphs. This model has been introdu
ed by Bak, Tang, and Wiesenfeld [1℄ in 1987.

Dhar [9℄ showed that the set of re
urrent 
on�gurations of this automaton has the stru
ture

of a �nite abelian group.

In this talk, we des
ribe several algorithms to determine the identity in the group. This

element presents fra
tal aspe
ts that we are not able yet to explain. These algorithms

allow us to introdu
e relationships between the sandpile group and well-known algebrai
 or


ombinatorial obje
ts.

Details may be found in the re
ent works of R. Cori, D. Rossin, and B. Salvy [6℄, and D. Rossin

[12℄. The papers [1, 10℄, the book [2℄, and the thesis [13℄ are good introdu
tions to sandpiles.

1. Introdu
tion

Let G = (V;E) be a non-oriented and 
onne
ted multi-graph with V = f1; : : : ; ng its set of

verti
es and E a symmetri
 n� n matrix whose entry e

i;j

is the number of edges with endpoints

i, j. It is assumed that for any i, e

i;i

= 0 so that the multi-graph has no loops. Frequently, G is a

graph, and hen
e e

i;j

is either 0 or 1. The degree of vertex i in G is d

i

=

P

n

j=1

e

i;j

. A multi-graph

is rooted if one of its verti
es is distinguished, it is 
alled the sink and is numbered n.

A 
on�guration u = (u

1

; : : : ; u

n

) 2 N

n

of G is a ve
tor of non-negative integers. In the 
ontext

of the sandpile model, the verti
es of the graph are 
ells, and the number u

i

may be interpreted

as the height of a pile of grains of sand standing in 
ell i. In the rest of this talk, the number of

grains in the sink is not taken into a

ount. Thus two 
on�gurations u and v whi
h di�er only in

position n are 
onsidered as equal; we write u = v if u

i

= v

i

for all 1 � i < n. This translates the

fa
t that the sink 
olle
ts all grains of sand getting out of the system.

A toppling of the vertex i, 1 � i < n, in 
on�guration u 
onsists in de
reasing the number of

grains in this vertex by its degree while the number of those of ea
h of its neighbours j in
reases

by e

i;j

. This is equivalent to the addition to u of the ve
tor �

i

su
h that (�

i

)

i

= �d

i

and

(�

i

)

j

= e

i;j

for j 6= i. The notation u �! v means that v is obtained from u by toppling a vertex,

so that there exists an 1 � i < n su
h that v = u + �

i

. The transitive 
losure of the toppling

operation �! is denoted

�

�!: u

�

�! v if v is obtained from u by a sequen
e of topplings. An

avalan
he is a sequen
e of topplings (see Figures 1, 2 and 3).

The sandpile model has been introdu
ed by Bak, Tang, and Wiensenfeld [1℄ in 1987. In a

re
ent book, Bak [2℄ gives an overview of many physi
al problems|earthquakes and solar 
ares for
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Figure 1. Multi-graph 
orresponding to the 4� 4 grid.

2 1 0 3

3 4 3 2

1 2 3 1

2 1 0 2

2 2 0 3

4 0 4 2

1 3 3 1

2 1 0 2

3 2 1 3

0 2 0 3

2 3 4 1

2 1 0 2

3 2 1 3

0 2 1 3

2 4 0 2

2 1 1 2

3 2 1 3

0 3 1 3

3 0 1 2

2 2 1 2

Figure 2. Topplings and avalan
he on the 4� 4 grid.

1

4 3

1

2 0

2

0 4

0

3 1

0

1 5

1

3 1

1

2 0

2

4 2

1

3 2

0

0 4

Figure 3. Topplings and avalan
he on a graph.

example|whose models are based on the sandpile one. All these models follow the Gutemberg{

Ri
hter law: logN = a � bM , logE = 
 + dM , and N � E

1��

(� � 2) where M is the

magnitude, N is the number of topplings, and E is the energy. In three dimensions, N � E

1��

(� � 2:5). A very similar automaton was introdu
ed independently by other authors under the

name of the 
hip-�ring game [4, 11℄. Biggs [3℄ found many algebrai
 and 
ombinatorial properties

of the 
hip-�ring game, some of whi
h 
orrespond to Dhar's results on sandpiles [10℄. In [5℄, we

also showed a 
lose relationship between re
urrent 
on�gurations of the 
omplete graph and the

parking fun
tions.

2. The Sandpile Group

A vertex is stable if it 
ontains a number of grains less than its degree, otherwise this vertex is

unstable. A stable 
on�guration is a 
on�guration where all verti
es are stable. It is not diÆ
ult

to prove that for every 
on�guration u there exists a stable 
on�guration û su
h that u

�

�! û.

Moreover this 
on�guration is unique, and the number of topplings is independent of the way in

whi
h û is obtained from u [9℄.
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*
2 2 2

3 1 3

0 2 1

2 1 2

1 0 1

2 1 2

4 3 4

4 1 4

2 3 3

2 2 2

3 1 3

0 2 1

Figure 4. A re
urrent 
on�guration.

Let u, v be two 
on�gurations. Let u

i

(resp. v

i

) be the number of grains on vertex i in 
on�gura-

tion u (resp. v). We will denote by u+v the 
on�guration w su
h that w

i

= u

i

+v

i

. A 
on�guration u

is re
urrent if it is stable and if there exists a 
on�guration v 6= 0 su
h that u + v

�

�! u (see Fig-

ure 4). The simplest example of a re
urrent 
on�guration is Æ = (d

1

� 1; d

2

� 1; : : : ; d

n�1

� 1; 0).

The set of re
urrent 
on�gurations is isomorphi
 to the set of equivalen
e 
lasses de�ned by the

symmetri
 
losure � of

�

�!.

Let T

G

(x; y) be the Tutte polynomial of the graph G. Then T

G

(1; y) is the the generating fun
tion

(a polynomial) of the re
urrent 
on�gurations a

ording to the number of sand grains.

We 
an asso
iate to the set of re
urrent 
on�gurations the operator � de�ned by u� v =

[

u+ v

where u and v are two re
urrent 
on�gurations. The set of re
urrent 
on�gurations with the

operation � is an abelian group G [8℄, this group is equal to the produ
t G =

Q

n

i=1

Z=d

i

Z and the

group stru
ture does not depend on the sink 
hoi
e in the graph G.

Let u = (u

1

; : : : ; u

n

) be a re
urrent 
on�guration. We denote �u the re
urrent 
on�guration

(d

1

� 1 � u

1

; d

2

� 1 � u

2

; : : : ; d

n�1

� 1 � u

n�1

; 0). Then the identity of the sandpile group is

Id = Æ � (Æ � Æ) and the opposite of a re
urrent 
on�guration u is 	u = Id� (Æ � u).

3. Toppling Ideal, Set Topplings and Minimal Gr�obner Basis

Con�gurations and topplings are easily translated from the linear algebra setting into polyno-

mial operations by asso
iating to a 
on�guration u = (u

1

; u

2

; : : : ; u

n

) 2 N

n

a monomial x

u

=

x

u

1

1

x

u

2

2

: : : x

u

n

n

2 Q [x

1

; : : : ; x

n

℄. To a toppling �

i

is asso
iated the binomial T (x

i

) = x

d

i

i

�

Q

j

x

e

i;j

j

.

The addition of two 
on�gurations translates into the multipli
ation of the 
orresponding monomi-

als and toppling vertex i in u translates into the division of x

u

by x

d

i

i

followed by the multipli
ation

by

Q

n

j=1

x

e

i;j

j

. We de�ne the toppling ideal I

G

as the ideal generated by x

n

� 1 and the toppling

polynomials T (x

i

) for i 2 f1; : : : ; ng.

A toppling polynomial 
an also be asso
iated to a subset X of the set V of verti
es as follows.

For a vertex i of V , de�ne

d

i

(X) =

X

j2X

e

i;j

;

the number of edges with endpoints i and a vertex of X. The set toppling of the set X in 
on�gu-

ration u 
onsists in adding the ve
tor �

X

to u, where

(�

X

)

i

=

(

�d

i

(

�

X); for i 2 X;

d

i

(X); for i 2

�

X;

where

�

X denotes V nX.
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A

ordingly, the toppling polynomial of the subset X of V is de�ned by

T (X) =

Y

i2X

x

d

i

(

�

X)

i

�

Y

i2

�

X

x

d

i

(X)

i

:

Gr�obner bases are a 
lassi
al 
omputational tool for dealing with polynomial ideals. Given an

ordering on monomials whi
h is 
ompatible with the produ
t (a so-
alled admissible ordering) and

a set of generators of an ideal I, one 
an 
ompute a Gr�obner basis for I and from there test ideal

membership and more generally 
ompute normal forms in the quotient of the algebra by I. The

rest of this work makes use of the notation and basi
 results from [7, Chapter 2℄.

The graded reverse lexi
ographi
 order (grevlex) denoted �, is de�ned as follows. If A =

Q

n

i=1

x

�

i

i

and B =

Q

n

i=1

x

�

i

i

are two monomials in the variables x

i

, i = 1; 2; : : : ; n, then A � B if

j�j =

n

X

i=1

�

i

< j�j =

n

X

i=1

�

i

or j�j = j�j and in (�

1

; : : : ; �

n

)� (�

1

; : : : ; �

n

) the right-most non-zero entry is positive.

From there a toppling order is de�ned as follows: let � be a permutation of f1; : : : ; ng su
h

that �(n) = n and if the distan
e from vertex i to the sink is larger than the distan
e from vertex j

to the sink, then �(i) > �(j). The toppling order is the graded reverse lexi
ographi
 order on x

�(1)

,

x

�(2)

, . . . , x

�(n)

.

Theorem 1. A Gr�obner basis of the ideal I

G

with respe
t to a toppling order is given by

T =

�

T (X)

�

�

X � f1; : : : ; ng

	

[ fx

n

� 1g:

A Gr�obner basis is minimal when its elements have leading 
oeÆ
ient 1 and no leading monomial

divides another leading monomial in the basis. A subset X of verti
es of the graph G = (V;E) is

well-
onne
ted if both subgraphs of G indu
ed by X and

�

X are 
onne
ted.

Theorem 2. The set S




of toppling polynomials 
orresponding to the sets X � f1; 2; : : : ; n � 1g

whi
h are well-
onne
ted is a minimal Gr�obner basis for the toppling order.

In the worst 
ase, the minimal Gr�obner basis still 
ontains 2

n�1

elements for the 
omplete graph.

As mentioned before, the quotient Q [x

1

; x

2

; : : : ; x

n

℄=I

G

is a Q-ve
tor spa
e whose dimension is

the order of the group of re
urrent 
on�gurations. From a Gr�obner basis for I

G

, a basis of this

ve
tor spa
e is given by the set of monomials that do not redu
e to 0 by the basis. We 
all these

redu
ed monomials. Theorem 3 below gives a simple bije
tion between redu
ed monomials for the

toppling order and re
urrent 
on�gurations.

Let � be the mapping from the set of stable 
on�gurations onto itself given by �(u) = Æ � u.

We also denote �(M) = �(a

1

; a

2

; : : : ; a

n

) for a monomial M = x

a

1

1

x

a

2

2

: : : x

a

n

n

.

Theorem 3. The mapping � de�nes a bije
tion between the set of redu
ed monomials with respe
t

to the toppling order and the set of re
urrent 
on�gurations.

For a 
on�guration u, let �(u) denote the redu
ed 
on�guration obtained from the monomial

asso
iated to u by performing redu
tions by the Gr�obner basis of I

G

asso
iated with the toppling

order.

Proposition 1. If u is a 
on�guration then the re
urrent 
on�guration equivalent to u is

�

�

�

�

�

�

�(u)

�

�

�

:

The identity in the group of re
urrent 
on�gurations is �

�

�(Æ)

�

.
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2 3

1

Figure 5. Multigraph with 4 verti
es.

3
2

X

X  X2 3

X2
3

X  X1 2

X1
3

X

X

X

1

2

3

X  X3 1
2

Figure 6. Representation of irredu
ible monomials.

Corollary 1. For two re
urrent 
on�gurations u and v,

u� v = �

�

�

�

�(u) + �(v)

�

�

:

Proposition 1 yields the following algorithm to 
ompute the identity on a graph G with sink s: be-

ginning with the 
on�guration Æ, perform the set topplings for all well-
onne
ted subgraph ofG n fsg

(this is equivalent to redu
ing by the Gr�obner basis for the toppling order). When no further set

toppling 
an be performed, for ea
h 
ell i repla
e its number of grains n

i

with d

i

�n

i

. The resulting


on�guration is the identity.

4. Examples

Our �rst example 
orresponds to the graph displayed on Figure 5. The stru
ture of the graph is

re
e
ted by the toppling polynomials for the verti
es:

x

3

1

� x

2

2

x

3

; x

3

2

� x

2

1

x

4

; x

2

3

� x

1

x

4

; x

2

4

� x

2

x

3

; x

4

� 1:
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The minimal Gr�obner basis for the graded reverse lexi
ographi
 order on monomials is

x

2

3

� x

1

; x

3

2

� x

2

1

; x

3

1

� x

2

; x

2

x

3

� 1; x

2

x

1

� x

3

; x

3

x

2

1

� x

2

2

; x

4

� 1:

Apart from the last, these polynomials 
orrespond respe
tively to well-
onne
ted subgraphs with

verti
es

f3g; f2g; f1g; f1; 2; 3g; f1; 2g; f1; 3g:

Given a Gr�obner basis G = fp

1

; p

2

; : : : ; p

k

g � K [x

1

; x

2

; : : : ; x

n

℄ for some �eld K , it is usual to

represent the leading monomials of the p

i

on an integer latti
e in n dimensions. Ea
h polynomial p

is asso
iated to a point 
(p) whose 
oordinates are the exponents of its leading monomial. The

leading terms of the p

i

generate the ideal of leading terms of polynomials in the ideal. These

leading terms are thus exa
tly represented by

S


(p

i

) + N

n

. This removes from N

n

a stair
ase

shape whose latti
e points 
orrespond to the quotient (see Figure 6). Their number is exa
tly the

order of the group of re
urrent 
on�gurations. Note that in our example, those seven monomials

are f1; x

1

; x

2

1

; x

2

; x

2

2

; x

3

; x

1

x

3

g, none of whi
h 
orrespond to a re
urrent 
on�guration. However,

applying � yields the re
urrent 
on�gurations as explained above.

Our se
ond example is the 2� 2 grid 
onsisting of 4 
ells, ea
h 
onne
ted twi
e to the sink. The

sandpile group of this grid, 
omputed for instan
e in [9℄, is the produ
t of two 
y
li
 group of orders

24 and 8.

After the 
omputation of the Gr�obner basis of the ideal generated by the toppling polynomials of

verti
es, it follows that x

4

is of order 24 and that any element 
an be expressed as a produ
t x

i

3

x

j

4

where 0 � i � 7 and 0 � j � 23, whi
h gives that the order of the group is 192. Also, sin
e x

1

and x

2


an be expressed in terms of x

3

and x

4

, it is seen that the group has two generators.

Bibliography

[1℄ Bak (P.), Tang (C.), and Wiensenfeld (K.). { An explanation of 1=f noise. Physi
al Review Letters, vol. 59, n

�

4,

July 1987, pp. 381{384.

[2℄ Bak (Per). { How nature works. { Coperni
us, New York, 1996, xiv+212p. The s
ien
e of self-organized 
riti
ality.

[3℄ Biggs (N. L.). { Chip-�ring and the 
riti
al group of a graph. Journal of Algebrai
 Combinatori
s, vol. 9, n

�

1,

1999, pp. 25{45.

[4℄ Bj�orner (Anders), Lov�asz (L�aszl�o), and Shor (Peter W.). { Chip-�ring games on graphs. European Journal of

Combinatori
s, vol. 12, n

�

4, 1991, pp. 283{291.

[5℄ Cori (Robert) and Rossin (Dominique). { On the sandpile group of dual graphs. European Journal of Combina-

tori
s, vol. 21, n

�

4, 2000, pp. 447{459.

[6℄ Cori (Robert), Rossin (Dominique), and Salvy (Bruno). { Polynomial ideals for sandpiles and their Gr�obner

bases. { Resear
h Report n

�

3946, Institut National de Re
her
he en Informatique et en Automatique, 2000.

20 pages. Submitted to Elsevier Preprint.

[7℄ Cox (David), Little (John), and O'Shea (Donal). { Ideals, varieties, and algorithms. { Springer-Verlag, New

York, 1997, se
ond edition, xiv+536p. An introdu
tion to 
omputational algebrai
 geometry and 
ommutative

algebra.

[8℄ Creutz (M.). { Abelian sandpile. Computers in Physi
s, vol. 5, 1991, pp. 198{203.

[9℄ Dhar (D.), Ruelle (P.), Sen (S.), and Verma (D.-N.). { Algebrai
 aspe
ts of abelian sandpile models. Journal of

Physi
s A, vol. 28, n

�

4, 1995, pp. 805{831.

[10℄ Dhar (Deepak). { Self-organized 
riti
al state of sandpile automaton models. Physi
al Review Letters, vol. 64,

n

�

14, 1990, pp. 1613{1616.

[11℄ Goles (Eri
). { Sand piles, 
ombinatorial games and 
ellular automata. In Instabilities and nonequilibrium stru
-

tures, III (Valpara��so, 1989), pp. 101{121. { Kluwer A
ad. Publ., Dordre
ht, 1991. Vol. 64 in Mathemati
s and

its Appli
ations.

[12℄ Rossin (D.). { On the 
omplexity of addition in the sandpile group of a graph. { Submitted to Elsevier Preprint.

[13℄ Rossin (D.). { Propri�et�es 
ombinatoires de 
ertaines familles d'automates 
ellulaires. { Th�ese,

�

E
ole polyte
h-

nique, Palaiseau, Fran
e, 2000.



Algorithms Seminar 2000{2001,

F. Chyzak (ed.), INRIA, (2002), pp. 15{18.

Available online at the URL

http://algo.inria.fr/seminars/.

The Tennis Ball Problem

Donatella Merlini

DSI, Universit�a degli Studi di Firenze (Italy)

Mar
h 19, 2001

Summary by Cyril Banderier

Abstra
t

Our obje
t is to explore the \s-tennis ball problem" (at ea
h round s balls are available and

we play with one ball at a time). This is a natural generalization of the 
ase s = 2 
onsidered

by Mallows and Shapiro. We show how this generalization is 
onne
ted with s-ary trees and

employ the notion of generating trees to obtain a solution expressed in terms of generating

fun
tions. Then, we present a variation in whi
h at ea
h round we have 4 balls and play

with 2 balls at a time. To solve this problem we use the 
on
epts of Riordan arrays and

stret
hed Riordan arrays, and a generalization of generating trees. This is a joint work by

D. Merlini with D. G. Rogers, R. Sprugnoli and M. C. Verri.

1. Introdu
tion

Let 1 � t < s be two integer numbers. A tennis player begins a mat
h with 0 ball in the po
ket.

At ea
h round, he is given s new balls, that he puts in the po
ket, and throws away t balls, and so

on until the nth round. The balls are labelled from 1 to sn and are served in in
reasing order. The

tn balls thrown away form a sequen
e of tn labels. Two sequen
es whi
h are equal on
e sorted are


onsidered equivalent. The tennis ball problem 
onsists in evaluating the following two quantities:

the number f

n

of nonequivalent 
on�gurations after n rounds and the 
umulative sum �

n

(i.e., the

sum|over all the possible 
on�gurations|of the labels of the tn balls that the player threw away).

Turns Balls re
eived Balls in the po
ket Balls thrown away

n = 1 1 and 2 1 and 2 1

n = 2 3 and 4 2, 3, and 4 3

n = 3 5 and 6 2, 4, 5, and 6 2

n = 4 7 and 8 4, 5, 6, 7, and 8 6

sum = 1 + 3 + 2 + 6 = 12

Turns Balls re
eived Balls in the po
ket Balls thrown away

n = 1 1 and 2 1 and 2 2

n = 2 3 and 4 1, 3, and 4 3

n = 3 5 and 6 1, 4, 5, and 6 4

n = 4 7 and 8 1, 5, 6, 7, and 8 1

sum = 2 + 3 + 4 + 1 = 10

Figure 1. Two s
enarios for the (s = 2; t = 1)-tennis ball player.
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The 
on�guration after 4 rounds is (1; 2; 3; 6) for the �rst example and (1; 2; 3; 4) for the se
ond

example. In fa
t, for the (2; 1)-
ase, one has f

1

= 2, f

2

= 5, f

3

= 14, f

4

= : : : do you guess what?

There is indeed 42 di�erent 
on�gurations (after 4 rounds), and if one adds all the sums, one gets

�

1

= 1 + 2 = 3, �

2

= (1 + 2) + (1 + 3) + (1 + 4) + (2 + 3) + (2 + 4) = 23, �

3

= 131, �

4

= 664, . . .

In the next se
tion, it is shown how the (s; 1)-
ase 
an be solved in terms of s-ary trees (by

symmetry, this also solves the (s; s� 1)-
ase). Then, the last se
tion is dedi
ated to the (4; 2)-
ase,

that the authors solved with Riordan arrays and a bilabelled generating tree te
hnique.

Turns Balls re
eived Balls in the po
ket Balls thrown away

n = 1 1, 2, 3, 4 1, 2, 3, 4 2, 3,

n = 2 5, 6, 7, 8 1, 4, 5, 6, 7, 8 1, 7

n = 3 9, 10, 11, 12 4, 5, 6, 8, 9, 10, 11, 12 10, 12

n = 4 13, 14, 15, 16 4, 5, 6, 8, 9, 11, 13, 14, 15, 16 5, 16

2 + 3 + 1 + 7 + 10 + 12 + 5 + 16 = 56

Figure 2. A s
enario for the (4; 2)-tennis ball problem.

This is the only 
ase solved with t 6= 1. The general (s; t)-tennis ball problem remains open.

2. The (s; 1)-Tennis Ball Problem

Generating trees are a 
onvenient way to reexpress the problem. Consider an in�nite rooted

tree T . The root (labelled 0 and 
orresponding to level 0) has t 
hildren (labelled 1; : : : ; t). Ea
h

path in this tree 
orresponds to a s
enario, thus ea
h node at level n has a label whi
h 
orresponds

to the ball thrown away at round n. As we are 
ounting the sorted 
on�gurations (that is, one

does not 
are for the order of the balls thrown away), we 
an without loss of generality suppose

that the labels in
rease with the depth.

0

1

2

3 4 5 6

3

4 5 6

4

5 6

2

3

4 5 6

4

5 6

1

1

1

1 2

2

1 2 3

2

1

1 2

2

1 2 3

3

1 2 3 4

Figure 3. The generating tree T for the (2; 1)-
ase and an isomorphi
 tree

e

T .

More generally, the rewriting rule

(

root : (1)

rule : (k) 7! (1) : : : (k + s� 2) : : : (k + s� 1)

des
ribes the

formation of a tree

e

T whi
h is isomorphi
 to the generating tree T of the (s; 1)-
ase: a node with

label b at level i in the generating tree T be
omes a node with label si� b+ 1 in the tree

e

T .

Theorem 1. The number f

n

of 
on�gurations for the (s; 1)-tennis ball problem is the number T

n+1

of s-ary trees with n+ 1 nodes. One has

T

n

=

�

sn

n

�

1 + (s� 1)n

and T (z) = 1 + zT (z)

s

:
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Proof. The problem 
an be seen as the enumeration of walks on the integers (with an unbounded set

of jumps des
ribed by the rewriting rule), for whi
h the generating fun
tion 
an be made expli
it [1℄.

Merlini et al. used Riordan array te
hniques [4℄. �

Theorem 2. The 
umulative sum (i.e., the sum over all the 
on�gurations of the labels of the

thrown balls) is

�

n�1

=

sn

2

+ (s� 1)n+ 1

2

�

sn

n

�

(s� 1)n+ 1

�

1

2

n

X

k=0

�

sk

n

��

s(n� k)

n� k

�

:

Proof. Consider A

n

=

P

n

i=0

`

i;n

, the sum of all the labels (with multipli
ity) at level i in the tree T .

The 
umulative sum �

n

satis�es

�

n

= A

n

�

(sn+ 2)(n+ 1)

2

T

n+1

:

The generating fun
tion for the sequen
e A

n

is:

A(z) =

s(s� 1)zT

0

(z)

2

2T (z)

+ T

0

(z):

From these two equations, one gets the almost 
losed form of the theorem.

Note that the asymptoti
s of �

n


an easily be dedu
ed from the asymptoti
s of A

n

. �

These theorems are 
onsistent with the fa
t that the (2; 1)-
ase leads to Catalan numbers f

n

=

(

2n

n

)

n+1

(proven in [2℄) and to �

n

=

2n

2

+5n+4

n+2

�

2n+1

n

�

�2

2n+1

(as it was found in [3℄ by hand manipulations

of sums of binomial 
oeÆ
ients).

3. The (4; 2)-Tennis Ball Problem

Here again, as one does not 
are for the order (of the balls thrown away), one 
an without loss of

generality suppose that any 
on�guration is represented by the smallest equivalent sequen
e with

respe
t to lexi
ographi
al order. Thus the 
on�guration (1; 4); (5; 8); (2; 10) is 
onsidered to be the

same as the 
on�guration (1; 2); (4; 5); (8; 10).

Let M

[n℄

m

be the number of pairs at level n (in the bilabelled generating tree of the (4; 2)-
ase)

with larger element equal to m; one has the re
urren
e

M

[n+1℄

m

=

m�2

X

r=2n

(m� r � 1)M

[n℄

r

:

De�ning f

n;k

= M

[n℄

4n+1�k

gives an in�nite lower-triangular array:

n/k 1 2 3 4 5 6 7 8 9

0 1

1 3 2 1

2 22 16 10 4 1

3 211 158 105 52 21 6 1

4 2306 1752 1198 644 301 116 36 8 1

One has the relation f

n+1;k+2

=

P

1

j=0

(j + 1)f

n;k+j

: The sums f

n

=

P

k�1

f

n;k

give the sequen
e

(1; 6; 53; 554; : : : ), the number of 
on�gurations for the (4; 2)-tennis ball problem.
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It is 
onvenient to transform the above array into a proper Riordan array. A proper Riordan

array is an in�nite lower triangular array (D

n;k

)

n;k2N

whi
h satis�es

d

n+1;k+1

=

1

X

j=0

a

j

d

n;k+j

for all n and k in N :

The generating fun
tion A(z) =

P

j

a

j

z

j

allows to express d

n;k

by a Lagrangean-like formula

d

n;k

= [z

n

℄g(z)

�

zh(z)

�

k

where h(z) = A

�

zh(z)

�

:

The above array 
an be embedded in the array

n/k 0 1 2 3 4 5 6 7

0 1

1 0 1

2 1 1 1

3 0 3 2 1

4 6 6 6 3 1

5 0 22 16 10 4 1

6 53 53 53 31 15 5 1

whi
h satis�es A(z) =

1

1�z

, h(z) = C(z) (the generating fun
tion of Catalan numbers), and

g(z) =

2

2�zC(z)+zC(�z)

. In parti
ular, the fun
tion g(z) generates the �rst 
olumn of this array and


orresponds to the number of nonequivalent 
on�gurations one wants to enumerate: f

n

= g

n

=

3(n+2)

(n+3)((2n+3)

�

2n+4

n+2

�

�

4

(n+1)=2

n+2

�

n+3

(n+3)=2

�

(for even n). The 
umulative sum in the tree with root (0; 0)

and rewriting rule (k

1

; k

2

) 7! (0; 0)(0; 1) : : : (k

1

+ 2; k

1

+ 2) is then given by

�

n

=

n

X

h=0

X

r

�

[2n�2h℄

r

w

[2h℄

r

=

X

r

n

X

h=0

�

[2n�2h℄

r

w

[2h℄

r

:

Here, �

[2n�2h℄

r

is the number of nodes at level n � h in the subtree starting with (r; �), and w

[2h℄

r

the total weight that the 
ouples (r; �) have at level h. (Note that a label (k

1

; k

2

) at level n in the

new tree 
orresponds to a label (4n� k

2

� 1; 4n� k

1

) in the generating tree of the (4; 2)-
ase.) The

Riordan array property yields �

r

(z) = g(z)C(z)

r+2

and w

r

(z) = g(z)z

r

C(z)

r+1

(zC(z)

2

+ 2r), thus

�(z) =

1

4

X

r

�

�

r

(z) + �

r

(�z)

��

w

r

(z) +w

r

(�z)

�

= 12z

2

+ 284z

4

+ 5436z

6

+ 96768z

8

+O(z

10

):

The next nontrivial open 
ases are the (5; 2)- and (5; 3)-tennis ball problems. This is related to

the enumeration of 2- and 3-dimensional 
onstrained dis
rete random walks for whi
h no 
losed

form (or even re
urren
e) is known. Arti
les and slides related to this summary 
an be found at

Donatella Merlini's web page http://www.dsi.unifi.it/~merlini/Publi
ations.html.
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Abstra
t

The 
lassi
al 
oupon-
olle
tor problem is here extended to the 
ase where the 
olle
tor

shares his harvest with other members of his phratry. She (!) remains the single buyer, but

she gives to his brothers all the pi
tures that she got in double. When her album is �lled,

her brothers' albums have some empty pla
es. How many in average? Dominique Foata (in

a joint work with Guoniu Han and Bodo Lass) answers this question via an expression for

the multivariate generating fun
tion. The problem is related to hyperharmoni
 numbers,

that are studied here as solutions of �nite di�eren
es equations.

1. Coupons Colle
tor

A 
leaver �rm sells 
ho
olate, with a pi
ture (or \
oupon") of a famous 
ri
ket player in ea
h bar.

In total, there are m di�erent pi
tures to 
olle
t and ea
h pi
ture appears with probability 1=m.

Mr. and Mrs. Brown have r sons and one daughter, 
ho
olate and 
ri
ket addi
ts. The girl (she's

the oldest) is the only one to buy 
ho
olate. She tries to 
omplete her 
olle
tion. When she gets

a new pi
ture, she puts it in her album, and when she gets a double, she gives it to her oldest

brother, and when this one gets a double, he gives it to the remaining oldest brother, and so on.

After having bought T bars of 
ho
olate, the girl has 
ompleted her album, and it remains M

(i)

T

empty pla
es in the album of the ith brother (i = 1; : : : ; r). Let X

(k)

n

be the number of 
oupons

whi
h appeared exa
tly k times until time n. As M

(k)

T

= X

(1)

T

+ � � � + X

(k)

T

, the distribution of

(T;M

(1)

T

; : : : ;M

(r)

T

) is then totally determined by the distribution of (T;X

(1)

T

; : : : ;X

(r)

T

).

The question is to �nd formulae and asymptoti
s for M

(i)

T

, or equivalently for X

(k)

T

.

There is a lot of ways to solve 
oupon-
olle
tor-like problems. One 
an distinguish three main

approa
hes:

{ formal approa
h: 
ombinatori
ians indeed used a language-theory approa
h (shu�e produ
ts

and Lapla
e transforms [2℄ or manipulation of regular expressions [6℄);

{ probabilisti
 approa
h: a lot of folklore results are established via basi
 probabilisti
 
onsid-

erations, and more sophisti
ated tools su
h as martingales theory were also useful [5℄;

{ matri
ial approa
h: this is in fa
t a mixture of the two pre
edent approa
hes, whi
h is

exploited to solve a Markovian generalization of the 
oupon-
olle
tor problem in [1℄ (with

Perron{Frobenius theory and approximation of integrals).

This is with a 
ombinatorial approa
h (enumeration of surje
tions and formal Lapla
e transform)

that Foata et al. obtain in [4℄ the multivariate generating fun
tion of the 
oupon-
olle
tor problem,

from whi
h they derive the formulae for the expe
tations of E[T ℄ and E[X

(k)

T

℄.
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2. The Multivariate Generating Fun
tion

Theorem 1. The generating fun
tion of the random variables T , X

(1)

T

, . . . , X

(r)

T

is

X

l�m;n

PfT = l;X

(1)

T

= n

1

; : : : ;X

(r)

T

= n

r

gt

l

u

n

1

1

: : : u

n

r

r

=

u

1

t

X

�

m� 1

a; b; 


1

; : : : ; 


r

�

(�1)

b

�

r

Y

k=1

�

u

k

� 1

k!

�




k

�

(t=m)

P

k

k


k

(1� at=m)

1+

P

k

k


k

�

X

k

k


k

�

!:

The proof follows from setting u

i

= 1 (for i � r + 1), expanding (with Newton multinomial

formula), and applying the Lapla
e transform to

X

l�m

t

l�1

(l � 1)!

X

n

X

s2S(l;m;n)

�(s) = mu

1

�

X

i�1

u

i

t

i

i!

�

m�1

:

The formal Lapla
e transform is de�ned as a linear map su
h that L

�

g

n

t

n

n!

�

= g

n

t

n

. This implies

L

�

exp(at)t

n

�

= n!

t

n

(1�at)

n+1

. The set S(l;m;n) is de�ned as a subset of the surje
tions from

[ 1; : : : ; l ℄ to [ 1; : : : ;m ℄ for whi
h s 2 S(l;m;n) implies i is rea
hed n

i

times and the restri
tion

of s to [ 1; : : : ; l � 1 ℄ is still a surje
tion from [ 1; : : : ; l � 1 ℄ to [ 1; : : : ;m ℄ n

�

s(l)

	

. The weight � of

a surje
tion S 2 S(l;m;n) is de�ned by �(s) =

Q

u

i

n

i

.

3. Hyperharmoni
 Numbers

In order to 
omplete one 
olle
tion, it is well known that the average number of needed bars is

E[T ℄ = mH

m

where H

m

=

m

X

k=1

1

k

:

For example, when there are m = 50 di�erent pi
tures, E[T ℄ = 50H

50

� 50 � 4:5 � 225 and thus

the daughter has a lot of doubles and we 
an expe
t that the oldest brother has almost 
ompleted

his album with the 175 remaining pi
tures.

Pinta
uda [5℄ proved with martingale theory that E[M

(1)

T

℄ = H

m

. Foata et al. prove

Theorem 2. For k � 2, the average number of empty pla
es in the kth brother's album is

E[M

(k)

T

℄ = 1 +

k

X

i=1

K

(i)

m

where K

(k)

m

=

m

X

i=2

K

(k�1)

i

i

; (k � 1;m � 3)

with the following initial 
onditions K

(k)

2

=

1

2

k

(for k � 0) and K

(0)

m

= 1 (for m � 2).

A �rst derivation of this result follows of Theorem 1. Another proof is in two steps: �rst get the

generating fun
tion for the K

(k)

m

(end of this se
tion) and then prove that this generating fun
tion

is also the one of the 
oupon-
olle
tor problem (next se
tion).

Consider the rising fa
torial de�ned by (a)

n

= a(a + 1) : : : (a + n � 1) if n � 1 and (a)

0

= 1.

An hypergeometri
 fun
tion with respe
t to two lists (a

1

; : : : ; a

r

) and (b

1

; : : : ; b

s

) is de�ned as the

fun
tion given by the series

r

F

s

�

a

1

;:::;a

r

b

1

;:::;b

s

;x

�

:=

X

n�0

(a

1

)

n

: : : (a

r

)

n

(b

1

)

n

: : : (b

s

)

n

x

n

n!

:
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The authors prove that the numbers K

(k)

m

(that they 
all \hyperharmoni
 numbers") satisfy

K

(k)

m

=

m(m� 1)

2

k+1

k+2

F

k+1

�

�m+ 2; 2; : : : ; 2

3; : : : ; 3

�

�

�

�

1

�

:

Comparing the re
urren
es satis�ed by both sides and then summing gives the generating fun
tion

(1)

X

k�0

K

(k)

m

t

k

=

m

X

n=2

(�m)

n

(n� 2)!

1

n

1

1� t=n

=

1

(1� t=2)(1 � t=3) : : : (1� t=m)

(the last equality following from a partial fra
tion de
omposition).

Thus K

(k)

m

= h

k

(

1

2

; : : : ;

1

k

), the symmetri
 homogeneous polynomial of (total) degree k in m� 1

variables. Reexpressing h

k

in the basis of the power symmetri
 fun
tions p

k

:=

P

x

k

i

gives

K

(k)

m

�

p

k

1

k!

�

(lnm)

k

k!

One also has expli
it asymptoti
s (for �xed k), e.g.,

K

(3)

m

� 1:1666 ln

3

m� 0:2113 ln

2

m+ 0:4118 lnm� 0:0815:

4. Martingales Res
ue the Phratry

Let X

(0)

n

be the number of empty pla
es in the daughter's album. Now, de�ne the pro
ess X

as X

n

=

�

X

(0)

n

;X

(1)

n

; : : : ;X

(r)

n

�

. For any fun
tion f , the average in
rease of f(X) (knowing all the

previously drawn 
oupons) is easy to get:

E

�

f(X

n+1

)�f(X

n

)

�

�

Y

0

; : : : ; Y

n

�

=

r

X

k=0

X

(k)

n

m

�

f(X

(0)

n

; : : : ;X

(k)

n

�1;X

(k+1)

n

+1; : : : ;X

(r)

n

)�f(X

n

)

�

;

this simply re
e
ts the di�erent possible updates (X

(k)

n

=m is the probability to get a new 
oupon

whi
h was already in k-tuple).

If f is su
h that the sum is 0, one has also W

n+1

�W

n

= 0 and thus W is a martingale, where W is

the pro
ess f(X) stopped at T , that is W

n

:= f(X

n

) (for n < T ) and W

n

:= f(X

T

) (for n � T ).

More generally, suppose that for r fun
tions f

(1)

, . . . , f

(r)

from N

k+1

to R one has:

1.

k

X

i=0

x

i

�

f(x

0

; : : : ; x

i

� 1; x

i+1

+ 1; : : : ; x

k

)� f

(k)

(x

0

; : : : ; x

k

)

�

= 0 for x

0

� 1;

2. f

(k)

(0; x

1

; : : : ; x

k

) = x

k

.

Then E

�

X

(k)

T

�

= f

(k)

(m; 0; : : : ; 0).

Proof. 2. implies that X

(k)

T

= f(X

T

) = W

T

; 1. gives a martingale property for W , Doob's

theorem for stopping time of martingales gives E[W

T

℄ = E[W

0

℄ = W

0

, and 2. implies that

W

0

= f

(k)

(m; 0; : : : ; 0). �

Pinta
uda [5℄ used this result with k = 1 and found f

(1)

(x

0

; x

1

) = H

x

0

+

x

1

1+x

0

. Foata et al.

guessed the general formula:

Proposition 1. For k � 2, the fun
tion f

(k)

de�ned as

f

(k)

(x

0

; x

1

; : : : ; x

k

) := K

(k)

x

0

+

x

1

K

(k�1)

x

0

+1

+ � � �+ x

k�1

K

(1)

x

0

+1

+ x

k

x

0

+ 1
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is the only solution of 1. and 2. One also has f

(k)

(x

0

; 0; : : : ; 0) = K

(k)

x

0

.

They give two proofs in [4℄, but I prefer to explain what I heard in the meeting Random Stru
-

ture and Algorithms (Poznan, August 2001), where Doron Zeilberger explained how to use a lan-

guage theory argument to get a shorter proof. A 
omplete 
olle
tion of 
oupons 
an be written

11

�

2f1; 2g

�

3f1; 2; 3g

�

4 : : : f1; 2; : : : ;m � 1g

�

m. Let W be this set of words. This leads to the gen-

erating fun
tion

f(x

1

; : : : ; x

m

) :=

x

1

m

1

1�

x

1

m

: : :

x

2

m

1

1�

x

1

+x

2

m

x

m�1

m

1

1�

x

1

+���+x

m�1

m

x

m

:

Re
all that E[X

(k)

T

℄ is the expe
ted number of kinds of 
oupons in k-tuple (at time T , that is

when the daughter has 
ompleted her album). Thus,

1

X

k=1

E

�

X

(k)

T

�

t

k

=

X

w2W

m

X

k=1

P(w)t

jwj

k

=

m

X

k=1

X

w2W

�

1

m

�

jwj

t

jwj

k

= m!

�

f(t; 0; : : : ; 0) + f(0; t; 0; : : : ; 0) + � � �+ f(0; : : : ; 0; t)

�

= t+ t

m�1

X

k=1

k!

(2� t)(3� 4) : : : (k + 1� t)

= t� 1 +

m!

Q

m

j=2

(j � t)

:

As words of W are ordered (whereas it is in fa
t irrelevant for the 
oupon 
olle
tor), there is

a fa
tor m! at the se
ond line takes into a

ount all the permutations. The generating fun
tion

obtained at the last line shows that the hyperharmoni
 numbers generated by Equation (1) indeed

gives the average value of Theorem 2.

5. Con
lusion

The 
oupon-
olle
tor problem (like the m�enage problem, the birthday paradox) belongs to the

large 
lass of problems that 
an be modeled by simple urns models. It is very likely that, during

the next years, the symboli
 method will be applied with su

ess to all these urns problems, and

analyti
 
ombinatori
s will then provide enumeration, 
omplete asymptoti
s expansions and limit

laws. The \
lassi
al" 
oupon-
olle
tor problem waits for his next revisitor!

This summary is related to Foata's arti
le [4℄ (the more re
ent preprint [3℄ is also relevant).

These arti
les are a

essible at http://www-irma.u-strasbg.fr/~foata/paper.
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Ma
 Mahon's Partition Analysis Revisited
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O
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Summary by Sylvie Corteel

Abstra
t

The purpose of this talk is to present the 
 operator introdu
ed by Ma
 Mahon in 1915 and

to show its power in 
urrent 
ombinatorial and partition-theoreti
 resear
h. This operator is

implemented in the Mathemati
a Pa
kage Omega whi
h was developped by A. Riese. This

is joint work with G. E. Andrews (Penn State University) and A. Riese (RISC-Linz).

1. Introdu
tion

Ma
 Mahon devoted many pages of his famous book \Combinatorial Analysis" [9℄ to 
-
al
ulus.

Netherveless this method was not used for 85 years ex
ept by Stanley in 1973 [10℄. The purpose of

this talk is to present the 
 operator and to show its power in 
urrent 
ombinatorial and partition-

theoreti
 resear
h [1, 2, 3, 4, 5℄. In this summary, we de�ne the 
 operator and exhibit a few of its

elimination rules, before giving two problems where this operator is a powerful tool: le
ture hall

partitions and k-gons of integer length.

2. The Omega Operator

Let us now de�ne the operator and present a few rules.

De�nition 1. [9℄ The Omega operator




�

is de�ned as follows:




�

1

X

s

1

=�1

: : :

1

X

s

r

=�1

A

s

1

;:::;s

r

�

s

1

1

: : : �

s

r

r

=

1

X

s

1

=0

: : :

1

X

s

r

=0

A

s

1

;:::;s

r

:

To evaluate this operator, Ma
 Mahon proposed a list of elimination rules. The proof of ea
h is

straightforward as it uses the simple identity

X

n�0

x

n

= 1=(1 � x):

We list a few of them only:




�

�

�s

(1� �x)

�

1�

y

�

�

=

x

s

(1� x)(1� xy)

; s � 0;




�

1

(1� �x)

�

1�

y

�

� �

1�

z

�

�

=

1

(1� x)(1� xy)(1� xz)

;
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�

1

(1� �x)

�

1�

y

�

s

�

=

1

(1� x)(1 � x

s

y)

; s > 0;




�

1

(1� �

s

x)

�

1�

y

�

�

=

1 + xy

1�y

s�1

1�y

(1� x)(1 � xy

s

)

; s > 0:

For example to �nd the generating fun
tion of the partitions with three parts and whose parts

di�er by at least two, we use the �rst rule:

f

3

(q) =




�

X

a1;a

2

;a

3

�1

�

a

1

�a

2

�2

1

�

a

2

�a

3

�2

2

q

a

1

+a

2

+a

3

=




�

�

�2

1

�

�2

2

q

3

(1� �

1

q)

�

1�

�

2

q

�

1

��

1�

q

�

2

�

=




�

q

2

�

�2

2

q

3

(1� q) (1� �

2

q

2

)

�

1�

q

�

2

�

=

q

2

q

4

q

3

(1� q) (1� q

2

) (1� q

3

)

:

It is also possible to generalize this result for partitions with k parts and whose parts di�er by

at least two for any k > 0, that is

f

k

(q) =

q

k

2

(1� q)(1� q

2

) : : : (1� q

k

)

:

3. Le
ture Hall Partitions

The le
ture hall partition theorem is one of the most elegant re
ent result in partition analysis

[6, 7℄. Let us state the re�nement of this theorem [8℄.

Theorem 1. The number of partitions of n of the form (b

j

; b

j�1

; : : : ; b

1

) with

b

j

j

�

b

j�1

j�1

� � � � �

b

1

1

� 0 and b

j

� b

j�1

+ � � � + (�1)

j�1

b

1

= m is equal to the number of partitions of n into m odd

parts less than 2j.

This theorem 
an also be proved with the Omega operator [1℄, whi
h is what motivated G. E. An-

drews to resus
itate the Omega operator. The proof mainly uses the elimination rule




�

1

(1� �x)

�

1�

y

�

s

�

=

1

(1� x)(1 � x

s

y)

Let us illustrate it for j = 3.

X

b

3

3

�

b

2

2

�

b

1

1

�0

x

b

3

�b

2

+b

1

q

b

3

+b

2

+b

1

=




�

X

b

3

;b

2

;b

1

�0

�

2b

3

�3b

2

1

�

b

2

�2b

1

2

x

b

3

�b

2

+b

1

q

b

3

+b

2

+b

1

=




�

1

(1� �

2

1

qx)

�

1�

�

2

q

�

3

1

x

��

1�

qx

�

2

2

�

=




�

1

(1� xq)(1� xq

3

)(1� xq

5

)

:

The Omega operator 
an also give a bije
tive proof of the theorem [5℄. Let us show how to

pro
eed for j = 3:

X

b

3

3

�

b

2

2

�

b

1

1

�0

q

b

3

3

q

b

2

2

q

b

1

1

=




�

X

b

3

;b

2

;b

1

�0

�

2b

3

�3b

2

1

�

b

2

�2b

1

2

q

b

3

3

q

b

2

2

q

b

1

1

=




�

1 + q

2

q

2

3

(1� q

3

)(1� q

2

2

q

3

3

)(1 � q

1

q

2

2

q

3

3

)

:
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From the previous equation we get that there is a bije
tion between the le
ture hall parti-

tions (b

3

; b

2

; b

1

) of n and the partitions of n into parts f1; 3; 5g with multipli
ity m

i

for the part i.

This bije
tion be
omes:

b

3

= 3m

5

+ 2m

3

�

j

m

3

2

k

+m

1

; b

2

= 2m

5

+m

3

; b

1

=

j

m

3

2

k

:

4. k-Gons with Integer Length

The problem 
an be de�ned as follows. The number

�

�

T

k

(n)

�

�

of k-gons with length n is equal to

the number of solutions of

(1) a

k

� a

k�1

� � � � � a

1

� 1; a

1

+ a

2

+ � � � + a

k

= n; a

1

+ a

2

+ � � �+ a

k�1

> a

k

:

Let F

k

(q) =

P

n

�

�

T

k

(n)

�

�

q

n

be the asso
iated generating fun
tion. For triangles (k = 3) we get

F

3

(q) =

X

n

�

�

T

3

(n)

�

�

q

n

=

q

3

(1� q

2

)(1 � q

3

)(1� q

4

)

:

This is easy to prove as 
onditions (1) give

F

3

(q) =




�

X

a

1
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a

2

;a

3

�0

�

a

3

�a
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�
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2

�a

1

2

�

a

1

+a

2

�a

3

�1

3

q

a

1

+a

2

+a

3

=




�

q�

�1

1

�

1�

q�

2

�

3

��

1�

q�

1

�

3

�

2

��

1�

q�

3

�

1

�

=

q

3

(1� q

2

)(1� q

3

)(1� q

4

)

We 
an even be more spe
i�


F

3

(q

1

; q

2

; q

3

) =

X

a

3

�a

2

�a

1

�1

a

1

+a

2

>a

3

q

a

1

1

q

a

2

2

q

a

3

3

=




�

X

a

1

�1

a

2

;a

3

�0

�

a

3

�a

2

1

�

a

2

�a

1

2

�

a

1

+a

2

�a

3

�1

3

q

a

1

1

q

a

2

2

=




�

q�

�1

1

�

1�

q�

2

�

3

��

1�

q�

1

�

3

�

2

��

1�

q�

3

�

1

�

=

q

1

q

2

q

3

(1� q

2

q

3

)(1 � q

1

q

2

q

3

)(1� q

1

q

2

q

2

3

)

:

This shows there is a bije
tion between the 3-tuples (u

1

; u

2

; u

3

) of N

3

and the triangles whose

sides have length u

1

+ u

2

+ 1, u

1

+ u

2

+ u

3

+ 1 and u

1

+ 2u

2

+ u

3

+ 1.

Thanks to the Omega operator we 
an 
ompute the generating fun
tion for larger k:

F

4

(q) =

q

4

(1 + q + q

5

)

(1� q

2

)(1� q

3

)(1 � q

4

)(1� q

6

)

;

F

5

(q) =

q

5

(1� q

11

)

(1� q)(1� q

2

)(1� q

4

)(1 � q

5

)(1� q

6

)(1� q

8

)

;

F

6

(q) =

q

6

(1� q

4

+ q

5

+ q

7

� q

8

� q

13

)

(1� q)(1� q

2

)(1� q

4

)(1 � q

6

)(1� q

8

)(1� q

10

)

:

We then 
an see that no pattern 
an be found and the Omega operator was a qui
k tool to show

that the solutions of this k-gon problem do not have \ni
e" generating fun
tions.



26 Ma
 Mahon's Partition Analysis Revisited

Bibliography

[1℄ Andrews (George E.). { Ma
Mahon's partition analysis. I. The le
ture hall partition theorem. In Mathemati
al

essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), pp. 1{22. { Birkh�auser Boston, Boston, MA, 1998.

[2℄ Andrews (George E.). { Ma
Mahon's partition analysis. II. Fundamental theorems. Annals of Combinatori
s,

vol. 4, n

�

3-4, 2000, pp. 327{338. { Conferen
e on Combinatori
s and Physi
s (Los Alamos, NM, 1998).

[3℄ Andrews (George E.) and Paule (Peter). { Ma
Mahon's partition analysis. IV. Hypergeometri
 multisums.

S�eminaire Lotharingien de Combinatoire, vol. 42, n

�

B42i, 1999. { The Andrews Fests
hrift (Maratea, 1998).

24 pages.

[4℄ Andrews (George E.), Paule (Peter), and Riese (Axel). { Ma
Mahon's partition analysis: the Omega pa
kage.

European Journal of Combinatori
s, vol. 22, n

�

7, 2001, pp. 887{904.

[5℄ Andrews (George E.), Paule (Peter), Riese (Axel), and Strehl (Volker). { Ma
Mahon's partition analysis. V.

Bije
tions, re
ursions, and magi
 squares. In Algebrai
 
ombinatori
s and appli
ations (G�o�weinstein, 1999),

pp. 1{39. { Springer, Berlin, 2001.

[6℄ Bousquet-M�elou (Mireille) and Eriksson (Kimmo). { Le
ture hall partitions. The Ramanujan Journal, vol. 1,

n

�

1, 1997, pp. 101{111.

[7℄ Bousquet-M�elou (Mireille) and Eriksson (Kimmo). { Le
ture hall partitions. II. The Ramanujan Journal, vol. 1,

n

�

2, 1997, pp. 165{185.

[8℄ Bousquet-M�elou (Mireille) and Eriksson (Kimmo). { A re�nement of the le
ture hall theorem. Journal of Com-

binatorial Theory. Series A, vol. 86, n

�

1, 1999, pp. 63{84.

[9℄ Ma
Mahon (Per
y A.). { Combinatory analysis. { Chelsea Publishing Co., New York, 1960, xix+302+xix+340p.

Two volumes (bound as one).

[10℄ Stanley (Ri
hard P.). { Linear homogeneous Diophantine equations and magi
 labelings of graphs. Duke Math-

emati
al Journal, vol. 40, 1973, pp. 607{632.



Algorithms Seminar 2000{2001,

F. Chyzak (ed.), INRIA, (2002), pp. 27{30.

Available online at the URL

http://algo.inria.fr/seminars/.

Engel Expansions of q-Series

Peter Paule

RISC, Linz (Austria)

O
tober 2, 2000

Summary by Bruno Salvy

1. Engel Expansions

A real number A > 0 has a unique expansion of the form

A = a

0

+

1

a

1

+

1

a

1

a

2

+

1

a

1

a

2

a

3

+ : : : ;

where the a

i

are positive integers with a

i+1

� a

i

for i � 1. These expansions were 
alled Engel

expansions by Perron and their study goes ba
k to Lambert around 1770. Uniqueness of the

expansion is not diÆ
ult to see, together with the following re
urren
es from whi
h an iterative

algorithm derives:

a

k

= br

k


+ 1;

1

r

k

=

1

a

k

+

1

a

k

r

k+1

; k � 1:

The initial 
onditions are given by a

0

< A � a

0

+ 1 and A � a

0

= 1=r

1

. Rational numbers

are 
hara
terized by the ultimate stationarity of the sequen
e (a

i

). An obvious example of Engel

expansion of a non-rational number is provided by e = exp(1) for whi
h a

0

= 2 and a

i

= i + 1

for i > 0.

Arnold and John Knopfma
her de�ned in [4, 5℄ an analogous notion for Laurent series.

De�nition 1. Given a Laurent series A =

P

n��




n

q

n

2 C ((q)), and an integer � � 0, the q-Engel

sequen
e asso
iated with A and � is the unique sequen
e (a

i

) of polynomials in q

�1

su
h that

A = a

0

+

X

n�1

q

��n

a

1

� � � a

n

;

with the degrees of the a

i

obeying deg(a

i+1

) � deg(a

i

) + �+ 1.

This de�nition is motivated by the numerous q-identities involving su
h expansions. A sample

is given in Table 1, using the 
lassi
al notations

(a; q)

0

= 1; (a; q)

k

= (1� a)(1� aq) � � � (1� aq

k�1

) for k > 0; (a; q)

1

=

Y

k�0

(1� aq

k

):

Again, uniqueness is not diÆ
ult to 
he
k and an iterative algorithm follows from

(1) A

k+1

:= q

�

(a

k

A

k

� 1); a

k

=

�

1

A

k

�

; k � 1;

with A

0

:= A, a

0

= [A℄ and A

1

= q

�

(A

0

� a

0

). The bra
ket notation 
orresponds to the integral

part of a Laurent series de�ned by [A℄ :=

P

��n�0




n

q

n

2 C [q

�1

℄.



28 Engel Expansions of q-Series

X

k�0

q

(

k+1

2

)

(q; q)

k

=

Y

k>0

(1 + q

k

); (Euler)(2)

X

k�0

z

k

q

k

2

(q; q)

k

(zq; q)

k

=

1

(z; q)

1

; (Cau
hy)(3)

X

k�0

q

k

2

(�q; q

2

)

k

=

X

k�0

(�1)

k+1

q

k

(�q; q)

k

; (Fine)(4)

X

k�0

q

k(3k�1)=2

(q; q)

k

(q; q

2

)

k

=

Y

k�1

(1� q

10k�6

)(1 � q

10k�4

)(1� q

10k

)

1� q

k

; (Rogers)(5)

X

k>0

q

k(3k�1)=2

(q; q)

k�1

(q; q

2

)

k

=

Y

k�1

(1� q

10k�8

)(1 � q

10k�2

)(1� q

10k

)

1� q

k

; (Rogers)(6)

X

k�0

q

k(2k�1)

(q; q)

2k

=

Y

k>0

(1 + q

k

); (Slater)(7)

X

k�0

q

k

2

(q; q)

k

=

1

(q; q

5

)

1

(q

4

; q

5

)

1

; (1st Rogers{Ramanujan)(8)

X

k�0

q

k

2

+k

(q; q)

k

=

1

(q

2

; q

5

)

1

(q

3

; q

5

)

1

; (2nd Rogers{Ramanujan)(9)

X

k�0

q

2k

2

(q; q)

2k

=

Y

k>0; k��2;�3;�4;�5 (mod 16)

1

1� q

k

; (Slater)(10)

X

k�0

q

2k

2

+2k

(q; q)

2k+1

=

Y

k>0 k��1;�4;�6;�7 (mod 16)

1

1� q

k

; (Slater)(11)

Table 1. q-identities involving q-Engel expansions.

2. Engel Guessing

Equipped with (1), it is very natural to implement a pa
kage 
omputing q-Engel sequen
es of

Laurent series. Su
h a pa
kage opens the way to experimental mathemati
s with q-Engel expan-

sions [2℄. For instan
e, starting from a trun
ation of the series expansion of the right-hand side

of (2) (a spe
ial 
ase of an identity due to Euler) and using � = 0, the pa
kage outputs

1 +

q

(q; q)

1

+

q

3

(q; q)

2

+

q

6

(q; q)

3

+O(q

10

);

from whi
h the left-hand side is easily guessed. The task of proving su
h an identity still requires

human work.

Using � = 1 on the same series does not reveal any pattern. However, with � = 2, one gets

1 +

q

(q; q)

2

+

q

6

(q; q)

4

+

q

15

(q; q)

6

+O(q

28

);
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from whi
h it is easy to 
onje
ture the general formula (7).

3. Identities of Rogers{Ramanujan Type

In one of his independent proofs of the Rogers{Ramanujan identities (8{9), S
hur introdu
ed

two sequen
es of polynomials

d

m

=

X

k

(�1)

k

q

k(5k�3)=2

�

m� 1

b

m+1�5k

2




�

; e

m

=

X

k

(�1)

k

q

k(5k+1)=2

�

m� 1

b

m�1�5k

2




�

; m � 1;

with e

0

= 0 and d

0

= 1 in terms of the Gaussian polynomials

�

n

k

�

=

(

(q;q)

n

(q;q)

k

(q;q)

n�k

; if 0 � k � n,

0; otherwise.

The sequen
es d

m

and e

m

appear in the re
ent generalization of the Rogers{Ramanujan identities

due to Garrett, Ismail and Stanton [3℄:

(12)

1

X

n=0

q

n

2

+mn

(q; q)

n

=

(�1)

m

q

�

(

m

2

)

d

m

(q; q

5

)

1

(q

4

; q

5

)

1

�

(�1)

m

q

�

(

m

2

)

e

m

(q

2

; q

5

)

1

(q

3

; q

5

)

1

:

Setting m = 0, m = 1 in this formula yields (8) and (9).

The left-hand side of (12) is the q-Engel expansion of the right-hand side for � = 0, whi
h

motivates [1℄ in looking for a q-Engel \proof" of this identity. For this, it is suÆ
ient to prove that

the sequen
e a

n

= q

�(2n+m�1)

� q

�(n+m�1)

is the 
orresponding q-Engel sequen
e. De�ning

A

0

= A; A

n

= (�1)

m

q

�

(

m

2

)

�(m�1)(n�1)

X

j>m

q

jn

(d

m

e

j

� d

j

e

m

) for n � 1;

the proof 
onsists in showing that a

n

A

n

= 1 +A

n+1

and a

n

= [1=A

n

℄, together with 
orre
t initial


onditions. In view of (14) below, this is not too diÆ
ult, but te
hni
al (see [1℄ for details).

S
hur proved that both d

m

and e

m

satisfy the re
urren
e

(13) 


m+2

= 


m+1

+ q

m




m

; m � 0:

Nowadays, this identity is proved automati
ally by invoking the q-WZ algorithm [7℄ and this leads

to the �rst purely automati
 elementary proof of the Rogers{Ramanujan identity [6℄. In view of

this re
urren
e, d

m

and e

m

are nothing but q-analogues of the Fibona

i numbers. It turns out

that a generalization of the Cassini identity, namely

F

m�1

F

m+k

� F

m+k�1

F

m

= (�1)

m

F

k

;

admits a q-analogue in terms of e

m

and d

m

:

(14) d

m

e

m+k

� d

m+k

e

m

= (�1)

m

q

(

m

2

)

X

j�0

�

k � 1� j

j

�

q

j

2

+mj

:

This identity 
an be proved automati
ally from (13) by univariate D-�nite 
losure properties (m be-

ing �xed). In fa
t, a non-Engel proof of (12) follows from letting k tend to in�nity in (14) in view

of S
hur's limit formulae

d

1

=

1

(q; q)

1

X

k

(�1)

k

q

k(5k�3)=2

=

1

(q

2

; q

5

)

1

(q

3

; q

5

)

1

;

e

1

=

1

(q; q)

1

X

k

(�1)

k

q

k(5k+1)=2

=

1

(q; q

5

)

1

(q

4

; q

5

)

1

:
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The in�nite produ
ts are obtained by Ja
obi's triple produ
t identity, whi
h also admits a simple


omputer proof [6℄.

4. A New Identity Dis
overed by Engel Guessing

The identities (10) and (11) 
an be 
onje
tured by Engel guessing after �rst multiplying the

produ
t by 1� q. An Engel proof is also available [2℄ using the Santos polynomials de�ned by

S

m

=

X

j

q

4j

2

�j

�

m

b

m+1�4j

2




�

; T

m

=

X

j

q

4j

2

�3j

�

m

b

m+2�4j

2




�

;

whose limits S

1

and T

1

when m!1 are pre
isely the right-hand sides of (10) and (11).

In view of (12), a natural idea 
onsists in experimenting with q-Engel expansions of S

n

T

1

�T

n

S

1

or variations of it. It turns out that a pattern readily emerges leading to 
onje
turing the following

generalization of (10) and (11):

S

n

T

1

� T

n

S

1

= q

n

(q; q

2

)

n

X

k�0

q

2k

2

+2(n+1)k

(q; q)

2k+1

:

Again, a possible proof [2℄ 
onsists in relying on a �nite version, namely

S

n

T

n+m

� T

n

S

n+m

= q

n

(q; q

2

)

n

X

k�0

�

m

2k + 1

�

q

2k

2

+2(n+1)k

:

5. Con
lusion

Engel expansions are a new way of looking at q-identities whi
h allows for easy 
omputer experi-

ments and hen
e should lead to many dis
overies. A pending issue is to make q-Engel proving into

an algorithmi
 task.
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Eulerian Cal
ulus: a Te
hnology for Computer Algebra and Combinatori
s

Dominique Foata

D�epartement de math�ematique, Universit�e Louis Pasteur (Fran
e)

May 21, 2001

Summary by Dominique Gouyou-Beau
hamps

Abstra
t

Babson and Steingr��msson have introdu
ed pairs of permutation statisti
s that they 
onje
-

tured were all Euler{Mahonian, i.e., equidistributed with the pair (des;maj) where des is

the number of des
ents and maj is the major index. How to prove their 
onje
ture? We

use the so-
alled \Umbral Transfer Matrix Method" implemented by Zeilberger and spe-


i�
 
ombinatorial 
onstru
tions leading to new transformations on the symmetri
 group.

Details may be found in the re
ent work of D. Foata and D. Zeilberger [2℄.

1. Introdu
tion

We use the Babson{Steingr��msson notation [1℄ for \atomi
" permutation statisti
s. Given a

permutation w = x

1

x

2

: : : x

n

of 1, 2, . . . , n they denote (a � b
)(w) the number of o

uren
es of

the pattern a � b
, i.e., the number of pairs of pla
es 1 � i < j < n su
h that x

i

< x

j

< x

j+1

.

Similary, the pattern (b � 
a)(w) is the number of o
urren
es of x

j+1

< x

i

< x

j

, and in general,

for any permutation �, �, 
 of a, b, 
, the expression (� � �
)(w) is the number of pairs (i; j),

1 � i < j < n, su
h that the orderings of the two triples (x

i

; x

j

; x

j+1

) and �; �; 
 are identi
al.

The statisti
 (ab � 
) is de�ned in the same way by looking at the o

uren
es (x

i

; x

i+1

; x

j

) su
h

that i+ 1 < j and x

i

< x

i+1

< x

j

. Of 
ourse, (ba)(w) denotes the number desw of des
ents of w

(i.e., the number of pla
es 1 � i < n su
h that x

i

> x

i+1

) and (ab)(w) denotes the number risew

of rises of w (i.e., the number of pla
es 1 � i < n su
h that x

i

< x

i+1

).

The 
lassi
al permutation statisti
s inv and maj may be written as (b
�a)+(
a�b)+(
b�a)+(ba)

and (a � 
b) + (b � 
a) + (
 � ba) + (ba), respe
tively. This inspired Babson and Steingr��msson

to perform a 
omputer sear
h for all statisti
s that 
ould be thus written, and look for those that

appear to be Mahonian. They 
ame up with a list of 18. Some of them turned out to be well-known,

and some were new. Yet eight new 
onje
turally Mahonian statisti
s were left open. Here we prove

four of them.

2. Notations

Re
all the usual notations

(a; q)

n

=

�

1 if n = 0,

(1� a)(1� aq) : : : (1� aq

n�1

) if n � 1,

(a; q)

1

= lim

n!1

(a; q)

n

=

Y

n�0

(1� aq

n

);
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[n℄

q

=

1� q

n

1� q

=

n�1

X

i=0

q

i

; [n℄

q

! =

(q; q)

n

(1� q)

n

=

n

Y

i=1

[i℄

q

:

A statisti
 stat on the symmetri
 group S

n

is said to be Mahonian, if for every n � 0 we have

X

w2S

n

q

statw

= [n℄

q

!

A sequen
e

�

A

n

(t; q)

�

n�0

of polynomials in two variables t and q, is said to be Euler{Mahonian,

if one of the following equivalent 
onditions holds:

1. For every n � 0,

1

(t; q)

n+1

A

n

(t; q) =

X

s�0

t

s

([s + 1℄

q

)

n

:

2. The exponential generating fun
tion for the fra
tions

A

n

(t;q)

(t;q)

n+1

is given by

X

n�0

u

n

n!

A

n

(t; q)

(t; q)

n+1

=

X

s�0

t

s

exp(u[s+ 1℄

q

):

3. The sequen
e

�

A

n

(t; q)

�

satis�es the re
urren
e relation:

(1) (1� q)A

n

(t; q) = (1� tq

n

)A

n�1

(t; q)� q(1� t)A

n�1

(tq; q):

4. Let A

n

(t; q) =

P

s�0

t

s

A

n;s

(q). Then the 
oeÆ
ients A

n;s

(q) satisfy the re
urren
e:

A

n;s

(q) = [s+ 1℄

q

A

n�1;s

(q) + q

s

[n� s℄

q

A

n�1;s�1

(q):

Now a pair of statisti
s (stat

1

; stat

2

) de�ned on ea
h symmetri
 group S

n

(n � 0) is said to be

Euler{Mahonian, if for every n � 0 we have

X

w2S

n

t

stat

1

w

q

stat

2

w

= A

n

(t; q):

3. Results

Our results are the following:

Theorem 1. The permutation statisti
 S11 = (a� 
b) + 2(b� 
a) + (ba) is Mahonian.

Theorem 2. The permutation statisti
 S13 = (a� 
b) + 2(b� a
) + (ab) is Mahonian.

Theorem 3. Let S5 = (b � 
a) + (
 � ba) + (a � b
) + (ab). Then, the pair (rise; S5) is Euler{

Mahonian.

Theorem 4. Let S6 = (ba � 
) + (
 � ba) + (a
 � b) + (ba). Then, the pair (des; S6) is Euler{

Mahonian.

Our Theorems 1, 2, and 4 are the three parts of Conje
ture 8 of [1℄, while Theorem 3 is Con-

je
ture 10 of [1℄. It turns out that, thanks to Zeilberger's re
ent theory of the Umbral Transfer

Matrix Method [4℄, the proofs of the �rst three theorems are 
ompletely automati
, using the

general Maple pa
kage ROTA, together with a new interfa
ing pa
kage PERCY that 
omputes the

appropriate Rota operators for what we will 
all Markovian Permutation Statisti
s.

However, ROTA is useless in the 
ase of S6. So proving Theorem 4 still requires the traditional


ombinatorial method: 
onstru
t a bije
tion w 7�! w

0

of S

n

onto itself whi
h has the property that

(des; S6)w

0

= (des;maj)w
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Figure 1. r s(10; 11; 2; 4; 5; 9; 6; 12; 14; 15; 7; 3; 1; 8; 13) = (8; 13; 1; 4; 5; 12; 14; 15; 7; 6; 9; 3; 2; 10; 11).

holds for every w 2 S

n

.

4. Proof of Theorem 4

Instead of the pair (des;maj) we will take another Euler{Mahonian pair (des;mak), where

mak is a Mahonian statisti
 that was introdu
ed by Foata and Zeilberger in [3℄. In the Babson{

Steingr��msson notation mak reads

mak := (a� 
b) + (
b� a) + (ba) + (
a� b):

First, the des
ent bottom of a permutation x

1

x

2

: : : x

n

is de�ned to be the set desbotw of all

the x

i

's su
h that 2 � i � n and x

i�1

> x

i

. Its 
ardinality is the number desw of des
ents of w.

Next, the word statisti
s U and V are introdu
ed as follows. Let y = x

i

be a letter of the

permutation w = x

1

x

2

: : : x

n

. De�ne

U

y

(w) = (
a� b)j

b=y

w; V

y

(w) = (b� a
)j

b=y

w:

Thus, U

y

(w) is the number of adja
ent letters x

j

x

j+1

to the left of y = x

i

su
h that x

j

> x

i

> x

j+1

.

The word statiti
s U and V are then:

U(w) = U

1

(w)U

2

(w) : : : U

n

(w); V (w) = V

1

(w)V

2

(w) : : : V

n

(w):

Now, re
all the traditional reverse image r, whi
h is an involution that maps ea
h permutation

w = x

1

x

2

: : : x

n

onto rw = x

n

x

n�1

: : : x

1

. We shall introdu
e another involution s of S

n

, 
alled the
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rise-des-ex
hange, whi
h ex
hanges the rises and the des
ents of a permutation and keeps peaks and

troughs in their original ordering. The involution s is not explained here, but 
an be immediately

visualized in Fig. 1.

Proposition 1. The involution r s of S

n

has the following properties:

1. desbot r sw = desbotw,

2. (U; V ) r sw = (V;U)w.

Let � -desbotw be the sum of all the letters x

i

of the permutation w = x

1

x

2

: : : x

n

whi
h belong

to the des
ent bottom set desbotw.

Proposition 2. For ea
h permutation w we have:

� -desbotw =

�

(a� 
b) + (
b� a) + (ba)

�

w:

Next, we introdu
e the 
omplement to (n + 1), denoted by 
, that maps ea
h permutation

w = x

1

x

2

: : : x

n

onto 
w = (n+ 1� x

1

)(n+ 1�x

2

) : : : (n+ 1� x

n

). Thus the statisti
 S6 r 
 reads

S6 r 
 = (a� 
b) + (
b� a) + (ba) + (b� 
a):

Taking Proposition 2 into a

ount, we get the expressions:

makw = � -desbotw + U

1

(w) + � � �+ U

n

(w);

S6 r 
 = � -desbotw + V

1

(w) + � � �+ V

n

(w):

Therefore, Proposition 1 implies the following 
orollary.

Corollary 1. The involution r s is an involution of S

n

having the property:

(des;mak)w = (des; S6 r 
) r sw:

But (des;mak) is Euler{Mahonian, as proved in [3℄. Therefore, the pair (des; S6 r 
) is Euler{

Mahonian, as well as (des,S6), sin
e we always have des r 
w = desw. Hen
e Theorem 4 is proved.

5. Markovian Permutation Statisti
s

The redu
tion of a sequen
e w of n distin
t integers, denoted by red(w), is the permutation

obtained by repla
ing the smallest member by 1, the se
ond-smallest by 2, . . . , and the largest

by n. For example red(5 8 3 7 4) = 3 5 1 4 2.

A permutation statisti
 F : S

n

! Z is said to be Markovian, if there exists a fun
tion h(j; i; n)

su
h that

F (x

1

: : : x

n

) = F

�

red(x

1

: : : x

n�1

)

�

+ h(x

n�1

; x

n

; n):

A Markovian permutation statisti
 F : S

n

! Z is said to be ni
e Markovian if the above h(j; i; n)


an be written as

h(j; i; n) =

�

f(j; i; n) if j < i;

g(j; i; n) if j > i;

where f and g are aÆne linear fun
tions of their arguments, i.e., 
an be written as ai+ bj+ 
n+d,

for some integers a, b, 
, d.

We, and the Maple pa
kage PERCY, will only 
onsider ni
e Markovian statisti
s. We will denote

them by [f; g; j; i; n℄. For exemple, inv = [n � i; n � i; j; i; n℄, maj = [0; n � 1; j; i; n℄, des =

[0; 1; j; i; n℄, rise = [1; 0; j; i; n℄.

Given a permutation statisti
 F we are interested in the sequen
e of polynomials

gf(F )

n

(q) =

X

w2S

n

q

F (w)

(n � 0):
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However, in order to take advantage of Markovity, we need to 
onsider the more re�ned

GF(F )

n

(q; z) =

X

w=x

1

:::x

n

2S

n

q

F (w)

z

x

n

(n � 0)

that also keeps tra
k of the last letter x

n

. Now, by using Rota operators [4℄, it is easy to express

GF(F )

n

in terms of GF(F )

n�1

. Let w

0

= x

0

1

: : : x

0

n�1

= red(x

1

: : : x

n�1

); then

GF(F )

n

(q; z) =

n

X

i=1

z

i

X

w2S

n

; x

n

=i

q

F (w)

=

n�1

X

j=1

X

w

0

2S

n�1

; x

0

n�1

=j

0

�

j

X

i=1

q

g(j+1;i;n)

z

i

+

n

X

i=j+1

q

f(j;i;n)

z

i

1

A

q

F (w

0

)

:

Now for i � j � n� 1 we introdu
e the umbra P,

P(z

j

) =

0

�

j

X

i=1

q

g(j+1;i;n)

z

i

+

n

X

i=j+1

q

f(j;i;n)

z

i

1

A

;

and we extend by linearity, so that P is de�ned on all polynomials of degree less than or equal

to n� 1. In terms of P, we have the very simple re
urren
e:

GF(F )

n

(q; z) = P

�

GF(F )

n�1

(q; z)

�

:

Maple 
an 
ompute the umbra automati
ally. All the users have to enter is f and g, and PERCY

would 
onvert it to the Markovian notation.

6. Proof of Theorem 1

Using PERCY and ROTA we get that the umbra P linking GF(S11)

n�1

(q; z) to GF(S11)

n

(q; z)

maps the polynomial a(z) onto

z

n+1

a(1)� za(z)

z � 1

+

z

�

a(qz)� a(q

2

)

�

z � q

:

Hen
e b

n

(z) = GF(S11)

n

(q; z) satis�es the fun
tional re
urren
e

b

n

(z) =

z

n+1

b

n�1

(1)� zb

n�1

(z)

z � 1

+

z

�

b

n�1

(qz)� b

n�1

(q

2

)

�

z � q

;

with the initial 
ondition b

1

(z) = z. But if we guess (and if we 
he
k) that the sequen
e




n

(z) = z

z

n

� q

n

z � q

[n� 1℄

q

!

satis�es the same re
urren
e, we obtain that b

n

(z) = 


n

(z), and �nally that b

n

(1) = 


n

(1) = [n℄

q

!

7. Proof of Theorem 2

Using PERCY and ROTA we get that the umbra P linking GF(S13)

n�1

(q; z) to GF(S13)

n

(q; z)

maps the polynomial a(z) onto

z

�

a(zq) � a(1)

�

qz � 1

+

zqa(z) � q

2n+1

z

n+1

a(q

�2

)

1� zq

2

:
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Hen
e d

n

(z) = GF(S13)

n

(q; z) satis�es the fun
tional re
urren
e

d

n

(z) =

z

�

d

n�1

(zq)� d

n�1

(1)

�

qz � 1

+

zqd

n�1

(z)� q

2n+1

z

n+1

d

n�1

(q

�2

)

1� zq

2

;

with the initial 
ondition d

1

(z) = z. But if we guess (and if we 
he
k) that the sequen
e

e

n

(z) = z

(1� z

n

q

n

)

1� qz

[n� 1℄

q

!

satis�es the same re
urren
e, we obtain that d

n

(z) = e

n

(z), and �nally that d

n

(1) = e

n

(1) = [n℄

q

!:

8. Proof of Theorem 3

PERCY 
an 
ompute the Umbra multi-statisti
s, when the generating fun
tion is the weight-

enumerator of S

n

a

ording to the weight

weight(w) = z

x

n

r

Y

j=1

q

F

j

(w)

j

;

where w = x

1

: : : x

n

and F

1

(w), . . . , F

r

(w) are several ni
e Markovian permutation statisti
s. De�ne

A

n

(t; q; z) =

X

w2S

n

t

desw

q

majw

z

x

n

; B

n

(t; q; z) =

X

w2S

n

t

risew

q

S5w

z

x

n

:

PERCY and ROTA 
ompute the following fun
tional re
urren
es

A

n

(t; q; z) =

z(1 � tq

n�1

)A

n�1

(t; q; z) � z(z

n

� tq

n�1

)A

n�1

(t; q; 1)

1� z

;(2)

B

n

(t; q; z) =

z(1� tq

n

)B

n�1

(t; q; z) � z(1� tz

n

)B

n�1

(t; q; q)

z � q

:

By 
omparing the two fun
tional re
urren
es, we guess and we verify that

B

n

(t; q; z) = q

�n

z

n+1

A

n

(tq; q; q=z):

Hen
e B

n

(t; q; 1) = q

�n

A

n

(tq; q; q). By plugging t = tq, z = q into Eq. (2), we get that

A

n

(tq; q; q) = q

n

(1� tq

n

)A

n�1

(t; q; 1) � q(1� t)A

n�1

(tq; q; 1)

1� q

:

But, this equals q

n

A

n

(t; q) by Eq. (1). And we have proved that B

n

(t; q; 1) = A

n

(t; q; 1) = A

n

(t; q).

The input and output �les of PERCY 
an be downloaded from

http://www.math.temple.edu/~zeilberg/programs.html.
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Abstra
t

What does a random partition of a large integer look like? The talk presents asymptoti


results and variational problems for this question, obtained in a work of A. Dembo jointly

with A. Vershik and O. Zeitouni [4℄. The te
hniques involve some 
ombinatori
s and mostly

probability theory. Other appli
ations 
on
ern asymptoti
s of various random 
ombinatorial

stru
tures, su
h as permutations, forests of trees, and 
onvex polygons with integer verti
es.

This summary is intended as a 
asual introdu
tion to the reading of the paper [4℄.

1. A Bit of Paleontology

A partition of the integer n is an aditive de
omposition of the integer n into some number r of

integer summands,

n = x

1

+ x

2

+ � � �+ x

r

; x

j

� x

j+1

; x

r

> 0:

The quantity r is 
alled the number of summands (or parts). A partition is said to be stri
t if

all its summands are distin
t. A partition is naturally represented by a diagram resembling a

stair
ase and 
alled diversely its Ferrers graph or its Young diagram. We shall let P

n

and P

s

n

denote the 
olle
tions of all partitions and stri
t partitions summing to n, and denote with P

n

; P

s

n

the 
orresponding 
ardinalities.

Euler started the analyti
 theory of partitions by providing the expli
it generating fun
tions

P (z) =

X

n

P

n

z

n

=

Y

k�1

1

1� z

k

; P

s

(z) =

X

n

P

n

z

n

=

Y

k�1

�

1 + z

k

�

;

and a good deal more. The next 
entury mostly fo
ussed on the 
orresponding theta fun
tion

identities and their ellipti
-modular aspe
ts. Andrews' 
lassi
 [2℄ is still a pretty good referen
e for

many of these aspe
ts.

The asymptoti
 theory starts 150 years after Euler, with the �rst letters of Ramanujan to Hardy

in 1913; see [7℄. There, Ramanujan stated:

\The 
oeÆ
ient of x

n

in (1� 2x+ 2x

4

� 2x

9

+ � � � )

�1

is the integer nearest to

1

4n

�


osh �

p

n�

sinh�

p

n

�

p

n

�

:"

This assertion (that in fa
t needs to be mildly amended) is, in view of Euler's pentagonal number

theorem, dire
tly relevant to our subje
t. In a 
elebrated series of memoirs published in 1917
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and 1918, Hardy and Ramanujan found very pre
ise estimates for the partition numbers implying

in parti
ular:

(1) P

n

�

1

4n

p

3

e

�

q

2

3

n

; P

s

n

�

1

4

p

3n

3=4

e

�

q

1

3

n

:

See [7, Ch VIII℄ for an insightful dis
ussion and [2, Ch. 5℄ for the reexamination of the subje
t by

Meinardus.

As far as dominant asymptoti
s goes, it may be worth pointing out that the simply stated

estimates (1) plainly derive from a saddle-point approximation of the Cau
hy 
oeÆ
ient integral,

(2) [z

n

℄C(z) =

1

2i�

Z

jzj=�

C(z)

dz

z

n+1

:

The saddle points to be used here are at the real points � (for P (z)) and �

s

(for P

s

(z)) su
h that

� � 1�

�

p

6n

; �

s

� 1�

�

p

12n

;

the reason being that P (z) and P

s

(z) =

P (z)

P (z

2

)

tend to in�nity like exp

�

�

2

6(1�z)

�

and exp

�

�

2

12(1�z)

�

;

as z tends radially to 1.

Later in the last 
entury, Erd}os and Lehner [6℄ laun
hed the study of various 
hara
teristi
s of

random partitions. In parti
ular, they showed that almost all partitions of P

n

have a number a

summands in an interval

(3)

1

C

p

n logn� o

�

p

n log n

�

; C := �

r

2

3

;

while for stri
t partitions, the interval is

(4)

2

p

n

D

log 2� o

�

p

n

�

; D := �

r

1

3

:

The limit law is an extreme value distribution in the �rst 
ase, a Gaussian distribution in the

se
ond 
ase. (Erd}os and Lehner use a mostly elementary re
urren
e argument indu
ed by generating

fun
tions together with the Hardy{Ramanujan estimates.) Note the similarities between the saddle-

point 
onstants and the normalization 
onstants C; D in (3) and (4). Also, the s
aling fa
tor

p

n

is ubiquitous in all su
h analyses. Roughly put, these estimates inform us that a random partition

of n is expe
ted to �t in a re
tangle with sides about n

1=2+o(1)

.

2. The Shape of Random Partitions

Around 1977, Vershik and Kerov [10℄ and, independently, Logan and Shepp [8℄ studied the shape

of the Young tableau(s) asso
iated to a random permutation or a random involution.

1

Thus, in


ontast to what happens in the talk, we are momentarily dealing with a non-uniform distribution

on P

n

. Indeed, the enumerative formulae relative to Young tableaus under these statisti
s (the

\hook formula," also 
alled the Robinson{Frame{Thrall formula) renormalize in the s
ale of

p

n in

su
h a way that the probability of a 
ontinuous shape f(t) (in the asymptoti
 limit) o

uring in

tableaus of size n is found to be of the rough form (see (7) below for a pre
ise statement)

(5) e

�n�(f)

; �(f) := 2

ZZ

t<s

log

�

2e

1=2

(s� t)

�

�

1�

_

f(s)

��

1 +

_

f(t)

�

dt ds

1

These are \�lled" Young diagrams|the �lling rule 
orresponds to entries in
reasing by line and 
olumn.
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Figure 1. Two partitions of P

1000

drawn at random against the limiting shape 	(t).

with

_

f the derivative of f . Thus, the most likely shape f

0

solves the variational problem of

minimizing the fun
tional �, and \most" tableaus are expe
ted to be 
lose to this parti
ular

shape f

0

. From the methodologi
al standpoint, the 
ontributions [8, 10℄ are espe
ially important.

They led to a mu
h wanted solution of Golomb's 
onje
ture to the e�e
t that the average length

of the longest in
reasing subsequen
e in a random permutation of size n is asymptoti
 to 2

p

n;

see [1, 3℄ for re
ent developments in rather di�erent dire
tions.

We now return to partitions and let Q

n

and Q

s

n

represent the uniform probability models on P

n

and P

s

n

. A partition (or diagram) � 
an be written under the form � = 1

r

1

2

r

2

3

r

3

� � � . Graphi
ally,

we de�ne the \
ontour" or \shape,"

'

�

(t) :=

1

X

k=dte

r

k

; t � 0;

so that '

�

is a monotone de
reasing fun
tion whose integral over R

+

equals n. We normalize any

su
h ' by

e'

n

(t) =

1

p

n

'

�

�

�

t

p

n

�

�

:

Under the models indu
ed by Q

n

and Q

s

n

, Vershik [9℄ proved (in the sense of uniform 
onvergen
e

on 
ompa
t sets) that 
ontours tend to 
onverge to deterministi
 limits,

e'(�) �!

n!1

	(�); e'

s

(�) �!

n!1

	

s

(�); where

(6) 	(t) :=

Z

1

t

du

e

�u

� 1

du; 	

s

(t) :=

Z

1

t

du

e

�u

+ 1

du; � =

�

p

6

; � =

�

p

12

:

Thus, a random partition under Q

n

or Q

s

n

tends to have a limiting shape given by the 
urves

	(t) or 	

s

; see Fig. 1 obtained with Maple and 
ombstru
t. (Observe that 	 has a logarithmi


singularity at 0, while 	

s

is regular there.) Alternatively, the limit 
ontours are the 
urves satisfying

respe
tively e

��x

+e

��y

= 1, and e

�y

�e

��y

= 1; with the �rst one being symmetri
al, as it should.

The main obje
tive of the talk is to 
onsider deviations from the limit shapes. What is proved

is a full large deviation prin
iple, of speed

p

n, mu
h in the spirit of (5). We re
all that a sequen
e

of measures �

n

over a (
ompletely regular Hausdor� topologi
al) spa
e X is said to satisfy the

large deviation prin
iple [LDP℄ with speed b

n

and a rate fun
tion I if I : X ! [ 0;1) is lower
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semi
ontinuous, and for any measurable set X � X , there holds:

(7) � inf

x2X

Æ

I(x) � lim inf

n!1

1

b

n

log �

n

(X) � lim sup

n!1

1

b

n

log �

n

(X) � � inf

x2X

I(x):

There, X

Æ

and X denote the interior and the 
losure of X. It 
an be re
ognized that the informally

stated estimate in (5) is of this type (with speed b

n

= n and rate fun
tion �).

For our purposes, the set X will 
onsist of fun
tions that are left 
ontinuous and of right limits

equipped with the topology of uniform 
onvergen
e. Let also AC

[�1;0 ℄

1

be the subset of non-

in
reasing absolutely 
ontinuous fun
tions f(�) satisfying lim

t!1

f(t) = 0|and hen
e f(t) =

R

1

t

�

�

_

f(u)

�

du|with derivatives belonging Lebesgue-almost everywhere to the interval [�1; 0 ℄.

This last set represents the 
olle
tion of all potential \shapes" of partitions 
onsidered (after nor-

malization). By want of spa
e, we refer to the original paper [4℄ for 
omplete topologi
al and

measure-theoreti
 de�nitions and state:

Theorem 1. Under the laws Q

s

n

, the random variable e'(�) satis�es the LDP with speed

p

n and a

rate fun
tion that, for f 2 AC

[�1;0 ℄

1

and

R

1

0

(�t) df(t) � 1, is expressed by

I

s

(f) = 2� �

Z

1

0

h

�

�

_

f

a


(t)

�

dt;

with h(x) = log

�

x

�x

(1� x)

�(1�x)

�

the entropy fun
tion and g

a


the absolutely 
ontinuous part of g.

Theorem 2. Under the laws Q

n

, the random variable e'(�) satis�es the LDP with speed

p

n and a

rate fun
tion that, for f in a suitable spa
e and

R

1

0

(�t) df(t) � 1, is expressed by

I

s

(f) = 2��

Z

1

0

�

1�

_

f

a


(t)

�

h

 

�

_

f

a


(t)

1�

_

f

a


(t)

!

dt:

The paper also states some equivalent forms that are expressed in terms of a \distan
e" to the

most likely 
ontours of (6). That distan
e involves various entropy fun
tions.

3. Boltzmann Models of Combinatori
s

The �rst step in the proof of Theorems 1 and 2 is the introdu
tion of a family of models over the


lasses P and P

s

and large deviations are �rst established under these models. Sin
e the prin
iples

are of an appli
ablity that goes well beyond the probabilisti
 theory of partitions, we depart a bit

from the original paper [4℄ and dis
uss them �rst at a fair level of generality.

Let generally C be a 
lass of 
ombinatorial obje
ts endowed with its size fun
tion j � j. What

we 
all here, by virtue of a vague analogy with statisti
al me
hani
s, the Boltzmann model of

parameter x (over C) is the model that assigns to any obje
t 
 2 C the probability

x

j
j

C(x)

with C(x) =

X


2C

x

j
j

;

the 
ounting generating fun
tion of C. There x is to be restri
ted to real values less than the

radius � of 
onvergen
e of C(x).

The 
lass C being �xed, we shall let Q

n

denote the uniform probability model over the sub
lass C

n

of obje
ts of size n and, with a slight abuse of notations, Q

x

represents the Boltzmann model of

parameter x. Clearly, Q

x

is a mixture of the family of models fQ

n

g in the following sense:

(8) Q

x

�

=

Q

N

where N is a random integer sele
ted with P(N = n) =

C

n

x

n

C(x)

:
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In other words, a randomly 
hosen obje
t under Q

x

has a random size N � N

x

distributed a

ord-

ing to the probability in (8); on
e the value of size has been drawn a

ording to its distribution,

say, N = n, a random element of C

n

is 
hosen uniformly at random, that is, a

ording to Q

n

. (A
-


ordingly, Q

n

is Q

x


onditioned upon size, irrespe
tive of the value of x 2 (0; �).) The distribution

of the random size N a

ording to Q

x

is itself given by a simple generi
 
al
ulation that we now

explain. The probability generating fun
tion of N is

X

n

P(N = n) z

n

=

C(xz)

C(x)

:

Next, the mean and se
ond moment of N are found to be

(9) E(N) = x

C

0

(x)

C(x)

; E(N

2

) =

x

2

C

00

(x) + xC

0

(x)

C(x)

:

The mean size in
reases as x approa
hes �

�

, with � the radius of 
onvergen
e of C. In parti
ular,

if the additional 
ondition C

0

(�

�

) = +1 is met, the Boltzmann model must give preponderan
e to

obje
ts of larger and larger sizes. (Work in progress by Du
hon, Flajolet, Lou
hard, and S
hae�er

shows that similar 
onsiderations are otherwise of great interest for the random generation of


ombinatorial stru
tures.)

We now spe
ialize the Boltzmann model to partitions, with the Boltzmann models Q

x

; Q

s

x

,

and the �xed-size models Q

n

; Q

s

n

taken in asso
iation to the 
ombinatorial 
lasses P; P

s

n

. The

generating fun
tions P (z); P

s

(z) have radius of 
onvergen
e � = 1 and both blow up exponentially

as z ! 1

�

. Thus, the models Q

x

; Q

s

x

must have something to say on the limiting behaviours of

obje
ts in P; P

s

n

. As it is easy to see, the Boltzmann models Q

x

and Q

s

x


orrespond to in�nite

sequen
es of independent integer valued random variables R

k

(k = 1; 2; : : :), with laws as follows:

(10)

Q

x

: R

k

2 Z

>0

; P(R

k

= `) = x

k`

(1� x

k

)

Q

s

x

: R

k

2 f0; 1g; P(R

k

= 1) = x

k

=(1 + x

k

):

In other words, the non-indenti
ally distributed (but independent) R

k

are Bernoulli in the 
ase of

Q

s

x

and geometri
 in the 
ase of Q

x

.

A simple 
al
ulation based on Equation (9), on Chebyshev's inequalities, and on the usual

approximation te
hniques for partition fun
tions shows that a window narrowly 
entred around

size N = n is obtained by �xing x = x

n

, x = x

s

n

given by

x

n

= 1�

�

p

n

; x

s

n

= 1�

�

p

n

;

for Q

x

and Q

s

x

, respe
tively. (Note that these values 
oin
ide with the saddle points of the 
omplex-

analyti
 approa
h in Se
tion 1! This fa
t is general sin
e the equations E

x

(N) = n and the saddle-

point 
ondition for (2) pre
isely 
oin
ide.) Large deviations of sums of Bernoulli or geometri


random variables involve the entropy fun
tion. The Boltzmann models for partitions then provide

a �rst hint as to the natural o

urren
e of entropy fun
tions in the statements of Theorems 1 and 2.

4. The Spirit of Complete Proofs

In this short abstra
t, we 
annot do more than presenting a broad (and vague) outline of what

the full proof of Theorems 1 and 2 requires.

First, under the 
ontinuous-parameter models Q

x

; Q

s

x

, it is easy to determine information on

single parameters of partitions. The paper under review re
overs for instan
e the analogues of

Erd}os and Lehner's estimates when x = x

n

and x = x

s

n

. It then pro
eeds by proving the LDP

for these models. What is required is showing that, for any �xed m, and any �xed \instants"
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t

1

, t

2

, . . . , t

m

, the random ve
tors

�

e'

n

(t

1

); : : : ; e'

n

(t

m

); n

�1

N

�

satisfy a large deviation prin
iple.

The proof bases itself on the independen
e granted by the models: one needs to estimate the

probabilities of \sli
es" of summands in the s
ale of

p

n to be away from what is expe
ted; this

is largely based on the approximation of Riemann sums by integrals. As a snapshot of the latter

te
hnique, we o�er the simple estimate

E

x

n

�

e'

n

(t)

�

=

X

k=tn

1=2

1

p

n

x

k

n

1� x

k

n

!

Z

1

t

du

e

�u

� 1

du =: 	(t):

Last but not least, the treatment relies on an intensive use of large deviation te
hniques as exposed

in [5℄.

In a se
ond step, a Tauberian type of pro
ess needs to be applied. Indeed, the models Q

x

n

are

a sort of weighted average of various models of a size N , whi
h is only 
ontrolled to lie in the

vi
inity of n but still 
u
tuates randomly. However, results at N = n exa
tly are wanted. Contour

integration is one 
ommon way of a
hieving this, but the authors of [4℄ opt for a more 
ombinatorial

path. One of the ideas is to appeal to the following area transformation: given a diagram � of

area N at most n, form a new diagram of area n exa
tly, by 
ompleting the last row of � by n�N

elements. This establishes a mapping from

S

n

N=1

P

N

to P

n

that does not a�e
t shape and various

other 
hara
teristi
s of partitions too mu
h. In this way, large deviation properties established for

values of N slightly smaller than n (as given by the family of Q

x

n

models) 
an be \transferred" to

partitions of exa
t size n, that is, to the model Q

n

.

The paper under dis
ussion 
on
ludes by noting that several su
h large deviation prin
iples

should hold for various types of partitions with multipli
ities and 
onstrained partitions, as well

as labelled trees and set partitions. In the last 
ase, the obje
ts at stake are enumerated by expo-

nential generating fun
tions, and suitable adaptations of the Boltzmann models (with the Poisson

distribution repla
ing the geometri
 or Bernoulli distribution) are lurking in the ba
kground.
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Summary by Cyril Banderier

Abstra
t

The problem addressed here is the 
overing time of random walks on a graph satisfying

\self-avoiding" properties. Appealing to the 
ombinatori
s of heaps of 
y
les, the author

derives expli
it expressions of the laws for several algorithms related to loop-erased random

walks (and thus to spanning trees and Hamiltonian 
y
les samplings),  Lukasiewi
z walks,

and taboo random walks.

1. Spanning Trees, Hamiltonian Cy
les, Spanning Heaps of Cy
les

Combinatorial tools (su
h as generating fun
tions, 
ontext-free grammars) generally have too

little \memory" to deal with \self-avoiding" walks, and thus their enumeration remains a widely

open problem. However, for a few years, an approa
h via loop-erased random walks has seemed

promising (see [3℄ and also the summary of R. Kenyon's talk in the pro
eedings of years 99{00).

Philippe Mar
hal exploits here the theory of determinants related to properties of heaps of 
y
les

1

and then gives the average time needed to generate self-avoiding walks of several kinds.

De�ne a 
y
le as a path beginning and ending at the same point, and not 
ontaining any sub
y
le.

Given a 
onne
ted graph G (where ea
h edge is oriented and weighted), one wants to �nd

{ a spanning tree T of this graph (i.e., a tree T whose ea
h edge is an edge from G and ea
h

vertex of G a node of T );

{ a Hamiltonian 
y
le C (i.e., a 
y
le C whose ea
h edge is an edge from G, and ea
h vertex

of G is visited exa
tly one time by C);

{ a spanning heap H of 
y
les (i.e., a heap H of 
y
les whose ea
h edge of is an edge from G,

and ea
h vertex of G is visited by at least one of the 
y
les of H).

In order to get a spanning tree or a Hamiltonian 
y
le of the graph, it is interesting to use

probabilisti
 algorithms, sin
e these problems are NP-
omplete.

On the 
onne
ted edge-weighted oriented graph G (the weights are given by a matrix P ), one


onsiders the Markov 
hain (X

n

)

n2N

, de�ned by

P(X

n+1

= i j X

n

= j ) = P

ij

:

This means that the probability to go from vertex i (where you are at time n) to vertex j is the

weight P

ij

of edge (i; j). In this talk, one 
onsiders irredu
ible Markov 
hains only (i.e., the random

walk visits ea
h of the m verti
es of the graph G an in�nite number of times with probability 1) so

that there always exists a vertex-stationary distribution (�

1

; : : : ; �

m

), where �

j

is the probability

1

The 
y
le de
omposition was introdu
ed by Cartier and Foata [2℄ and the modelling via heaps of 
y
les is due to

Viennot [8℄.
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to be at vertex j, after a long enough time. Similarly, there is an edge-stationary distribution for

the edges.

De�ne the weight of the tree T (resp. the 
y
le C, the heap H) as the produ
t of the weights of

its edges. Consider now a traje
tory (a realization) of the Markov 
hain (X

n

)

n2N

, and whenever

one performs a 
y
le, one erases this 
y
le from the walk and one puts this 
y
le on a heap (by


onstru
tion, this 
y
le has no sub
y
le). If one stops at time n, one gets a \loop-erased random

walk" (whi
h is a self-avoiding walk of length less than or equal to n) and a heap of 
y
les. It

will be explained in Se
tion 3 how to use this loop-erased random walk to get a spanning tree, a

Hamiltonian 
y
le or a spanning heap of 
y
les.

2. Generating Fun
tions

Let N

ij

be the number of visits through the edge (i; j) and t

ij

a formal variables asso
iated

to the edge (i; j). Note that N

ij

takes also into a

ount the visits in the 
y
les that get erased,

thus

P

N

ij

= n is the length of the walk. Then, de�ne the formal weight fun
tion ew as the

fun
tion whi
h transforms a path (i.e., a sequen
e of edges) 
 =

�

(x

0

; x

1

); : : : ; (x

n�1

; x

n

)

�

into the

polynomial

ew(
) =

n

Y

i=1

P

x

i�1

x

i

t

x

i�1

x

i

:

This de�nition (as a produ
t of the formal weights of ea
h edge) is easily extended to trees, 
y
les,

graphs. De�ne now the formal transition matrix

e

P by

e

P

ij

= P

ij

t

ij

and, for a subset S of the edges

of the graph G, de�ne

e

P

S

as equal to

e

P ex
epted that (

e

P

S

)

ij

:= 0 whenever i 62 S or j 62 S.

Let C be the set of 
y
les and H the set of heaps of 
y
les from C, then

X

H2H

ew(H) =

 

X

k�1

X

C

1

:::C

k

2C

(�1)

k

ew(C

1

) : : : ew(C

k

)

!

�1

=

1

det(Id�

e

P )

where C

1

, . . . , C

k

are disjoint 
y
les belonging to C. The proof 
omes from an expansion of the

determinant as a sum over all permutations and then de
ompose ea
h permutation in a produ
t of


y
les (ea
h (�1)

k

is nothing but an avatar of the signature of ea
h permutation).

If H stands for the set of heap of 
y
les avoiding a subset S of the edges of the graph G, one has

X

H2H

ew(H) =

1

det(Id�

e

P

S

)

:

Whereas if H stands for the set of heaps of 
y
les interse
ting a set S, one has

X

H2H

ew(H) =

det(Id�

e

P

S

)

det(Id�

e

P )

:

For example, if one stops the random walk X as soon as it rea
hes a given point v and one 
onsiders

the asso
iated loop-erased walk 
, one has the following probability generating fun
tion

E

 

Y

(i;j)

t

N

ij

ij

; 


!

=

ew(
)

det(Id�

e

P

v

)

:

The right member has to be read as a generating fun
tion in several variables (the number of edges

in G) whose 
oeÆ
ient, e.g., [t

4

1;2

: : : t

0

1;4

: : : t

7

3;5

℄ =

ew(
)

det(Id�

e

P

v

)

, gives the probability that the random

walk X visits edge (1; 2) 4 times, edge (1; 4) 0 time, edge (3; 5) 7 times, ... while the asso
iated

loop-erased random walk �nally gives 
.
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Remark: For queuing theory, assuran
e, et
., a usual model is left-
ontinuous random walks

(walks on Z with a �nite set of jumps where the only negative jump is �1). These walks are

sometimes 
alled  Lukasiewie
z walks, due to their 
orresponden
e with simple families of trees,

their ni
e 
ombinatorial and analyti
 properties are well understood, see [1℄. Let p

i

, i � �1,

be the probability to do a jump i and let P

n

be the transition matrix restri
ted to [ 0; n ℄. Then

D

n

(t) := det(Id� tP

n

) 
an easily be 
omputed by the following re
urren
e:

D

0

(t) = D

�1

(t) = 1; D

k

(t) = D

k�1

(t)�

k

X

n=0

p

n

t(p

�1

t)

n

D

k�n�1

(t):

3. Wilson's Algorithm and Some Variants

By 
onvention, one 
onsiders spanning trees whose edges are all oriented to the root. Let T

r

be

the set of spanning trees rooted at r; a well-known result, the matrix-tree theorem implies that

P

T2T

r

w(T )

�

r

= 
onstant:

The striking fa
t is that the quotient does not depend on r.

Wilson's algorithm [7℄ allows to 
onstru
t a random spanning tree with a given root r. Spe
ify

an arbitrary order on G. Start the loop-erased random walk from the �rst point (with respe
t to

the above order) until it rea
hes r. It gives a self-avoiding walk T

1

. Then, restart from the �rst

remaining point until one rea
hes T

1

, one got a subtree T

2

, et
. Finally, one gets a random spanning

tree, rooted at r.

The probability to get this tree T is proportional to its weight w(T ) and does not depend on

the 
hosen order. The proof relies on the 
orresponden
e between traje
tories and heap of 
y
les

as explained above. The probability generating fun
tion is

E

 

Y

(i;j)2G

2

t

N

ij

ij

; T

!

=

ew(T )

det(Id�

e

P

r

)

and thus the average time is tr

�

(Id� P

r

)

�1

�

:

Similarly, one 
an get a Hamiltonian 
y
le. Start the loop-erased random walk from a point

r 2 G and stop the �rst time one gets a Hamiltonian 
y
le C in the heap of 
y
les. Let C be the

set of Hamiltonian 
y
les. Then the probability generating fun
tion is independent from r:

2

E

 

Y

(i;j)2G

2

t

N

ij

ij

; C

!

=

ew(C)

det(Id�

e

P ) +

P

C

0

2C

ew(C

0

)

:

Finally, one gets also a sampling algorithm for a spanning heap of 
y
les. Choose an arbitrary

order on G. Start the loop-erased random walk from a

1

, stop when it returns to a

1

. Then 
onsider

the �rst remaining non-visited point a

2

and start a loop-erased random walk from a

2

and stop

when it returns to a

2

, et
. Stop when all the points have been visited. Here again, the o

upation

measure does not depend on the 
hosen order. The proof relies on the fa
t that one gets a minimal

2

Consider a nearest neighbor random walk on a 
y
li
 graph with m verti
es, and stop the walk when it 
omes

ba
k to the starting point, after having 
overed all the graph. Then, the o

upation measure does not depend on the

starting point. This phenomenon was observed by Pitman in 1996 for Brownian motion.
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spanning heap. The probability generating fun
tion is

E

 

Y

(i;j)2G

2

t

N

ij

ij

;H

!

= det(Id�

e

P )

X

F�G

(�1)

jF j

det(Id�

e

P

F

)

:

The waiting time W of the algorithm is sto
hasti
ally less than the �rst time W

v

that the walk

returns to vertex v, after having visited all the verti
es of the graph:

8v 2 G;8n 2 N P(W � n) � P(W

v

� n)

The proof follows from the fa
t that any spanning pyramid (see [6℄) 
ontains a minimal spanning

tiling. The author also derives this inequality:

1

inf

v2G

�

v

� E(W ) �

X

v2G

1

�

v

:

4. Killed Random Walks

Let q 2 (0; 1), to kill X with a probability 1 � q means to add a sink s and to put some

probabilities of transition P

0

ij

= qP

ij

, P

0

is

= 1 � q. Then, if one runs Wilson's algorithm (rooted

at s), one gets a random heap with a probability proportional to ew(H)q

jHj

where jHj is the number

of edges in H. The following pro
ess also provides a random heap (with the same distribution):


onstru
t an in�nite random heap and then 
olor ea
h edge in red with probability q. Drop the

red 
y
les. Then one gets a red heap with the wanted probability and another heap whose all

minimal 
y
les have at least one non-
olored edge. Let q vary 
ontinuously and thus obtain an

in
reasing family of heaps. At a given value q, an upside-down pyramid falls. The probability that

an upside-down pyramid P falls between q and q + dq equals

ew(P )q

jP j�1

dq:

Some generalisations of this idea allow to generate walks 
onstrained to avoid a spe
i�ed set,

known as taboo random walks.

This summary is related to Mar
hal's arti
les [4, 5, 6℄. The readers who want to learn more about

\Perfe
tly Random Sampling with Markov Chains" 
an have a look at the web site maintained by

David Wilson at http://dima
s.rutgers.edu/~dbwilson/exa
t/.
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Tail Bounds for O

upan
y Problems
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e)
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Summary by St�ephane Bou
heron

Abstra
t

The talk was based on [9℄ and 
onsisted in a presentation of various tail bounds for o

upan
y

problems and appli
ations to the determination of the 
onje
tured satis�ability threshold in

the random k-sat problem.

1. Bins and Balls and O

upan
y Problems

In bins and balls games, m balls are pla
ed independently and uniformly at random among

n bins. Hen
eforth, a generi
 allo
ation will be denoted by ! 2 f1; : : : ; ng

m

: !

k

= j if the k-

th ball is lo
ated in the j-th bin. Let X

n

(!;m) denote the number of empty bins when m balls

have been assigned a position. The pie
ewise 
onstant interpolation is de�ned by X

n

(!; t) =

X

n

�

!; dtne

�

. To alleviate notations, we omit ! when this is not a sour
e of 
onfusion. The

behavior of the pro
ess X

n

(�) as n be
omes large has been the subje
t of many investigations in

random 
ombinatori
s. The le
ture is 
on
erned with di�erent derivations of tail bounds for X

n

(�)

and their appli
ation to the analysis of the threshold phenomenon for the (random) k-satis�ability

problem.

1.1. Approa
hes to random allo
ations. There are many approa
hes to random allo
ation

problems. Many early su

esses of analyti
 
ombinatori
s have been reported in the monograph by

Kol
hin, Sevast'yanov and Chystiakov [11℄.

Probabilisti
 (Martingale-theoreti
al) approa
hes have been su

essful as well. Let F

t

denote

the �-algebra generated by the �rst bnt
 allo
ations (we do not mention n to alleviate notations).

Then it is straightforward to 
he
k the relation

E

"

X

n

�

t+

1

n

�

�

�

�

�

�

F

t

#

=

�

1�

1

n

�

X

n

(t):

From this, one immediately dedu
es that (1 �

1

n

)

�bnt


X

n

(t) is an F

t

-Martingale. Moreover it has

bounded in
rements, and its quadrati
 variation pro
ess 
onverges in probability towards t 7!

e

t

� (1 + t). Applying Martingale limit theorems [8℄, one easily dedu
es:

{ a law of large numbers: X

n

(�)=n 
onverges in probability towards t 7! e

�t

,

{ a fun
tional 
entral limit theorem: t 7!

�

X

n

(t) � ne

�t

�

=

p

n 
onverges towards a res
aled

time-
hanged Brownian motion, namely t 7! e

�t

B

�

e

t

� (1 + t)

�

.

Unfortunately, results on 
onvergen
e in distribution tell little about asymptoti
 probability of rare

events: the 
onvergen
e rate 
annot be better than O

�

1=

p

n

�

, and probability of rare events are

espe
ially relevant to the analysis of extreme values that often 
onstitute the 
ore of appli
ations.
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Nevertheless, 
entral limit theorems suggest that the tail probabilities of the empty 
ell statisti
s

might be Gaussian-like. In 
omputer s
ien
e, sharp upper bounds on tail probabilities are often

desirable.

If instead of throwing a �xed number bnt
 of balls into the n bins, one �rst draws N a

ording

to a Poisson distribution with parameter bnt
, and then throws N balls into the n bins, the bin

o

upan
ies be
ome independent Bernoulli random variables with su

ess probability � exp(�t).

X

n

(t) is now distributed a

ording to a binomial random variable with parameters n and exp(�t).

Let P denote the original probability distribution on allo
ations and let Q denote this alternate

probability distribution on N and allo
ations. Note that 
onditionally on N = bnt
, the distribu-

tions of X

n

(t) under P and Q are identi
al (the multinomial distribution is a 
onditioned Poisson

pro
ess). Then

(1) PfX

n

(t) 2 Ag =

QfX

n

(t) 2 A ^N = bnt
g

QfN = bnt
g

�

p

2�nt QfX

n

(t) 2 Ag

Inequality (1) provides with an easy tail upper bound for rare events under Q , i.e., for large

deviations of X

n

(t) around its expe
tation. If A = f! j X

n

(!; t) > ne

�t

+ n� g, then

PfX

n

(t) 2 Ag �

p

2�n exp

�

�nh

�

e

�t

+ �; e

�t

�

�

where h(x; y) = x log

x

y

+ (1 � x) log

1�x

1�y

. It obviously raises two questions: Is the order of the

exponent 
orre
t? Can we get rid of the

p

n fa
tor?

1.2. Known results. As allo
ation are performed independently, a very straightforward yet useful

bound 
omes from the Azuma { M
 Diarmid inequality. Namely note that if ! and !

0

are two

allo
ation s
hemes that di�er only in one position !

j

= !

j

0

for all j � k = btn
 ex
ept for j = i,

then

�

�

X

n

(!; t) � X

n

(!

0

; t)

�

�

�

1

n

. As a matter of fa
t, if the spa
e of allo
ations is equipped with

the Hamming distan
e, the empty bin statisti
s is 1-Lips
hitz. This implies that

(2) P

n

�

�

X

n

(t)�E

�

X

n

(t)

�

�

�

> n�

o

� 2 exp

�

�

2n�

2

t

2

�

:

Inequality (2) is obtained by a Martingale embedding argument. Namely X

n

(t) = E

�

X

n

(t)

�

�

F

t

�

and the pro
ess M

n

(s) = E

�

X

n

(t)

�

�

F

s

�

is an F

s

-martingale, as

E

�

M

n

(s+ h)

�

�

F

s

�

= E

h

E

�

X

n

(t)

�

�

F

s+h

�

�

�

�

F

s

i

= E

�

X

n

(t)

�

�

F

s

�

= M

n

(s):

One may wonder what the best way to apply Azuma's inequality is.

1.3. Painless tail bounds. The �rst bound presented in [9℄ is:

(3) P

n

�

�

X

n

(t)�E

�

X

n

(t)

�

�

�

> n�

o

� 2 exp

 

�

(n� 1=2)n

2

�

2

n

2

�E

�

X

n

(t)

2

�

!

:

When n be
omes large, the exponent on the right-hand side is equivalent to

�

n�

2

1� e

�2t

:

The trivial Poisson estimates (1) 
learly shows that this exponent is rather poor as soon as

t be
omes non-negligible. This is not a denial of the merits of Martingale approa
h. Indeed, this

method provides nearly optimal bounds for smooth Gaussian fun
tionals and for many dis
rete

problems. The apparent 
aw in Equation (3) 
omes from the fa
t that we did not use tight enough

bounds on the quadrati
 variation pro
ess asso
iated with E

�

X

n

(t)

�

�

F

s

�

.



P. Spirakis, summary by S. Bou
heron 51

Next the authors of [9℄ pro
eed to establish what they 
all a Chernof bound for the o

upan
y

problem. It shows that the Poisson tail estimate (1) is 
orre
t even if we do not resort to a


onditioning argument, i.e., that the

p

n fa
tor is spurious.

2. The Large Deviation Approa
h

The large deviation approa
h (see [2, 5, 7℄ for re
ent presentations) aims at identifying the right

exponents for tail probability. It provides the right tou
hstone for the o

upan
y problem. Rather

than using the martingale stru
ture of the o

upan
y problem, the large deviation approa
h relies

on the Markovian stru
ture of the o

upan
y problem: 
onditionally on X

n

(t), X

n

(t + 1=n) does

not depend on F

t�1=n

. The large deviation prin
iple invoked in [9℄ 
omes from a 
ontra
tion

of a fun
tional large deviation prin
iple derived by Azen
ott and Ruget. The latter shows that

asymptoti
ally, the exponent in large deviation probabilities 
an be represented as a the solution

of a variational problem, namely

(4) lim

n!1

1

n

log P

�

X

n

(t) � nx

	

= � inf

�(0)=1; �(t)=x

Z

t

0

h

�

�

_

�(s); �(s)

�

ds:

The arti
le [9℄ solves the asso
iated variational problem and provides a 
losed form for the exponent,


on�rming the intuition that the exponent obtained by Poissonization is not optimal.

3. Satis�ability Problems

The se
ond part of the paper presents an appli
ation of tail bounds for o

upan
y problems to

the analysis of the random 3-sat problem. An instan
e of the 3-sat problem is a boolean formula in


onjun
tive normal form, where ea
h 
lause has at most 3 literals. For ea
h number n of variables,

and ea
h problem size k, the set of instan
es of the 3-sat problem is provided with the uniform

probability over the m-tuples of 3-
lauses over the n variables. At the time of writing [9℄, it was


onje
tured that as n goes to in�nity while k=n remains 
onstant, a phase transition o

urs. For

k=n < 


3

, random 3-sat formulas are satis�able with overwhelming probability, while for k=n > 


3

random 3-sat formulas are not satis�able formulas with overwhelming probability.

The paper [9℄ proposes an upper-bound on the 
onje
tured satis�ability threshold: 


3

� 4:758.

This result 
ame in a series of improvement starting from the straightforward 


3

� 5:19, through




3

� 5:08 [6℄, 


3

� 4:64 [3℄, 


3

� 4:601 [10℄, and re
ently 
ulminating with 


3

� 4:506 [4℄.

In the sequel, n and k are supposed to be �xed. F denotes a random 3-sat formula, #F

denotes the number of assignments of the n boolean variables that satisfy F . F is satis�able if

#F � 1. T (F ) equals 1 if F is satis�able, 0 otherwise. Let � denote a generi
 truth assignment.

F (�) equals 1 if � satis�es F , 0 otherwise. 1 denotes the truth assignment where all variables are

set to 1. Then, we have

(5) E

F

�

T (F )

�

= E

F

2

4

X

�:F (�)=1

1

#F

3

5

=

X

�

E

F

�

F (�)

#F

�

= 2

n

E

F

�

F (1)

#F

�

;

where the se
ond equality 
omes from the fa
t that the number of formulae that satisfy a parti
ular

truth assignment does not depend on the truth assignment. Hen
e, to get an upper bound on the

probability of satis�ability, it is enough to get an upper bound on

�

7

8

�


n

E

F

0

�

1

#F

�

;



52 Tail Bounds for O

upan
y Problems

where F is now pi
ked at random among the

�

7

8

�


n

�

n

3

�


n

formulae that are satis�ed by 1. This

distribution among formulae is a produ
t distribution where ea
h 
lause is pi
ked uniformly at

random among the 
lauses where at least one literal is not negated.

The main idea of the proof is to establish that 
onditionally on the fa
t that it is satis�able, a

3-sat formula with suÆ
iently many 
lauses has exponentially many satisfying truth assignments

with overwhelming probability.

What is proved in [9℄ is a
tually the following. Let #F

1

denote the number of truth assignments �

of F where for ea
h 
lause in F , there exists a non-negated variable that evaluates to 1 in �.

Obviously 1=#F � 1=#F

1

. Now to lower bound #F

1

, it is enough to determine a minimum family

of variables I(F ) su
h that any truth assignment where all variables in I(F ) evaluates to 1 satis�es

the formula F (I(F ) is sometimes 
alled a prime impli
ant of F ). As a matter of fa
t, we have

#F

1

� 2

n�#I

, and hen
e

(6) PfF is satis�able g �

�

7

8

�


n

E

F

0

h

2

#I

i

:

Sin
e the publi
ation of [9℄, improved upper bounds on 


3

have been derived by re�ning estima-

tions on the 
u
tuations of #F for random formulae. Those estimations still rely on statisti
s for

random allo
ations. But the empty bins statisti
s are no more suÆ
ient. The best known upper

bounds [4℄ rely on a statisti
s that have sometimes been 
alled empiri
al o

upan
y measures. As

a matter of fa
t, an allo
ation ! de�nes a probability measure on N,

�

X

n

(i; t) denotes the fra
tion

of bins that 
ontain i balls for i 2 N. The large deviations of this measure-valued random vari-

able may be studied in di�erent ways: by resorting to Azen
ott{Ruget results and proje
tive limit

arguments [2℄, or dire
tly as in [1℄.
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Abstra
t

Tries, a generalized form of digital trees, are a data stru
ture widely used in numerous

domains: algorithms for sear
hing words, 
ompression, dynami
al hashing, ... Their interest

and 
onstru
tion lie in the partitioning of a set of words. We present a 
ompa
t form of tries,


alled Patri
ia tries, in whi
h all unary nodes are suppressed (and thus do not intervene in

the partitioning). We then study the means of the memory o

upation and of the 
ost of

inserting a word for that data stru
ture when words are produ
ed by a probabilisti
 sour
e

for whi
h the dependen
ies between the emitted symbols 
an be very important.

1. Size and Path Length of Tries and Patri
ia Tries: Expressions for Expe
tations

We de�ne the notions of tries and Patri
ia tries. We �nd general expressions for the expe
tations

of the size and path length of tries and Patri
ia tries in the Bernoulli model, valid for any sour
e.

1.1. Operations on in�nite words. For a �nite alphabet � = fa

1

; a

2

; : : : ; a

r

g, let �

1

be the set

of in�nite words on that alphabet, � : �

1

! �

1

the map that returns the �rst letter of a word,

and T : �

1

! �

1

the shift that returns the �rst suÆx of a word. Let T

[a℄

denote the restri
tion

of T to the set �

�1

�

fag

�

of words beginning with symbol a and, for a �nite pre�x w = a

1

: : : a

k

, let

T

[w℄

denote the 
omposition T

[a

k

℄

ÆT

[a

k�1

℄

Æ � � � ÆT

[a

1

℄

. The notations � and T are kept for operators

a
ting on reals whi
h will be used later.

1.2. Tries.

De�nition 1. Let X be a �nite set of in�nite words produ
ed by the same sour
e. A trie Tr(X)

is a stru
ture de�ned by the following rules:

(R

0

) If X = ? (the empty set), Tr(X) is the empty tree.

(R

1

) If X = fxg, Tr(X) 
onsists of a single leaf node represented by 2 that 
ontains x.

(R

2

) If X is of 
ardinality greater than or equal to 2, Tr(X) is an internal node represented by �

to whi
h are atta
hed r subtrees:

Tr(X) =

D

�;Tr

�

T

[a

1

℄

X

�

;Tr

�

T

[a

2

℄

X

�

; : : :Tr

�

T

[a

r

℄

X

�

E

:

The edge that atta
hes the subtrie Tr

�

T

[a

j

℄

X

�

is labelled by the symbol a

j

. Noti
e a little abuse

in (R

2

): if there is no word in X beginning with a

j

, then T

[a

j

℄

X is not de�ned, and we 
onsider

that is equal to the empty set. Hen
e Tr

�

T

[a

j

℄

X

�

is the empty tree, and it is as though there were

no subtree 
orresponding to a

j

(see Figure 1).
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abc

b c b bb

cba bbc cab

a b c

a b

c

a b c

c

a

a b c

a b

b c b

b b cabbbccbaabc

b

a

a bc

bca c

ba a c

a cb

Figure 1. Standard trie and 
orresponding Patri
ia trie.

1.3. Patri
ia Tries. A Patri
ia trie is a trie from whi
h all unary nodes are eliminated. Hen
e

with any �nite set X of in�nite words produ
ed by the same sour
e, we asso
iate a Patri
ia trie

PaTr(X). The �rst two rules are the same, but the last rule (R

0

2

) is more sophisti
ated:

(R

0

2

) If X is of 
ardinality greater than or equal to 2, we have two 
ases:

(R

0

2;1

) if �(X) 
onsists of a single symbol, then PaTr(X) equals PaTr(TX).

(R

0

2;2

) if �(X) has at least two distin
t symbols, PaTr(X) is an internal node generi
ally

represented by � to whi
h are atta
hed r subtrees,

PaTr(X) =

D

�;PaTr

�

T

[a

1

℄

X

�

;PaTr

�

T

[a

2

℄

X

�

; � � �PaTr

�

T

[a

r

℄

X

�

E

:

The edges of the Patri
ia trie are labelled by words. These words are obtained from the asso
iated

trie by 
on
atenating all the labels of the 
ollapsed edges.

1.4. Additive parameters. The depth of a node in a tree is the number of edges of the path that


onne
ts it to the root. The size of a tree is the number of its internal nodes. The path length of a

tree is the sum of the depths of all (nonempty) external nodes.

1.5. Algebrai
 analysis of additive parameters. In a standard trie built on the set X =

fx

1

; : : : ; x

n

g, the stru
ture of a node labelled by a pre�x w is a �nite string 
alled a sli
e given by

� T

[w℄

X :=

�

� T

[w℄

(x

1

); � � � ; � T

[w℄

(x

n

)

�

:

An additive parameter 
 on X is de�ned by a toll parameter Æ de�ned on �nite strings and the

re
ursive rule:


[X℄ =

(

0; if jXj � 1,

Æ[�(X)℄ +

P

m2�


[T

[m℄

X℄; if jXj � 2,

Let jsj and #(s) denote the number of symbols of the string s and the number of distin
t symbols

of s, respe
tively. The parameters of interest are the size on tries and Patri
ia tries,

Æ

S

(s) =

�

1 if jsj � 2;

0 otherwise,

Æ

PS

(s) =

�

1 if #(s) � 2;

0 otherwise,

and the internal path length on tries and Patri
ia tries

Æ

L

(s) =

�

jsj if jsj � 2;

0 otherwise,

Æ

PL

(s) =

�

jsj if #(s) � 2;

0 otherwise.
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Size of Tr

b

S(n) =

X

w2�

�

�

1� (1 + (n� 1)p

w

)(1 � p

w

)

n�1

�

Path Length of Tr

b

L(n) =

X

w2�

�

np

w

�

1� (1� p

w

)

n�1

�

Size of PaTr




S

P

(n) =

X

w2�

�

�

1� (1� p

w

)

n

�

X

i2�

�

�

1� p

w

(1� p

[ijw℄

)

�

n

� (1� p

w

)

n

�

�

Path Length of PaTr




L

P

(n) =

X

w2�

�

np

w

�

1� (1� p

w

)

n�1

�

X

i2�

p

[ijw℄

�

1� p

w

(1� p

[ijw℄

)

�

n�1

�

Table 1. Expe
tations of size and path length for tries (Tr) and Patri
ia tries (PaTr).

1.6. Expe
tation of parameters. Let

�

P

z

;S

�

denote the Poisson model of rate z relative to

the sour
e S, and p

w

the probability that a given in�nite word begins with the pre�x w. If the


ardinality of X is a random Poisson variable of rate z, the length of the sli
e �T

[w℄

X is also a

random Poisson variable of rate zp

w

. Hen
e the expe
tation of parameter 
 is a sum of expe
tations

of parameter Æ, E[
;P

z

;S℄ =

P

w2�

�

E[Æ;P

zp

w

; B

w

℄.

The expe
tation of the parameter is given by E[Æ;P

z

; B℄ = e

�z

�

�u

F

Æ

(z; u; p

1

; � � � ; p

r

)

�

�

u=1

, where

F

Æ

(z; u; x

1

; � � � ; x

r

) =

P

s2�

�

z

jsj

jsj!

u

Æ(s)

x

jsj

1

1

� � � x

jsj

r

r

.

Using algebrai
 depoissonization [3℄, based on the equalities E[Y ;P

z

℄ = e

�z

P

n�0

E[Y ;B

n

℄

z

n

n!

and thus E[Y ;B

n

℄ = n![z

n

℄e

z

E[Y ;P

z

℄

z

n

n!

, one 
an return to the Bernoulli model. Finally, the

expe
tations of interest are given in Table 1.

2. Tools for the Asymptoti
s of the Expe
tations

2.1. Mellin analysis and Diri
hlet series. To get asymptoti
s for the expressions found previ-

ously, we �rst note that they belong to the paradigm of harmoni
 sums. Their Mellin transforms

are given in Table 2, where �(s) =

P

w2M

�

p

s

w

and

�

S

(s) = �

X

w2�

�

p

s

w

�

X

w2�

�

p

s

w

X

i2�

�

(1� p

ijw

)

s

� 1

�

= (s� 1)�(s) � s

X

k�2

(�1)

k

k!

 

k�1

Y

i=2

(s� i)

!

h

(s� 1)�

[k℄

i

;(1)

�

L

(s) =

X

w2�

�

p

s

w

X

i2�

�

(1� p

[ijw℄

)

s�1

� 1

�

=

X

k�2

(�1)

k

(k � 1)!

 

k�1

Y

i=2

(s� i)

!

h

(s� 1)�

[k℄

i

;(2)

with �

[k℄

(s) =

P

w2�

�

p

s

w

P

i2�

p

k

ijw

, for k � 1,

2.2. Dynami
al sour
es. We have to restri
t ourselves to a 
lass of dynami
al sour
es S (see [4℄

for more details and [2℄ for its use in a study of standard tries),

(a) a �nite or denumerable alphabet �,

(b) a topologi
al partition of I := (0; 1) with disjoint open intervals I

a

, for a 2 �,

(
) an en
oding mapping � whi
h is 
onstant and equal to a on ea
h I

a

,
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Size of Tr S

�

(s) = ��(�s)(s+ 1)�(s)

Path Length of Tr L

�

(s) = ��(�s)�(s+ 1)

Size of PaTr S

�

P

(s) = �(s)�

S

(�s)

Path Length of PaTr L

�

P

(s) = ��(s+ 1)

�

�(�s) + �

L

(�s)

�

Table 2. Mellin transforms of expe
tations.

0 1
0

1

pb
0 1

0

1

pab
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2. Memoryless sour
e, Markov 
hain of order 1, 
ontinued fra
tion sour
e,

hetero
linal sour
e.

(d) a shift mapping T whose restri
tion to to I

a

is a real analyti
 bije
tion from I

a

to I.

Besides, T has to satisfy more pre
ise properties. If we let h

a

be the lo
al inverse of T restri
ted

to I

a

and H be the set H = fh

a

j a 2 � g, then we add properties on bounds of the �rst

derivatives, among whi
h R�enyi's 
ondition whi
h plays an important rôle in the study of 
onditional

probabilities. This 
ondition states that, if h

a

are the lo
al inverse of T , supposed to be lo
ally

holomorphi
, restri
ted to I

a

, then there exists a 
onstant K that bounds the ratio jh

00

a

(x)=h

0

a

(x)j

for all bran
h h

a

and all x 2 [0; 1℄. With ea
h h

a

, that are only de�ned on I

a

, we asso
iate its

analyti
al extension

~

h

a

to the whole set I.

IfM maps x 2 [ 0; 1 ℄ to

�

�(x); �T (x); �T

2

(x); : : :

�

2 �

1

, T , and � are linked with the previously

de�ned T and � by �M � � and TM �MT .

Figure 2 displays several types of dynami
al sour
es:

Memoryless sour
es. We have aÆne bran
hes of slope 1=p

a

on intervals I

a

:= (q

a

; q

a+1

), where

q

a

=

P

i<a

p

i

.

Markov 
hains. Ea
h I

a

of a memoryless sour
e is divided in r intervals I

a;b

, b 2 �, of length

p

ab

= p

[bja℄

�p

a

on whi
h T : I

a;b

! I

b

has slope

p

a

p

ab

=

p

b

p

[bja℄

�

1

p

a

. Noti
e that when the order d of the

Markov 
hain goes to in�nity in a 
ertain sense, one obtains at the limit a sour
e with unbounded

memory.

Continued fra
tions. With � = N, I

a

:=

�

1

a+1

;

1

a

�

, T (x) =

1

x

�

�

1

x

�

, and �(x) =

�

1

x

�

, 
orre-

sponding to a 
ontinued fra
tion sour
e, we obtain a sour
e with unbounded memory.

Hetero
linal sour
es. A sour
e for whi
h derivatives in di�erent intervals 
an be of di�erent signs

is 
alled hetero
linal. Otherwise the sour
e is homo
linal, like the sour
es presented before.
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ê 57

2.3. Ruelle operators, multi-se
ants and pre�x probabilities. In the 
ontext of dynami
al

systems, with transformations T of lo
al inverses h

a

are asso
iated a transfer operator,

G[f ℄(x) :=

X

a2�

�

�

h

0

a

(x)

�

�

f Æ h

a

(x);

whose interest lies in the following property: if X is a random variable with density fun
tion f ,

then the density of T (X) is G[f ℄. The Ruelle operator generalizes it by introdu
ing a 
omplex

parameter s, interpreted in statisti
al physi
s as the temperature:

G

s

[f ℄(x) :=

X

a2�

~

h

a

(x)

s

f Æ h

a

(x):

To deal with probabilities of pre�xes of words p

w

and hen
e with fundamental intervals, we have

to repla
e tangents with se
ants H[h℄(x; y) :=

�

�

�

h(x)�h(y)

x�y

�

�

�

, leading to a �rst generalization G

s

of the

Ruelle operator, a
ting on fun
tions L of two 
omplex variables:

G

s

[L℄(x) :=

X

a2�

~

H

a

s

[h

a

℄(x; y)L

�

h

a

(x); h

a

(y)

�

:

To deal with 
onditional probabilities, we have to resort to a further generalization G

s

of the Ruelle

operator involving multise
ants instead of se
ants:

G

[m℄

s

[L℄ :=

X

a2�

H

[m℄

s

[h

a

℄L Æ V [h

a

℄;

where the multise
ants are de�ned by H

[m℄

s

[h℄(x; y; z; t) = H[h℄

s�m

(x; y)H[h℄

m

(z; t), and V by

V [h℄(x; y; z; t) =

�

h(x); h(y); h(z); h(t)

�

.

Let F be the distribution asso
iated with the initial density f of a sour
e (S; f). The proba-

bility p

w

that a word begins with some pre�x w is

�

�

�

F

�

h

w

(0)

�

� F

�

h

w

(1)

�

�

�

�

. For the spe
ial 
ase

F = Id, it will be denoted p

�

w

. Let Q := H[F ℄ be the se
ant of the initial distribution. Then the

quasi-inverses of G

s

and G

[k℄

s

are related to Diri
hlet series in the following way:

�(s) =

X

w2M

�

p

s

w

= (Id�G

s

)

�1

[Q

s

℄(0; 1); �

[k℄

(s) =

X

i2�

�

Id�G

[k℄

s

�

�1

h

H

[k℄

s

[F ℄

i

�

0; 1; h

i

(0); h

i

(1)

�

:

Thanks to a theorem similar to the Perron{Frobenius theorem, we have the de
omposition

(Id�G

s

)

�1

=

�(s)

1� �(s)

P

s

+ (Id�N

s

)

�1

);

and a similar de
omposition for the multi-se
ant operator. We dedu
e the asymptoti
s:

lim

s!1

(s� 1)(Id�G

s

)

�1

[L℄(x) =

�1

�

0

(1)

	

1

(x)

Z

1

0

`(t) dt);

where 	

1

(x) is an eigenfun
tion asso
iated with the dominant eigenvalue and 
hosen a

ording to

a proper normalization, and ` is the diagonal mapping of L. We get similar results for the �

[m℄

that also have 1 as pole of order 1, and their respe
tive residues r

m

are related to the dominant

eigenfun
tions 	

[m℄

1

of the operators G

[m℄

1

, whi
h allows us to �nd the singular expansion

�(s) = �

[1℄

(s) �

�1

�

0

(1)(s� 1)

+ C(S);

where C(S) is a 
onstant depending on the sour
e S and the initial density f . Using the equalities

(1) and (2) we 
an then get asymptoti
s for �

S

(1) and �

L

(1).



58 Patri
ia Tries in the Context of Dynami
al Systems

Size of Tr S(n) �

1

h(S)

n

Path Length of Tr L(n) �

1

h(S)

n log n+

�

C(S)�




h(S)

�

n

Size of PaTr S

P

(n) �

1

h(S)

�

1� C

1

(S)

�

n

Path Length of PaTr L(n) �

1

h(S)

n logn+

�

C(S)�


 + C

2

(S)

h(S)

�

n

Table 3. Asymptoti
s of expe
tations.

3. Results: Asymptoti
s

3.1. General expressions. Let h(S) = ��

0

(1) = lim

`!1

P

w2M

`

p

�

w

�

�

log p

�

w

�

�

be the entropy of

fundamental intervals and, besides C(S) en
ountered before, de�ne the 
onstants

C

1

(S) = 1�

X

k�2

1

k(k � 1)

K

[k℄

(S) = 1� lim

`!1

X

w2M

`

p

�

w

X

w2M

`

�

1� p

�

[ijw℄

�

�

�

�

log

�

1� p

�

[ijw℄

�

�

�

�

;

C

2

(S) =

X

k�1

1

k

K

[k+1℄

(S) = lim

`!1

X

w2M

`

p

�

w

X

w2M

`

p

�

[ijw℄

�

�

�

log

�

1� p

�

[ijw℄

�

�

�

�

:

For random tries built from n words emitted by a sour
e S, asymptoti
s of expe
tations are

given in Table 3.

3.2. Example. For a memoryless sour
e with probabilities fp

i

g:

h(S) =

P

i2M

p

i

�

�

log p

i

�

�

; C(S) =

P

i2M

p

i

log

2

p

i

�

P

i2M

p

i

log p

i

�

2

;

C

1

(S) = 1�

P

i2M

�

1� p

i

�

�

�

log(1� p

i

)

�

�

; C

2

(S) =

P

i2M

p

i

�

�

log(1� p

i

)

�

�

:

Similar formulae are available for Markov 
hains and 
ontinued fra
tion sour
es. Simulations are

in agreement with theory.

4. Con
lusion and Open Questions

For the average value of the size, a Patri
ia trie turns out to be better than a trie, and R�enyi's


ondition is not ne
essary. For the average value of the path length, there is only a 
orre
ting

term C

2

of order 2, and our proofs made use of R�enyi's 
ondition. An open question (see [1℄ for

details) would be to know whether this 
orre
ting term remains valid for sour
es for whi
h R�enyi's


ondition does not hold, although all the natural sour
es we are aware of do satisfy that 
ondition.
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Abstra
t

This talk presents three problems in pattern mat
hing and their analysis. Di�erent methods

are used, that rely on 
omplex analysis and probability theory.

1. Statement of the Problems

Some pattern H (or a set H of patterns) is sear
hed in a text T . The text T is generated by

a random probabilisti
 sour
e that is either a Bernoulli sour
e or a Markov sour
e or a mixing

sour
e. In the string mat
hing and the subsequen
e mat
hing problems, H is given: the model is

deterministi
. In the repetitive patterns problem, in Se
tion 4, H is a string of T repeated elsewhere.

2. String Mat
hing

One 
ounts the number of o

urren
es of a given word H or a given �nite set of words, H, in a

text of size n. This number is denoted O

n

(H) or O

n

(H). This 
ounting relies on the de
omposition

of the text T onto languages, the so-
alled initial, minimal, and tail languages.

De�nition 1. Given two strings H and F , the overlap set is the set of suÆxes of H that are also

pre�xes of F . The suÆxes of F in the asso
iated fa
torizations of F form the 
orrelation set A

H;F

.

In the Bernoulli model, one de�nes the 
orrelation polynomial of H and F as

A

H;F

(z) =

X

w2A

H;F

P (w)z

jwj

:

WhenH is equal to F , A

H;H

is named the auto
orrelation set and denotedA

H;H

; the auto
orrelation

polynomial is de�ned as

A

H

(z) =

X

w2A

H;H

P (w)z

jwj

:

For example, let H = 11011 and F = 1110. Then the overlap set of H and F is f11; 1g and

the 
orrelation set is A

H;F

= f10; 110g. Similarly, A

F;H

= f11g. It is worth noti
ing that

A

F;H

6= A

H;F

. Intuitively, the 
on
atenation of a word in A

H;F

to H 
reates an (overlapping)

o

urren
e of F .

De�nition 2. Let H be a given word.

(i) The initial language R is the set of words 
ontaining only one o

urren
e of H, lo
ated at

the right end.
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(ii) The tail language U is de�ned as the set of words u su
h that Hu has exa
tly one o

urren
e

of H, whi
h o

urs at the left end.

(iii) The minimal language M is the set of words w su
h that Hw has exa
tly two o

urren
es

of H, lo
ated at its left and right ends.

With these notations, any text that 
ontains exa
tly k o

urren
es of H, k � 1, rewrites

unambiguously as

rm

1

: : : m

k�1

u

where r 2 R, m

i

2 M, and u 2 U . In other words, this set T

k

of words satis�es T

k

= RM

k�1

U .

The power of this approa
h 
omes from the equations that 
an be written on these languages, that

translate into equations on their generating fun
tions in the Bernoulli model and the Markov model.

Moreover, it turns out that these generating fun
tions|hen
e the whole 
ounting problem|only

depend on the probability of H, denoted P (H), and the so-
alled 
orrelation set.

Theorem 1. Let H be a given pattern of size m, and T be a random text generated by a Bernoulli

model. The generating fun
tion of the set T

k

satis�es

T

k

(z) = z

m

P (H)

(D

H

(z) + 1� z)

k�1

D

H

(z)

k+1

; k � 1;

T

0

(z) =

A

H

(z)

D

H

(z)

where

D

H

(z) = (1� z)A

H

(z) + z

m

P (H):

Moreover, the bivariate generating fun
tion satis�es

T (z; u) =

X

k

T

k

(z)u

k

=

u

1� u

D

H

(z)+1�z

D

H

(z)

z

m

P (H)

D

H

(z)

2

These results extend to the Markovian model and to the 
ase of multiple pattern mat
hing [3℄.

3. Subsequen
e Mat
hing

A pattern W = w

1

: : : w

m

is hidden in a text T if there exist indi
es 1 � i

1

< � � � < i

m

� n

su
h that t

i

1

= w

1

, . . . , t

i

m

= w

m

. For example, date is hidden 4 times in the text hidden pattern

but it is not a substring. We fo
us on 
ases where the sequen
e of indi
es satis�es additional


onstraints i

j+1

� i

j

� d

j

, where d

j

is either an integer or 1. Su
h a sequen
e is 
alled an

o

urren
e. One denotes (d

1

; : : : ; d

m�1

) by D. For example, when D = (3; 2;1; 1;1;1; 4;1) the

set I = (5; 7; 9; 18; 19; 22; 30; 33; 50), satis�es the 
onstraints.

The number of o

urren
es, 


n

, is asymptoti
ally Gaussian. This is proved in [1℄ by the moments

method: all moments of the properly normalized random variable 
onverge to the 
orresponding

moments of the Gaussian law. For any sequen
e I that satis�es the 
onstraints, one denotes X

I

the random variable that is 1 if t

i

1

= w

1

, . . . , t

i

m

= w

m

. Then,




n

=

X

I

X

I

:

The 
omputation of the moments relies on a generalization of 
orrelation sets. Let

U = fu

1

; : : : ; u

b�1

g
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be the subset of indi
es j for whi
h d

j

= 1. Any o

urren
e I satisfying the 
onstraints 
an be

divided into b blo
ks:

[i

1

; i

u

1

℄; [i

u

1

+1

; i

u

2

℄; : : : ; [i

u

b�1

+1

; i

m

℄:

The 
olle
tion of these blo
ks is 
alled the aggregate of I and denoted �(I). In the example above,

the aggregate �(I) is

�(I) = [5; 9℄; [18; 19℄; [22℄; [30; 33℄; [50℄:

Deriving the mean. The 
olle
tion of o

urren
es of W 
an be des
ribed as

A

�

� fw

1

g � A

�d

1

� fw

2

g � :::�A

�d

m�1

� fw

m

g � A

�

;

where A is the alphabet and A

�d

j

is the 
olle
tion of words of size less than or equal to d

j

. It

follows that the generating fun
tion of expe
tations is

X

n

E(


n

)z

n

=

1

(1� z)

b�1

�

m

Y

i=1

p

w

i

z �

Y

i 62U

1� z

d

i

1� z

;

where p

w�i

is the probablity of 
hara
ter w

i

. Hen
e, the expe
tation satis�es

(1) E(


n

) =

n

b

b!

Y

i 62U

d

i

m

Y

i=1

p

w

i

�

1 +O

�

1

n

��

Deriving the varian
e and higher moments. The varian
e rewrites

Var(


n

) =

X

I;J

E(X

I

X

J

)�E(X

I

)E(X

J

):

In the Bernoulli model, the two random variables X

I

and X

J

are independent whenever the blo
ks

of I and J do not overlap. Hen
e, the 
ontribution to the varian
e is zero. If �(I) and �(J)

overlap, one de�nes the agreggate �(I; J) as the set of blo
ks obtained by merging the blo
ks of

�(I) and �(J) that overlap. The number of blo
ks in �(I; J), denoted �(I; J), is upper bounded

by 2b� 1. For su
h a pair (I; J), the text 
an be rewritten as an element of the language

A

�

� B

1

�A

�

� � � � � B

�(I;J)

�A

�

and the generating fun
tion of the 
ovarian
e rewrites

X

n

Var(


n

)z

n

=

X

p�1

X

�(I;J)=2b�p

1

(1� z)

2b�p

P

p

(z);

where P

p

are polynomials of the variable z that generalize the 
orrelation polynomials de�ned in [2℄

(see De�nition 1). The asymptoti
 order of ea
h term is n

2b�p

. Hen
e, the dominating 
ontribution

is due to the interse
ting pairs su
h that �(I; J) = 2b� 1, and

Var(


n

) � n

2b�1

�

2

where the varian
e 
oeÆ
ient � 
an be easily evaluated for any given pattern by dynami
 program-

ming.

The proof is similar for higher moments.
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4. Repetitive Pattern Mat
hing

Given a pattern H found in a text T , one sear
hes for a se
ond approximate o

urren
e of H. A

word F is a D-approximate o

urren
e of a word H if the Hamming distan
e between F and H is

smaller than D. Re
all that the Hamming distan
e between two words of size m, say H = H

1

: : : H

m

and F = F

1

: : : F

m

is

d

H

(H;F ) =

m

X

i=1

1

H

i

6=F

i

:

The usual parameters on trees, su
h as the depth of insertion, height, �ll-up, . . . , are extended in

the approximate 
ase. Notably:

De�nition 3. The depth L

n

is the largest integer K su
h that

min

n

d

�

T

i�K+1

i

; T

n+K

n

�

�

�

�

1 � i � n�K + 1

o

� D:

R�enyi's entropy is generalized. Given a word H, the D-ball with 
enter H, denoted B

D

(H), is

the set of words that are within distan
e D.

De�nition 4. Given a text T , R�enyi's entropy of order 0 is

r

0

(D) = lim

k!1

�E

h

logP

�

B

D

(T

k

1

)

�

i

k

;

when this limit exists.

Asymptoti
 properties are proved for the depth, the heigth and the �ll-up, that depend on R�enyi's

entropy. Notably, the 
onvergen
e in probability of the depth of insertion in a trie extends for this

approximate s
heme:

L

n

log n

!

1

r

0

(D)

; n!1:

The proof relies on the subadditive ergodi
 theorem and asymptoti
 equipartition property.
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Abstra
t

The information 
ontent of genomes of di�erent organisms re
e
ts their mode of physi
al

organisation. For the last de
ades the wet lab biologist's resear
h interests has been to

de
ipher this information 
ontent, with the purpose of extra
ting useful biologi
al features.

The reliability of the information extra
tion pro
ess, mainly based on the textual nature

of the underlying messages, was hard to a
hieve. Therefore, an approa
h based on the


omparison of naturally o

uring sequen
es and randomly generated sequen
es, is used for

dis
erning the artefa
ts in sequen
es and for improving the power of our genome models.

Introdu
tion

The building plan for vegetative life is based on the assembly and 
atalyti
 fun
tion of proteins

and a
tive RNAs. The 
omplete set of instru
tions that is needed to generate the building blo
ks of

the reprodu
tary system is 
alled a \genome." Any produ
tion of living tissue from these building

blo
ks will give rise to an a

umulation of se
ondary metabolites, whi
h are of adverse in
uen
e for

the survival of the spe
ies. The se
ondary e�e
ts of metabolite produ
tion are at the basis for the

requirement of the genome to be able to respond to the indu
ed environmental 
hanges. To 
ounter

this problem, a 
ell of an organism will only bring to expression those genes that are required at

some spe
i�
 moment in the 
ell's life 
y
le. For this purpose, a genome disposes of regulatory

systems in the generation pro
esses of building blo
ks. These systems 
an be 
ompared to logi
al

gates that are situated in upstream sequen
es of most information that needs to be pro
essed. This

permits a modulation in the usage of information. The genomi
 information is sto
ked in a linear

fashion, whi
h fa
ilitates the tra
king of information. At the time the sequen
ing of the human

genomi
 sequen
e is being a

omplished, several tasks remain to be addressed:

{ the de
omposition of the genomi
 sequen
e into streams of messages;

{ the distin
tion of these \messages" in 
ontrast to the \non-
oding bulk information";

{ assignment of biologi
ally signi�
ant fun
tions to the messages.

Our bioinformati
s team is mainly interested in providing an answer to basi
ally two questions:

1. How 
an messages be extra
ted from genomi
 sequen
es in order to perform the fun
tion

assignment task?

2. What is the nature of the message 
ontained within any linear ma
romole
ular stru
ture?
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1. First Task: Message Extra
tion and Fun
tion Assignment

The approa
h 
onsists in observing the known words in the vo
abulary of the genome. These

known words have been indexed through many years of geneti
 experiments, with the use of te
h-

niques handled in mole
ular biology wet labs. Through this biology-related knowledge a

umula-

tion, the following fa
ts are at the basis for the study of genomi
 sequen
es:

{ the start and end points (the START and STOP signals) of a nu
lei
 a
id sequen
e 
orrespond

to the beginning and to the end of a di�usible produ
t (= protein);

{ the information 
ontent of a nu
lei
 a
id sequen
e is translated in a unidire
tional fashion

to the 
orresponding protein through some basi
 trans
ription rules:

DNA ! messenger (mRNA) ! protein;

{ for the yeast organism, experiments have demonstrated that at least 99 triplets are required

between the START and STOP signals, whi
h leads to the 
oding sequen
e expression [5℄:

START

�

n

3

n STOP

�

99

�

n

3

n STOP

�

�

STOP;

with n = fa; 
; g; tg, START = atg, STOP = ftaa; tag; tgag;

{ by repla
ing the T-based nu
leotides with U, this expression proves to be universally true

for the genes des
ribing the intermediate messenger mole
ules (mRNA) in the steps between

DNA and protein;

{ for the genomi
 sequen
es of higher eu
aryotes, the protein-des
ribing sequen
es are inter-

spersed with non-
oding introni
 sequen
es (introns, non-
oding bulk information);

{ a multitude of other signals exists, regulating the expression of spe
i�
 
oding regions, and

responsible for the organism's physiologi
al response in pre
ise environmental 
onditions.

1.1. Me
hanisms for pro
essing signals in messages. There exist me
hanisms for pro
essing


omplex signals, both within eu
aryotes as well as within viral spe
ies. The eu
aryoti
 me
hanism

is des
ribed as alternative spli
ing : a protein-en
oding sequen
e 
an generate di�erent proteins at

the time mRNA is being spli
ed, a

ording to di�erent translational systems. Sample me
hanisms

for this group of organisms are read-through (the trans
ription ma
hinery is reading through and

beyond the STOP 
odon), and hopping (the trans
ription ma
hinery is skipping the STOP 
odon

and the 
odons surrounding it). The retro-viral me
hanism is 
alled re-en
oding, whi
h implies that

di�erent proteins 
an be obtained at the time the mRNA is being translated. Sample me
hanisms

for this group are frameshift (the reading frame for translation is 
hanged, whi
h indu
es an alter-

ation of the en
oded amino a
ids), read-through and hopping. Several features 
an be 
onferred to

some sequen
es that are responsible for a frameshift:

1. Slipping sequen
es (stru
ture X XXY YYZ).

2. A badly positioned 
lassi
al STOP signal: the ribosome looses his grip on the sequen
e and

gets positioned again in phase �1.

3. A ribosome-blo
king stru
ture.

Regulatory sequen
es that are responsible for the modulation of DNA trans
ription in a less error-

prone fashion are:

1. Inhibitor signals. Their role is to bind proteins so that the RNA polymerase 
an no longer

bind to the sequen
e to initiate trans
ription.

2. A
tivator signals. There exists a multitude of signals per protein-en
oding sequen
e, a

ord-

ing to the spe
i�
 fun
tion of the protein to be generated.

Usually, these regulatory sequen
es are short sequen
es, whose observed frequen
y is higher (hen
e

unexpe
ted) in 
omparison to a random word 
omposed of the same letters.
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1.2. Modelling a genomi
 sequen
e. A Markov model is frequently used for modelling a ge-

nomi
 sequen
e. The number of sequen
es that 
an be generated by this model, in
reases with the

order of the Markov model, and rea
hes a plateau.

For a Bernoulli-type distribution of the nu
leotides, the a
tual sequen
e follows a Gaussian dis-

tribution. Additionally, when [A+T℄ in
reases, the amount of START and STOP signals in
reases.

This implies that the 
ertainty of �nding a gene in
reases.

Regulatory signals are words with biased 
omposition, with respe
t to the global word distribu-

tion of the sequen
e. These signals have been sele
ted for their properties in the 
ourse of evolution.

They have been generated a

ording to me
hanisms whi
h in
lude random events [2, 3℄.

1.3. The importan
e of 
odon usage biases. In the 
ontext of geneti
 expression, the 
odon

usage bias is 
orrelated with the level of tRNAs available, and with the abundan
e of protein

generated. The level of protein-en
oding sequen
es that are signi�
antly biased is of the order of

20% of the total amount of sequen
es. Within this respe
t, several observation have been made:

{ the biased stru
ture helps in regulating the trans
ription turnover [6℄;

{ there is a positional 
odon bias a

ording to the strand on whi
h the gene is situated [4℄;

{ there is a 
odon usage bias a

ording to the life 
y
le of the organism and the 
ellular lo
ation

of the metaboli
 a
tivity [1℄;

{ there is a bias in relation with mRNA stability problems [9℄;

{ some horizontal transfers 
an have e�e
ts on the 
odon usage [8℄.

The 
odon usage bias determining the level of 
odons 
orresponding to the amino a
ids of proteins

has a dire
t e�e
t in the genomi
 sequen
e 
omposition of the organism. This bias, whi
h is the

result of an intera
tion of horizontal transfer and metaboli
 
onstraints, is at the basis of the

sele
tion of eÆ
ient proteins. The 
odon usage bias reveals information about the nu
leotide

triplet usage of the en
oded protein and about the eventual external origin of the sequen
e in the

organism. The signi�
an
e of the 
odon usage bias 
an be evaluated by using weighted linguisti
s

approa
hes. This 
onsists in heuristi
ally weighting the 
odons used to en
ode the amino a
ids,

instead of using an average weight for every amino a
id that is en
oded by several triplets. This

prevents from having resulting frequen
ies that diverge from the observed values.

Nevertheless, the probability of �nding reasonable 
odon 
ompositions through linguisti
 meth-

ods is fairly low, be
ause:

{ global linguisti
s are 
al
ulated on a larger set of oligonu
leotides than the number of oligos

that determine the proteins;

{ the number of 
odons in a gene equals one third of the number of possible triplets;

{ the di�erent genes are built up from 
odons of di�erent 
omposition, and this is in
reasing

the ba
kground noise a

ordingly.

2. Se
ond Task: Determining the Nature of the Message

Life on any other planet besides Earth 
an only be dete
table for us if it is based on our 
arbon


hemistry. Any sequential organi
 ma
romole
ule 
ontains 
onstitutional information, if textual

organization 
an be dete
ted within it.

Di�erent approa
hes exist for the dete
tion of organized information:

1. Complexity analysis of sequen
es. The 
omplexity of sequen
es is diÆ
ult to 
ompute.

Ed Trifonov introdu
ed in 1990 the notion of linguisti
 
omplexity [7℄ that re
e
ts the lin-

guisti
 wealth of a sequen
e. This 
omplexity is easily 
omputable as C =

Q

n�1

i=1

u

i

, with

u

i

the ratio of the words found in a sliding window at position i in a sequen
e, versus the

total number of di�erent words that 
ould possibly be found. Computations are made along
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windows, by multiplying the u ratios of words of all possible lengths in the window. This

implies that all redundan
ies are eliminated. The value of C varies from 0 to 1.

2. Shannon's entropy measure H(X) = �

P

i

P (x

i

) � log

�

P (x

i

)

�

. The entropy H(X) is maximal

in the 
ase of a random equiprobable sequen
e. A redu
tion in entropy 
orresponds to a

generation of information. This implies that the measurement of the amount of information


an be done by:

I(X) = H(without message) �H(with message).

This way, the amount of information 
an be quanti�ed by 
omparing a randomly generated

Markovian sequen
e (sequen
e without message) with a naturally o

urring sequen
e. This

measure is related to global information 
ontent, but does not give any idea on the distribu-

tion of the 
oding zones of the sequen
e. It is a 
ommon observation in information-bearing

texts that 
oding zones are separated from ea
h other by areas that are more or less deprived

of information. If the hypothesis of a non-terrestrial genome makes sense, then its linguisti
s

must respond to the following 
riterions:

{ it must be based on a restri
ted alphabet;

{ it bears 
oding subsequen
es that are separated from ea
h other in a way that is re
og-

nizable by 
ertain mole
ules;

{ the 
oding subsequen
es are likely to share some 
ommon 
hara
teristi
s;

{ these sequen
es are 
onstru
ted using linguisti
s that 
an vary from one \genome" to

another;

{ the reading dire
tion of the sequen
es is oriented (this should fa
ilitate their regulation);

{ the method used to 
opy the message determines the ordered relation between the 
oding

sequen
es.
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Abstra
t

A 
ru
ial problem in genomi
 analysis is to distinguish \biologi
ally signi�
ant" signals in

sequen
es from those that are part of the ground noise. To this end, biologi
al sequen
es

are 
ompared with those expe
ted to be met \by 
han
e." Models of random sequen
es

frequently used in this perspe
tive will be brie
y des
ribed, as will be analyti
al methods

(developped notably in the Algorithms Proje
t at Inria!) and experimental methods (ran-

dom sequen
e generation) used to solve these problems. Then, re
ent works on random

sequen
e generation a

ording to a model that is more 
onstrained that those studied so far

will be presented, together with a framework in whi
h it applies to the study of genomi


sequen
es.
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The Primal-Dual S
hema for Approximation Algorithms: Where Does It

Stand, and Where Can It Go?

Vijay Vazirani

Georgia Institute of Te
hnology (USA)

De
ember 11, 2000

Summary by Claire Kenyon

Introdu
tion

NP-hard problems 
annot be solved exa
tly and eÆ
iently at the same time. Can they be

approximated in polynomial time? When doing so, we want a guarantee: for every instan
e,

the solution must be within some fa
tor of the optimal solution. Su
h questions are dis
ussed

systemati
ally in Vijay Vazirani's book [6℄ on whi
h the present le
ture is based.

Linear programming duality theory provides many eÆ
ient algorithms with a good approximation

fa
tor. Designing exa
t algorithms is a main topi
 of the paper by Gr�ots
hel, Lov�asz, and S
hrijver

in 1981; see [3℄. As we shall see, the primal-dual s
heme provides the broad outline of an algorithm;

working out the details for ea
h individual problem then often provides a spe
i�
 approximate

solution with good 
omplexity 
hara
teristi
s.

1. The Vertex Cover Problem

Given a graph, a subset of its verti
es is a vertex 
over if and only if every edge has at least

one vertex in the subset. Ea
h vertex has a 
ost|the 
over having 
ost equal to the sum of the


osts of its verti
es|and we wish to obtain the 
over of minimum 
ost. This problem is NP-hard

(as proved by Karp in 1971, see [5℄). We need to 
ompare the 
ost of an approximate solution


onstru
ted by an algorithm to the 
ost of the optimal solution (OPT), but we do not know the


ost of OPT; so we need a good lower bound on the 
ost of OPT. This is a key �rst step in the

design of approximation algorithms.

1.1. Linear programming approximation. To the end of obtaining bounds on OPT for vertex


over, we start with an integer programming formulation of it. There is one variable x

v

for ea
h

vertex v, and it is equal to 0 or 1; there is one 
onstraint for ea
h edge fu; vg, i.e., x

u

+x

v

� 1, whi
h

expresses that the sum of its two endpoint variables is at least 1; it is then required to minimize a

linear 
ombination of vertex variables times vertex 
osts, i.e.

P

v


ost(v)� x

v

.

We then do a relaxation of the problem by allowing the variables to be real numbers between 0

and 1 (instead of being integers). Ea
h feasible solution provides a fra
tional vertex 
over whose


ost is ne
essarily a lower bound to OPT. We know sin
e the works of Kha
hian and Karamarkar

around 1980 that linear programming is polynomial-time solvable, both theoreti
ally and e�e
tively.

The best fra
tional solution is thus polynomial-time 
omputable, whi
h gives us our lower bound.

The relaxation algorithm is then as follows:

Linear Programming Algorithm. First �nd the optimal fra
tional solution, then put in

the 
over all verti
es v su
h that x

v

� 1=2. It is easy to see that this is a vertex 
over, and
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the 
ost is at most 2 times the lower bound, hen
e at most 2 times OPT. This algorithm has

the defe
t of requiring to solve a linear program, a polynomial-time but expensive step.

1.2. A 
ombinatorial algorithm. The prin
iple of a 
ombinatorial algorithm that has an ap-

proximation fa
tor of 2 is as follows. Initially the 
over C is empty. While C is not a vertex 
over,

pi
k an un
overed edge fu; vg, look at the smaller of the two 
urrent 
osts of u and v, subtra
t this

smaller 
urrent 
ost from the 
osts of u and of v, put the 
orresponding vertex in C, and 
harge

its 
ost to the edge. What we 
harge to the edges turns out (by indu
tion) to be a lower bound on

OPT. The 
ost of the 
over is obviously at most twi
e the amount 
harged to the edge. Hen
e this

te
hnique gives rise to a 
ombinatorial algorithm with an approximation fa
tor of 2; the out
ome

is in fa
t a very fast linear-time algorithm.

This alternative algorithm is a
tually related to the LP-based algorithm seen previously. There

is 
urrently no approximation algorithm known whi
h beats this fa
tor of 2.

2. LP Relaxation and Dual LP

An original linear programming (LP) problem (the \primal") always admits a \dual" formulation.

Primal linear program (LP). Determine min

P

v


ost(v) � x

v

subje
t to 8e x

u

+ x

v

� 1

and 8v x

v

� 0.

One 
an prove an upper bound on the OPT solution to the primal LP by exhibiting a parti
ular

solution (x

v

) whi
h satis�es all the 
onstraints. One 
an prove a lower bound by exhibiting a par-

ti
ular linear 
ombination of the 
onstraints whi
h equals the obje
tive fun
tion. This 
orresponds

to a dual LP solution.

Dual linear program. Determine max

P

e

y

e

subje
t to 8v

P

ejv2e

y

e

� 
ost(v) and

8e y

e

� 0.

Equality of the optimal solutions of the primal and dual programs 
onstitutes the strong duality

theorem. The idea of a primal-dual algorithm is pre
isely to use a feasible solution of the dual LP

as a lower bound on OPT. (Note that duality ex
hanges `min' and `max'.)

How to design the primal-dual algorithm? We need the 
omplementary sla
kness theorem, whi
h

says that if x is a feasible solution to the primal LP and y a feasible solution to the dual LP, then

both are optimal if and only if for every v either x

v

= 0 or

P

ejv2e

y

e

= 
ost(v), and for every edge

e either y

e

= 0 or x

u

+x

v

= 1. Thus if (x; y) are not both optimal, we 
an �nd a sla
k and de
rease

the 
orresponding x

v

or in
rease the 
orresponding y

e

. To design an approximation algorithm, we


hange the equality relative to 
ost(v) into an inequality.

Primal-dual algorithm for vertex 
over. Initially x and y are set to 0. Let C be the set

of \tight" verti
es. While C is not a 
over, do: pi
k an un
overed edge e, pi
k y

e

and raise it

until one of its two endpoints is tight. Iteratively improve the primal and dual solutions until

a primal feasible solution is obtained; 
ompare the primal and dual solutions to establish the

approximation guarantee.

The set 
over problem 
an be solved in the same fashion. In this problem, one has a set U of

elements and a 
olle
tion of subsets U

I

, ea
h with a positive 
ost, and one wishes to 
onstru
t a

minimum 
olle
tion of subsets whose union is U . (Exer
ise: Let the frequen
y of element e be

the number of subsets 
ontaining e, and let f be the maximal frequen
y of an element. Design

a primal-dual approximation algorithm with an approximation fa
tor of f .) By design, the best

approximation fa
tor we 
an get by these methods is the integrality gap, i.e., the ratio between the

OPT solution to the integer linear program and the OPT solution to the relaxed linear program.
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History. This paradigm started in 1955 (Kuhn) in the 
ontext of weighted bipartite mat
hing. The

primal-dual terminology is due to Dantzig, Ford, and Fulkerson in 1956. It was used to design exa
t

algorithms for many polynomial-time algorithms mu
h before linear programming was re
ognized to

be polynomial-time solvable. Examples of this te
hnique in
lude mat
hing, network 
ow, shortest

paths, minimum spanning trees, bran
hings, and so on.

These exa
t primal-dual algorithms all use the fa
t that the polyhedron de�ned by the LP

has integral verti
es, and so the LP has integral optimal solutions. It is the relaxation of the


omplementary sla
kness solutions that essentially leads to approximation algorithms.

In 1981 Bar-Yehuda and Even [2℄ gave an approximation algorithm with a fa
tor of 2 for vertex


over. In retrospe
t, their work 
an be reframed in the setting of primal-dual algorithms so that it


an be regarded as the �rst primal-dual approximation algorithm.

3. Other Problems

Many other problems 
an be solved approximately using the primal-dual approa
h. We give a

short list below and refer to the book [6℄ for details.

Steiner tree problem. Given a graph and a set of red verti
es in the graph, �nd a tree whi
h


onne
ts all the red verti
es (possibly using the other graph verti
es in the tree) and has minimal

total 
ost. Gau� also had a version on the plane (given a set of verti
es in the plane, 
onne
t them

into a tree, possibly bran
hing out at other points in the plane).

Steiner network problem. Design a network with a pres
ribed number of edge-disjoint paths be-

tween pairs of verti
es. There are numerous appli
ations of this problem in networks.

Steiner forest problem. The 
onne
tivity requirement is 0 or 1 between pairs of verti
es. In 1991

fa
tor-of-2 algorithms were designed by Agrawal, Klein, and Ravi [1℄ on the one hand, Goemans,

Williamson on the other hand. These authors use the idea of simultaneously raising the violated

minimal 
onstraints. In 1992 Williamson, Goemans, Vazirani, and Mihail [7℄ found a 2k approx-

imation algorithm for the extended Steiner network problem when the maximum 
onne
tivity

requirement is k; their algorithm has been implemented at Bell
ore.

Fa
ility lo
ation problem. What is given is a set of lo
ations for installing proxy servers and a

set of 
lients; the goal is to minimize the sum of server installation 
ost plus the sum of 
lient's


onne
tion 
osts. For this problem, in the late 1990s, several primal-dual approximation algorithms

using LP rounding were designed; they are ni
e but not so pra
ti
al. Re
ently Jain and Vazirani [4℄

got an approximation algorithm with a fa
tor of 3 based on a pra
ti
al 
ombinatorial solution,

whi
h stems from the primal-dual s
heme.

The k-median problem. This problem is like the fa
ility lo
ation problem, ex
ept that fa
ilities are

free, one is 
onstrained to open at most k fa
ilities; what is required is to minimize the 
onne
tion


ost. This has appli
ations to data mining inter alia. In 1998 there was an O(1)-approximation

primal-dual algorithm based on LP-rounding, but that again had the disadvantage of requiring to

solve a linear program. In 1999 Jain and Vazirani designed a 
ombinatorial algorithm that is more


ompli
ated and relies on randomized rounding. This last algorithm 
an then be derandomized

using the method of 
onditional expe
tations.
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The te
hniques dis
ussed in this talk are very robust in the sense that on
e you solve one problem,

you 
an get solutions to many 
losely related problems as well.

4. Open Problems

Our approximation algorithms always deal with dual variables in a greedy fashion, whereas exa
t

primal-dual algorithms are mu
h more sophisti
ated: there is a long way to go to bring the two

approa
hes 
loser!

Some of the main open problems are: get a fa
tor better than 2 for vertex 
over, and better

than 3/2 for the traveling salesman path; get a fa
tor of 2 for the Steiner network; design a bidire
ted


ut relaxation for Steiner trees.
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Abstra
t

We examine the 
ase of n agents trying to a
hieve a global goal without any 
ommuni
ation.

Our analysis for the bottlene
k probability of s
heduling loads in 
ommon �nite bu�ers also

in
ludes the �rst exa
t expressions for the density of a general sum of uniform random

variables, this being obtained via a new polyhedral 
ombinatorial approa
h.
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Abstra
t

Fa
toring integers is quite an old 
hallenge. Thirty years ago, two resear
hers fa
tored the

mythi
 number F

7

= 2

2

7

+ 1. A few years later publi
-key 
ryptography was born, and

with it the famous RSA algorithm. Even if the se
urity of RSA is not equivalent to integer

fa
torization, fa
toring the RSA key is the simplest way to de
ode everything, so a lot of

people tried to fa
tor. In 1990, F

9

= 2

2

9

+ 1, the ninth Fermat number was fa
tored, with

the help of hundreds of 
omputers. In august 1999, it was the turn of the �rst ordinary

512-bit integer. What follows is a survey of thirty years of fa
torization, des
ribing the

di�erent methods used and the te
hni
al problems met.

1. Introdu
tion

Fa
toring is of great interest sin
e it allows to use the properties of prime number in arithmeti
.

It is the keystone of the RSA algorithm, the mostly used en
ryption algorithm. RSA is an asym-

metri
 publi
 key algorithm that is based on the fa
t that the produ
t of two very large prime

numbers 
an not be easily fa
tored, whereas to 
he
k if a number is prime 
an be done qui
kly.

The 
omplexity 
lass of testing the primality of an integer is NP \ 
o-NP . Fa
toring a number is

in NP , but 
an be done in polynomial time on a quantum 
omputer!

Method Complexity

sieve p

�

p

p

ellipti
 
urve method L

p

[1; 1=2℄

quadrati
 sieve (QS) L

N

[1=2; 
℄

number �eld sieve (NFS) L

N

[1=3; 
℄

Table 1. Complexity of fa
torization methods (N is the integer to be fa
tored, p

its smallest fa
tor)

A lot of di�erent methods exist to fa
tor a number, starting from the linear sieve up to the

algebrai
 sieve, in
luding methods based on ellipti
 
urves. Their 
omplexity 
an be expressed in

terms of the fun
tion

L

x

[�; 
℄ = e


 log

�

x(log log x)

1��

:



78 Thirty Years of Integer Fa
torization

Some 
omplexities are given in Table 1. The smallest fa
tor p of N is usually of order

p

N .

The letter 
 stands for a 
onstant and is not spe
i�ed as it depends on the algorithm and its

implementation. These methods are detailed in the next se
tion.

2. Combination of Congruen
es

The method of 
ombination of 
ongruen
es is an extension of Krait
hik's method. The latter aims

at �nding an integer x su
h that x

2

� 1 modN and x 6= �1 modN , then at testing if pg
d(x�1; N)

is non-trivial. If so, it is a fa
tor of N . The quadrati
 
ongruen
e approa
h re�nes the way the

square root of 1 is found. The �rst step 
onsists in �nding pairs of integers (u

i

; v

i

)

i2I

su
h that

u

2

i

� v

i

modN and u

2

i

6= �v

i

. The se
ond step is to �nd a subset J � I su
h that

Q

j2J

v

j

is

a square, noted V

2

J

. This step is detailed later. If we note

Q

j2J

u

j

= U

J

then step 2 implies

U

2

J

� V

2

J

modN . As we also assume that V

J

and N are together prime (otherwise we have a fa
tor

of N) then x = U

J

=V

J

modN is well de�ned and is a square root of 1. There is a probability

greater than 1=2 that it gives a non trivial fa
torization of N . This extension is interesting be
ause

in order to �nd the pairs (u

i

; v

i

), we 
an use an algorithm that eventually reje
ts or ignore some

valid pairs, to go faster. One solution for this is Dixon's method. The idea is to restri
t the sear
h

to integers v

i

that 
an be fa
tored on a small set of given small prime integers P

k

= (p

1

; : : : ; p

k

).

To �nd pairs (u

i

; v

i

) a

ording to Dixon's method, we 
hoose an integer u

i

, and try to fa
tor u

2

i

on the set P

k

. If we su

eed, then we keep the pair (u

i

; u

2

i

). The integer u

i

has to be greater than

p

N , so as to give a non-trivial pair.

On
e the pairs (u

i

; v

i

) are found, the se
ond step is to �nd a subspa
e J su
h that

Q

j2J

v

j

is

a square. As the fa
torization of ea
h v

i

is already known, this 
an be seen as a linear algebra

problem. Assume that there are k+1 valid pairs available. Consider the matrix M of size (k; k+1)

with 
oeÆ
ients 0 and 1 viewed in the �eld Z=2Z and su
h that M [i; j℄ is equal to the exponent

of p

i

in the fa
torization of v

j

. This matrix has a rank smaller than k, so there exists a linear


ombination of the 
olums equals to 0. The subset J 
orresponds to the non-zero 
oeÆ
ients in

the linear 
ombination, and we 
an 
he
k that

Q

j2J

v

j

is a square, be
ause all its fa
tors are of

even degree. To exhibit a 
on
rete linear 
ombination equal to zero is made easier by the sparsity

of the matrix M . As a matter of fa
t, the te
hniques of Wiedemann or of Lan
zos have 
omplexity

O(k

2+�

) on sparse matri
es, whereas the Gauss pivot has 
omplexity O(k

3

). Then we have the

expression of V

J

easily, and a square root of 1 that may give a fa
torization of N . This algorithm

has a 
omplexity L

N

[1=2; 
℄, where 
 is a 
onstant that depends on the algorithm.

3. Sieves

A sieve algorithm sear
hes a lot of 
andidates satisfying a 
ertain property. Then it makes some

tests systemati
ally on all 
andidates, and at the end keeps the ones that have passed all the tests

su

essfully. One of the �rst sieves 
on
erning primality and fa
torization is the Erastothene sieve.

The sieve te
hnique is useful in fa
torization for the sear
h of the set of pairs (u; v) su
h that

u

2

� vmodN .

The basi
 quadrati
 sieve, found by Pomeran
e in 1981 is an extension of the 
ombination of


ongruen
e, with a spe
i�
 
hoi
e algorithm for the pairs (u

i

; v

i

). The idea is to 
hoose u

i

=

i+ b

p

N
, whi
h implies

(1) v

i

=

�

i+

�

p

N

�

�

2

�N:
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The advantage is that v

i

is 
lose to 2i

p

N , and thus v

i

� N , this in
reases the probability that the

prime fa
tors of v

i

are small. To 
he
k that these fa
tors are in the prime number basis P

k

we use

a sieve algorithm. This sieve algorithm 
an be des
ribed as follows. First �ll an array S su
h that

S[i℄ = v

i

for i from 1 to a bound L, then for every p in the prime number basis P

k

, for the two roots

of the equation

�

i+b

p

N


�

2

� N mod p noted i

�

(p), do i i

�

(p), and while i < L do S[i℄ S[i℄=p

and i  i + p. This algorithm is justi�ed by the equivalen
e pjv

i

()

�

i + b

p

N


�

2

� N mod p.

Then at the end of the loops, for every i su
h that S[i℄ = 1, v

i

is fa
tored on P

k

. The 
omplexity

of this algorithm is L

N

[1=2; 3=

p

8℄, and the 
ost in memory spa
e is L

N

[1=2; 1=

p

8℄. The algorithm


an be optimized in many ways, for example the large prime or double large prime variation that

we are going to detail in the next paragraph.

The large prime variation owes its name to the use of large primes, not in the prime fa
tor basis,

and smaller than the square of the largest prime in the basis P

k

. The sieving stage of the algorithm


an easily be modi�ed to �nd new relations v

i

= q

Q

p

�

p

, where q is a large prime. Now we 
an


ombine two relations using the same large prime q, namely v

1

= q

Q

p

�

p

and v

2

= q

Q

p

�

p

, and

see that v

1

v

2

=q

2

is fa
tored on P

k

. This large prime te
hnique allows us to sear
h for more \good"

pairs (u

i

; v

i

) and so to get more 
andidates to fa
tor N . In pra
ti
e it means a speed-up by a fa
tor

of approximatly 2:5 [5℄. The double large prime variation is quite similar, the di�eren
e is that

two large primes are allowed in the fa
torization of the integers v

i

. For example if v

1

= q

1

q

2

Q

p

�

j

,

v

2

= q

2

q

3

Q

p

�

j

, and v

3

= q

1

q

3

Q

p

�

j

(p

�

stands for any power of p), then v

1

v

2

v

3

=(q

1

q

2

q

3

)

2

is fa
tored

on the prime basis. The 
hoi
e of v

i

, v

j

and v

k

su
h that their produ
t 
an be fa
tored upon the

prime basis P

k

modulo squares of large primes 
an be modelled by a graph problem. Let G be the

graph with vertex q

i

and multiple edges q

i

; q

j

labelled by the multiples v

k

of q

i

q

j

. A useful relation


orresponds to a 
y
le in the graph G. This te
hnique was used for the sieving step of a 138-digit

number in 1990, as the non-optimized sieve was too big to be handled [5℄ (see also [4℄).

The algebrai
 sieve [2℄ or number �eld sieve (NFS) algorithm is based on the fa
torization in a

number �eld. Given a polynomial P 2 Z[X℄ irredu
ible over Q , we will work in the number �eld

Q [X℄=

�

P (X)

�

= Q(�) where � is a root of P . In the ring Z[�℄ we 
an talk about the primality or the

prime de
omposition of an element, and the norm of the number a� b� is

Q

(a� b�

i

) where �

i

are

all the roots of the polynomial P . In parti
ular the norm does not depend on the parti
ular 
hoi
e

of �. The des
ription of the algorithm requires the following notation. First let m be an integer

su
h that P (m) � 0 modN , then 
onsider the ring homomorphism � that maps Z[�℄ onto Z=NZ

and that satis�es �(�) = m. We are now looking for a set A of pairs (a; b) su
h that

Q

A

(a� b�) =

(A�B�)

2

and

Q

A

(a� bm) = Z

2

. These properties give �

�

(A�B�)

2

�

� (A�Bm)

2

� Z

2

modN .

Then (A � Bm)=Z is a square root of 1, that provides a 
andidate to fa
tor N . The 
hoi
e of

the polynomial P plays a large part in the eÆ
ien
y of the algorithm [6℄. If the degree of P is

O

�

(logN)

1=3

(log logN)

2=3

�

then the 
omplexity is L

N

[1=3; 
℄, where 
 is a 
onstant.

The way the fa
torization is done in Z[�℄ needs to be explained as it is a non trivial part of the

algorithm. The idea is to fa
tor �rst the norm of a� b�, Norm(a� b�) = �

Q

p

�

p

(a;b)

. This helps

be
ause the fa
torization of a� b� follows the fa
torization of its norm. If p is a fa
tor of N(a� b�),

and p does not divide b (this being a pathologi
al 
ase), then there exists an integer r su
h that

a� br � 0 mod p and P (r) � 0 mod p. We denote by [p; r℄ the ideal of Z[�℄ su
h that any element

x� y� of [p; r℄ satis�es Norm(x� �y) � 0 mod p and x� yr � 0 mod p. This family of ideals is very

interesting be
ause (a� b�) =

Q

[p; r℄

�

p

(a;b)

, where (a� b�) is the ideal generated by a� b�.

Now that we know how to fa
tor a number in Z[�℄, we apply the sieve algorithm over the pairs

(a; b). The fa
torization algorithm 
an be optimized by a good 
hoi
e of the polynomial P [1℄. The

variant SNFS, Spe
ial Number Field Sieve, targets the numbers b

n

� 1 by the 
hoi
e of P . The
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Figure 1. Size in bits of the fa
tored numbers depending on the year.

general NFS algorithm be
omes better than the quadrati
 sieve with large primes optimizations

for numbers of size around 130 digits.

4. Re
ords and Con
lusion

Figure 1 shows the evolution of the fa
torization re
ords. For ea
h spe
i�
 algorithm, the progress

follows Moore's law that states that the speed of 
omputers double every 18 months. Then for ea
h


hange of algorithm, there is a jump. Remark that the SNFS algorithm fa
tors spe
i�
 numbers,

that are thus larger than for GNFS that fa
tors general numbers [3℄. The linear algebra is often

the limiting fa
tor, and unless there is a new idea on the subje
t, RSA 
an still be used for some

times if used with a key big enough.
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Abstra
t

Fast algorithms for polynomial division with remainder are key tools in 
omputer alge-

bra. The power series domain de�nes a suitable framework where su
h algorithms 
an be

eÆ
iently 
onstru
ted. While revisiting Kung's arti
le [5℄, Arnold S
h�onhage dis
usses al-

gebrai
 
omplexity bounds for the 
omputation of re
ipro
als of power series and des
ribes

a new algorithm for this task involving Grae�e's root squaring steps.

1. Introdu
tion

By means of Newton's iteration, re
ipro
als of power series modulo x

n+1


an be 
omputed

with 
omplexity O

�

M(n)

�

, where M(n) denotes the 
omplexity of multipli
ation (see, e.g., [6℄

for a survey). However, the Ba
hmann{Landau O-notation hides a multipli
ative 
onstant, whi
h

needs to be investigated, for instan
e in order to determine 
ross-over points when a 
olle
tion of

algorithms is available.

Se
tion 2 sets the required ba
kground by re
alling a few de�nitions from algebrai
 
omplex-

ity. Se
tion 3 presents an algorithm for 
omputing re
ipro
als of power series, while dis
ussing


omplexity bounds. Se
tion 4 des
ribes a new algorithm and its implementation over Z.

2. Algebrai
 Complexity

Let F be a �eld and let A(x) =

P

i�0

a

i

x

i

2 F [[x℄℄ denote a formal power series of the indeter-

minate x. Here, formal means that 
onvergen
e matters are out of 
on
ern. Let D = F (a

0

; a

1

; : : :)

de�ne a domain where a

i

's are regarded as indeterminates. If D is endowed with the four arith-

meti
 operations (+, �, �, =) and a s
alar multipli
ation, then an algorithm that inputs the power

series A(x) 
onsists of a �nite sequen
e of operations in D. Counting these operations de�nes the

algebrai
 
omplexity, whi
h is an intuitive way of re
e
ting performan
es of the algorithm. Two

models of 
omplexity are worth 
onsidering. The arithmeti
 
omplexity, denoted by L,

1


harges

one unit of 
ost for ea
h operation in D, while the nons
alar 
omplexity, denoted by C, only 
ounts

nons
alar multipli
ations and divisions.

3. Kung's Algorithm Revisited

The underlying algorithm used for the a

urate 
ost 
al
ulation is based on Newton's iteration

for re
ipro
als, as dis
ussed by Kung in [5℄.

1

For notational 
onvenien
e, arithmeti
 
omplexity is also denoted by M (resp. �) for multipli
ation (resp. fast

Fourier transform).
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3.1. Kung's algorithm. LetR(x) be the re
ipro
al of the unitA(x) with respe
t to the �eldD[[x℄℄.

De�ne the fun
tion f from the subdomain of D[[x℄℄ whose elements have nonzero 
onstant term

to D[[x℄℄ by f(s) = s

�1

�A(x). Thus R(x) is just the zero of f .

Newton's iteration is a se
ond-order iteration

2

and 
onsists of a linear approximation of f . New-

ton's iteration fun
tion N is given by:

(1) N (s) = s�

f(s)

f

0

(s)

= s

�

2�A(x)s

�

;

where f

0

denotes the derivative of f , whi
h is de�ned algebrai
ally (see [8℄). Let n be a power

of two and

A

2n

(x) = A(x) mod x

2n+1

;(2)

R

n

(x) = 1=A(x) mod x

n+1

:(3)

Newton's iteration features a quadrati
 
onvergen
e (see [3, Chap. 4℄): the number of a

urate

terms doubles at ea
h iteration. This may be expressed by

(4) R

2n

(x) = N

�

R

n

(x)

�

mod x

2n+1

:

From (2) and (3), there exists a polynomial P of degree at most n� 1 su
h that

(5) R

n

(x)A

2n

(x) = 1 + x

n+1

P (x) mod x

2n+1

:

Combining (1), (5) and the expansion (4) leads to a re
ursive formula that 
omputes the re
ipro
al

of A(x) modulo x

2n+1

:

(6)

1

A(x)

= R

2n

(x) = R

n

(x)

�

1� x

n+1

P (x)

�

mod x

2n+1

:

Equations (5) and (6) both 
harge M(n) +O(n) units of 
ost. Therefore, the overall arithmeti



omplexity of Kung's algorithm is bounded by

(7) L(2n) � L(n) + 2M(n) +O(n):

Unfolding this re

urren
e leads to L(n) = O

�

M(n)

�

for all known multipli
ations.

The derivation of the exa
t arithmeti
 
omplexity from (7) depends on a spe
i�
 algorithm for

multipli
ation of polynomials. The next se
tion des
ribes a multipli
ation algorithm involving fast

Fourier transfrom (FFT). Originally, Kung derived (7) for nons
alar 
omplexity, where M(n) =

2n+ 1, and found C(n) < 4n. A
tually, the lowest upper bound presently known for the nons
alar


omplexity isC(n) < 3:75n. Kalorkoti derived this latter result from Kung's third-order iteration [4℄

and taking advantage that squaring modulo x

n+1

is less expensive than multiplying modulo x

n+1

(see [2, Chap. 2℄).

3.2. FFT and fast multipli
ation. The N -point FFT de�nes a ring isomorphism from the quo-

tient F [[x℄℄=(x

N

) to F

N

. It is an evaluation-interpolation map where the evaluation points, also


alled Fourier points, are the Nth roots of unity. A
tually, the FFT is the evaluation-interpolation

map whose implementation yields the lowest known 
omplexity. Indeed, the symmetry properties

of the Nth roots of unity allow a divide-and-
onquer implementation [3, Chap. 4℄. The arithmeti



omplexity of N -point FFT is bounded by �(N) � 3=2N logN �N + 1 (see [2, Chap. 2℄).

The FFT performs fast ba
k and forth 
onversions from an evaluated form to its interpolated

form. Thus, low 
omplexity algorithms 
an be a
hieved by taking advantage of ea
h representation.

In parti
ular, fast multipli
ation 
onsists in 
onverting both operands into their evaluation forms

with two FFTs, performing a 
oeÆ
ient-wise multipli
ation, and delivering the result with one

2

Third-order iteration is mentioned later and 
onsists of a paraboli
 approximation.
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ba
kward FFT. S
h�onhage shows that multipli
ation of polynomials of degree n (some restri
tions

on n are needed and dis
ussed later) a

ording to this method has algebrai
 
omplexity

(8) M(n) =

�

9 + o(1)

�

n logn:

3.3. Kung's algorithm revisited. Dire
t substitution of (8) into (7) leads to

L(n) �

�

18 + o(1)

�

n log n:

However, S
h�onhage obtains a lower multipli
ative 
onstant by deferring the last ba
kward FFT.

R

n

and A

2n

are �rst 
onverted into their evaluation forms, requiring two dire
t N -point FFTs,

whi
h 
ost 2�(N). Then, steps (5) and (6) 
ompute the evaluation form of R

n

P , involving two


oeÆ
ient-wise multipli
ations and two subtra
tions, whi
h add 4N units of 
ost. One ultimate

ba
kward N -point FFT interpolates R

n

P with �(N) operations. Therefore, (7) be
omes

L(2n) � L(n) + 3�(N) + 4N:

A typi
al value for N is the lowest power of two that is greater than d = deg

�

R

n

(x)A

2n

(x)

�

= 3n.

However, a signi�
ant overhead is expe
ted when d is slightly greater than the nearest power of two.

In this 
ase, the arithmeti
 
omplexity for the N -point FFT is �(N) < 3d log(2d). Thus, S
h�onhage

suggests for N a s
aled power of two of the form N = 
 2

�

, where � = dlog(d)e � blog log(d + 1)


and 
 = dd=2

�

e. This latter 
hoi
e for N yields a lower bound

�(N) � d

�

3=2 log(d) + 13=5 log log(d + 1) +O(1)

�

:

This pre
ise 
ount yields the arithmeti
 
omplexity for re
ipro
als

L(n) �

�

27=2 + o(1)

�

n log n:

Surprisingly, Newton's third-order iteration does not yield a better bound for arithmeti
 
om-

plexity, as opposed to the 
ase of nons
alar 
omplexity (see Se
tion 3.1).

4. A New Algorithm over Z

Algorithms for division of polynomials redu
e the division task to multipli
ations. However,

while featuring an attra
tive asymptoti
 
omplexity, su
h redu
tions may involve detours and tri
ks

whose implementations lead to tremendous multipli
ative 
onstants. Indeed, earlier algorithms for

division of polynomials shared this drawba
k. Therefore, S
h�onhage suggests a new fast algorithm

by means of Grae�e's root squaring with a low 
onstant and ready for an immediate implementation

due to its extreme simpli
ity.

4.1. Grae�e's root squaring method. Grae�e's squaring method originates in numeri
al anal-

ysis for solving polynomial equations [1℄. This method pro
eeds from any polynomial A(x) in F [x℄

to the even polynomial G(x

2

) = A(x)A(�x).

In F [[x℄℄ the re
ipro
al of A(x) modulo x

n+1

may be written as

(9)

1

A(x)

=

A(�x)

A(�x)A(x)

mod x

n+1

:

In equation (9), the denominator of the right hand-side 
ontains at most n+ 1 terms, but only half

of them are signi�
ant when 
omputing modulo x

n+1

. Therefore, Grae�e's rule redu
es the task of

inverting n+ 1 terms to a half-sized problem. Thus, the 
orresponding algorithm works re
ursively

as follows (notations are those of (2) and (3)). With k = bn=2
, Grae�e's step 
omputes

G

k

(x

2

) = A

n

(x)A

n

(�x) mod x

n+1

;
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harging at most n+ 1 nons
alar units of 
ost. Indeed, typi
ally, nons
alar 
omplexity for su
h a

multipli
ation is C(n) = 2n+1 (see [2, Chap. 2℄). However, the polynomial A

n

may be rewritten as

A

n

(x) = A

(even)

n

(x

2

) + xA

(odd)

n

(x

2

);

whi
h shows that both A

n

(x

0

) and A

n

(�x

0

), for any x

0

lying in the ground �eld, 
an be 
omputed

together as follows

A

n

(�x

0

) = A

(even)

n

(x

2

0

)� x

0

A

(odd)

n

(x

2

0

):

Therefore, Grae�e's step requires at most n + 1 essential multipli
ations, by evaluation of A

n

for

n+ 1 distin
t squares. The re
ipro
al of G

k

(x) modulo x

k+1

, denoted by H

k

(x), is determined by

re
ursive 
alls. An ultimate multipli
ation

R

n

(x) = A

n

(�x)H

k

(x

2

) mod x

n+1

delivers the result, 
harging extra n+2k+1 units of nons
alar 
ost. Then, the nons
alar 
omplexity

is bounded by C(n) � 6n+ 2 log(n=2), whi
h is slightly weaker than Kalorkoti's (see Se
tion 3.1)

but the implementation of Grae�e's approa
h is straightforward.

4.2. Appli
ation to re
ipro
als over Z. This se
tion deals with units of the ring Z[[x℄℄ of

the form A(x) = 1 +

P

i>0

a

i

x

i

. This form naturally arises with divisions by moni
 polynomials


omputed via the substitution x 7�! 1=x.

Basi
ally, the implementation of Grae�e's method 
onsists in mapping polynomials to integers

expressed in some radix r

0

notation, so that multipli
ation of integers 
an be used. This idea is

based on Krone
ker's tri
k of en
oding polynomials with bounded 
oeÆ
ients in a single integer.

Let �

r

0

be a ring morphism from Z

n

[x℄ (i.e., polynomials of Z[x℄ of degree less than n) to Z that

evaluates polynomials at r

0

2 N. If there exists a 
onstant � su
h that ja

i

j < �

i

holds for ea
h i > 0,

then the bit size of the 
oeÆ
ients of R and G 
an be bounded. Thus, under this assumption, r

0

2 N


an be 
hosen su
h that the evaluation map �

r

0

is a bije
tion and N 
an be optimally determined.

The arithmeti
 
omplexity 
an easily be derived

L(n) = 6M(�n

2

);

where � = log(3�) and where the S
h�onhage{Strassen algorithm for multipli
ation of integers, whi
h

features the lowest known 
omplexity M(m) = O

�

m log(m) log log(m)

�

[7℄, is likely to be used.
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Abstra
t

Let S be a multivariate power series ring over a �eld of 
hara
teristi
 zero. The arti
le [5℄

presents an asymptoti
ally fast algorithm for multiplying two elements of S trun
ated a
-


ording to total degree. Up to logarithmi
 fa
tors, the 
omplexity of the algorithm is optimal,

in the sense that it is linear in the size of the output.

1. Introdu
tion

Let k be a �eld of 
hara
teristi
 zero. We write S = k[[x

1

; : : : ; x

n

℄℄ for the multivariate power

series ring in the n variables x

1

; : : : ; x

n

. Let I be any ideal of S. By 
omputing at pre
ision I in S,

we understand 
omputing modulo the ideal I in S. In other words, power series in S are regarded

as ve
tors in the k-algebra S=I. We denote by m the maximal ideal (x

1

; : : : ; x

n

) in S and by d

any positive integer. The paper [5℄ sets the problem of a fast algorithm for multiplying two power

series in S trun
ated in total degree d, that is 
omputed at pre
ision m

d+1

.

The general question of a fast algorithm for multivariate multipli
ation in S modulo any ideal

remains an open problem and has re
eived very little attention in the literature. Previous works

(e.g., [2℄) investigated 
omputation modulo the ideal (x

d+1

1

; : : : ; x

d+1

n

), that is trun
ation a

ord-

ing to partial degree with respe
t to ea
h variable x

i

. The method used is 
alled Krone
ker's

substitution and is brie
y dis
ussed in Se
tion 3.

The need for multipli
ation routines modulo m

d+1

arises in various �elds, su
h as polynomial

system solving [7℄ and treatment of systems of partial di�erential equations.

The eÆ
ien
y of the algorithm is measured with respe
t to the model of nons
alar 
omplexity.

By nons
alar 
omplexity, we understand the number of primitive operations in the �eld k needed

to 
omplete the algorithm, independently of the sizes of the numbers involved (see [3℄). We now

introdu
e some notation. We denote by D = deg

�

m

d+1

�

the degree of the ideal m

d+1

. D is the

number of monomials in S whi
h are not in m

d+1

, that is the dimension of the k-algebra S=m

d+1

.

Simple 
ombinatorial 
onsiderations give

D = deg

�

m

d+1

�

=

�

d+ n

n

�

:

We set C := deg

�

m

d

�

and denote by M

u

(Æ) the 
omplexity of the multipli
ation of two univariate

polynomials of degree Æ in k[t℄.

The next se
tion presents the algorithm; its 
omplexity belongs to

(1) O

�

D log

3

D log logD

�

:
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Sin
e D is the size of the output, the algorithm is optimal, up to the logarithmi
 fa
tors.

2. The Algorithm

2.1. Des
ription. The �rst step of the algorithm 
onsists in translating the multivariate problem

into a univariate one. This is motivated by the fa
t that fast algorithms for univariate power series

multipli
ation are known (e.g., [6℄).

Let t be a new variable. We 
onsider the substitution

~

R

t

: S=m

d+1

�! k[x

1

; : : : ; x

n

℄[[t℄℄=(t

d+1

)

f(x

1

; : : : ; x

n

) 7�! f(x

1

t; : : : ; x

n

t):

If f is an element of S=m

d+1

,

~

R

t

(f) is a univariate power series in the single variable t trun
ated

at degree d. It 
an then be written

~

R

t

(f) =

~

f

0

+

~

f

1

t + � � � +

~

f

d

t

d

, where ea
h 
oeÆ
ient

~

f

i

is a

homogeneous multivariate polynomial in the variables x

1

; : : : ; x

n

of total degree i. This remark on

the degree suggests that:

1. the substitution

~

R

t

is optimal, in the sense that it provides us with a representation of f

that retains exa
tly the monomials that form a basis of S=m

d+1

. In parti
ular, the algorithm

does not su�er from any overhead 
aused by unne
essary terms (see Se
tion 3);

2. in view of the homogeneity of the

~

f

i

, keeping all of the variables x

i

is redundant. The

substitution de�ned by

R

t

: S=m

d+1

�! k[x

2

; : : : ; x

n

℄[[t℄℄=(t

d+1

) =

�

k[[t℄℄=(t

d+1

)

�

[x

2

; : : : ; x

n

℄

f(x

1

; : : : ; x

n

) 7�! f(t; x

2

t; : : : ; x

n

t)

redu
es the 
omplexity in the step of evaluation-interpolation (see below): n� 1 variables,

instead of n variables, are a
tually needed.

The se
ond step of the algorithm performs the multipli
ation. Let f and g be two power series

in S=m

d+1

and h be the produ
t fg in S=m

d+1

. The equality h = fg turns into

(2) R

t

(h) = R

t

(f)R

t

(g):

Consequently, we 
on
entrate on a fast way to 
ompute R

t

(h). We use an evaluation-interpolation

s
heme. We �rst 
onsider the evaluation map at the point P = (p

2

; : : : ; p

n

) in k

n�1

de�ned by

E

P

:

�

k[[t℄℄=(t

d+1

)

�

[x

2

; : : : ; x

n

℄ �! k[[t℄℄=(t

d+1

)

f(x

2

; : : : ; x

n

) 7�! f(P ):

We then apply E

P

to equation (2), whi
h yields

(3) E

P

�

R

t

(h)

�

= E

P

�

R

t

(f)

�

E

P

�

R

t

(g)

�

mod t

d+1

:

Equation (3) holds for any point P and 
omputes the produ
t R

t

(h) at P by using a univariate

power series multipli
ation algorithm. Su
h an algorithm is des
ribed in [6℄.

The last step of the algorithm 
onsists in re
onstru
ting h from a set of values of R

t

(h). We

regard R

t

(h) as a multivariate polynomial in the variables x

2

; : : : ; x

n

. There exists an interpolation

map

I :

�

k[[t℄℄=(t

d+1

)

�

C

�!

�

k[[t℄℄=(t

d+1

)

�

[x

2

; : : : ; x

n

℄

�

f(P

1

); : : : ; f(P

C

)

�

7�! f(x

2

; : : : ; x

n

);

whi
h re
overs R

t

(h) from a set of C pairwise distin
t values

�

E

P

1

�

R

t

(h)

�

; : : : ; E

P

C

�

R

t

(h)

�	

. The

evaluation points P

i

, for i in 1; : : : ; C, are 
hosen to be powers of distin
t prime numbers, namely

P

i

= (p

i

2

; : : : ; p

i

n

), where p

j

are distin
t prime numbers. Note the key point is that the 
hara
teristi


of the ground �eld k is zero, so that all E

P

i

�

R

t

(h)

�

have pairwise distin
t values. An implementation
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of both maps E

P

and I is des
ribed by J. Canny, E. Kaltofen, and Y. Lakshman in [4℄. Their method

relies on fast univariate multipoint evaluation and interpolation (e.g., [1℄).

Finally, we re
onstru
t h from R

t

(h). If R

t

(h) = h

0

+ h

1

t+ � � �+h

d

t

d

is given, h is obtained by

homogenizing ea
h h

i

in degree i with respe
t to the variable x

1

and then evaluating at t = 1.

We are now ready to unfold the algorithm.

MultivariatePS Mult := pro
(f,g)

(1) F  R

t

(f); G R

t

(g); == new representation

(2) for i in (P

1

; : : : ; P

C

) do == evaluation

F

P

i

 E

P

i

(F ); G

P

i

 E

P

i

(G);

(3) for i to C do == univariate multipli
ation

H

P

i

 F

P

i

G

P

i

;

(4) R

t

(h) I(H

P

1

; : : : ;H

P

C

); == interpolation

(5) h homogenization in degree with respe
t to x

1

== re
onstru
tion

in R

t

(h);

return h;

The next se
tion derives the 
omplexity result 
laimed by (1).

2.2. Complexity. Steps 1 and 5 
an be performed in O(C) operations. We examine the 
ost of

Steps 2, 3, and 4 separately:

{ Step 2 evaluates the d 
oeÆ
ients of F and G at C points. The C points P

i

are 
hosen to

be powers of the n� 1 distin
t prime numbers (p

2

; : : : ; p

n

), namely P

i

= (p

i

2

; : : : ; p

i

n

). Ea
h


oeÆ
ient 
an be 
omputed in O

�

M

u

(C) logC

�

operations, a

ording to the algorithm for

fast multipoint evaluation given in [4℄. This yields an overall 
omplexity of O

�

dM

u

(C) logC

�

for Step 2.

{ Step 3 performs C univariate power series produ
ts. Ea
h multipli
ation requires O

�

M

u

(d)

�

operations. Complexity of Step 3 is then O

�

CM

u

(d)

�

.

{ Step 4 interpolates the d 
oeÆ
ients of H. Ea
h interpolation requires O

�

M

u

(C) logC

�

operations, also using the algorithm presented in [4℄. Step 4 then requires O

�

dM

u

(C) logC

�

operations.

The overall 
omplexity of the algorithm is then derived by repla
ing M

u

(C) by its estimate

O

�

C logC log logC

�

obtained in [6℄ and noting that C < D log(D)=d. This yields

O

�

D log

3

D log logD

�

:

2.3. Generalization. We mention that van der Hoeven generalized the algorithm to the 
ase when

I = (x

d

1

1

: : : x

d

n

n

; for �

1

d

1

+ � � �+ �

n

d

n

> d );

where the �

i

are positive integers, by using the substitution de�ned by

V

t

: S=I �! k[x

2

; : : : ; x

n

℄[[t℄℄=(t

d+1

)

f(x

1

; : : : ; x

n

) 7�! f(t

�

1

; x

2

t

�

2

; : : : ; x

n

t

�

n

)

instead of R

t

. The rest of the algorithm remains unaltered.
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3. Appendix: Krone
ker's Substitution

Krone
ker's substitution is de�ned by the map

K

t

: S=I �! k[[t℄℄=t

(2d+1)

n

f(x

1

; : : : ; x

n

) 7�! f(t; t

2d+1

; : : : ; t

(2d+1)

n�1

);

where I = (x

d+1

1

; : : : ; x

d+1

n

). This substitution trun
ates power series in partial degree d with

respe
t to ea
h variable x

i

. Let f be a power series in S=I, one re
overs the 
oeÆ
ient of x

e

1

1

: : : x

e

n

n

in f by simply reading o� the 
oeÆ
ient of t

e

1

+(2d+1)e

2

+���+(2d+1)

n�1

e

n

in K

t

(f). The 
ost of this

algorithm is the 
ost of the multipli
ation of two univariate polynomials of degree (2d)

n

, that is

O

�

M

u

�

(2d)

n

��

. This is the lowest known 
omplexity for multivariate power series multipli
ation

modulo the ideal (x

d+1

1

; : : : ; x

d+1

n

). In parti
ular, when addressed in this 
ontext, the algorithm

presented above requires pre
ision m

nd+1

and yields a similar 
omplexity.

Krone
ker's substitution may be used to 
ompute modulo m

d+1

as well. However, it results in a

signi�
ant overhead of O(2

n

n!), for �xed n and d� n, with respe
t to the size of the power series.
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A Tutorial on Closed Di�eren
e Forms

Burkhard Zimmermann

RISC, Linz (Austria)

January 15, 2001

Summary by Fr�ed�eri
 Chyzak

Abstra
t

Zeilberger's theory of 
losed di�eren
e forms provides with a deeper understanding of the


reative teles
oping method used to prove many (q-)hypergeometri
 (multi-)sum identities,

and of \
ompanion" or \dual" identities. By introdu
ing new types of summation domains,

the 
losed form approa
h allows to dis
over new identities of the form \sum equals sum,"

in
luding new summatory representations of �(3). A transform similar to a pullba
k (
hange

of variables) of di�erential forms is introdu
ed, and permits to �nd more new identites. This

summary is freely inspired by [1, 2, 4, 5℄ and the talk.

1. Comparison Between Di�erential and Di�eren
e Cal
uli

By mimi
king di�erential 
al
ulus [2℄, Zeilberger has developped a 
omplete di�eren
e 
al
ulus

[4℄. This theory, whi
h we re
al here, 
ulminates with a dis
rete analogue to Stokes's theorem.

Given a C -ve
tor spa
e V , whi
h will take the role of a tangent spa
e momentarily, an alternate

multilinear p-form on V is just a multilinear map � : V

p

! C that satis�es the rule

�(v

1

; : : : ; v

i+1

; v

i

; : : : ; v

p

) = ��(v

1

; : : : ; v

p

):

This represents a p-volume measure, in the sense that it assigns an (oriented) volume to the par-

alellepipedi
 polyhedron determined by the ve
tors v

i

. By a natural 
onvention, 0-forms are just


onstants. To a p-form � and a q-form  , one asso
iates a (p + q)-form, i.e., a (p + q)-volume

measure, by means of the exterior produ
t � ^  :

(� ^  )(v

1

; : : : ; v

p+q

) =

X

�2S

p;q

�(�)�

�

v

�(1)

; : : : ; v

�(p)

�

 

�

v

�(p+1)

; : : : ; v

�(p+q)

�

where S

p;q

denotes the set of permutations of f1; : : : ; p+ qg with �(1) < � � � < �(p) and �(p+ 1) <

� � � < �(p + q), and where �(�) denotes the signature of the permutation �. Consider the dire
t

sum A(V ) =

L

p�0

A

p

(V ) of the ve
tor spa
es A

p

(V ) of alternate p-forms. By extending the

exterior produ
t by linearity, we obtain an asso
iative multipli
ation on A(V ), whi
h be
omes a

graded algebra with the produ
t rule  ^ � = (�1)

pq

� ^  for a p-form � and a q-form  .

Next, an alternate di�eren
e p-form, or for short a di�eren
e p-form, is a map ! whi
h to ea
h

element � of a real manifold M asso
iates a multilinear p-form !(�) on the tangent spa
e V = T

�

M .

Exterior produ
ts of di�eren
e forms are de�ned pointwise. At this point, di�eren
e forms and

di�erential forms share the same de�nition. In the following however, we fo
us to the 
ase when

M is a submanifold of R

d

: ea
h !(�) is then an alternate form on V = R

d

. By imposing the

additional property !(�

1

; : : : ; �

d

) = !

�

b�

1


; : : : ; b�

d




�

, we obtain forms that are pie
ewise 
onstant,

as well as their 
oeÆ
ients. (Compare this situation with the theory in the di�erential setting,
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where one insists in having C

1

forms and C

1


oeÆ
ients.) The possible variations of forms with �

is at the origin of the notions of exterior di�erential and exterior di�eren
e introdu
ed below.

In the di�erential setting, a kind of a derivation is de�ned on di�erential forms in the following

way. One starts with the usual derivative !

0

, whi
h satis�es the asymptoti
 relation !(� + v) =

!(�) + !

0

(�)(v) + o(v) as v ! 0. Ea
h !

0

(�) is a linear map from V = R

d

to the ve
tor spa
e

A

p

(V ), and 
an be viewed as a multilinear map from V

p+1

to C that is not alternate, but alternate

in its last p variables only. Making it alternate by an averaging te
hnique, we obtain the exterior

di�erential d! given by

(d!)(�)(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

�

!

0

(�)(v

i

)

�

(v

0

; : : : ; v̂

i

; : : : ; v

p

):

In the di�eren
e 
ase, we start with another linearization instead of the derivative !

0

to de�ne

the exterior di�eren
e of !, namely by se
ants instead of tangents. Let !

�

(�) be the linear map

on V de�ned by !(� + v) = !(�) + !

�

(�)(v) + R(v) and R(v) is zero for ea
h element v = e

i

of

the 
anoni
al basis of V = R

d

. Again, (v

0

; : : : ; v

p

) 7! !

�

(�)(v

0

)(v

1

; : : : ; v

p

) is alternate in its last

p variables only, but the full alternate nature is re
overed by the exterior di�eren
e d! de�ned by

(d!)(�)(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

�

!

�

(�)(v

i

)

�

(v

0

; : : : ; v̂

i

; : : : ; v

p

):

As opposed to the 
lassi
al exterior di�erential, exterior di�eren
e heavily depends on the 
hoi
e

of a basis on V ; but like it, it satis�es d Æ d = 0.

Denote (n

1

; : : : ; n

d

) the dual basis of the 
anoni
al basis of the manifold R

d

that 
ontains M .

As in the di�erential setting, the exterior di�eren
e dn

i

of the restri
tion of n

i

to M (i.e., or the

ith 
oordinate fun
tion on M) plays a spe
ial role: the dn

i

form a basis for the ring of di�eren
e

form, and the d

n

i

1

^ � � � ^ dn

i

p

for i

1

< � � � < i

p

span the ve
tor spa
e (respe
tively, free module)

of p-forms. Exterior di�erential and exterior di�eren
e share a formally simple, easy-to-memorize

formulation on the 
anoni
al basis (dn

1

; : : : ;dn

d

): for ! = f dn

i

1

^ � � � ^ dn

i

r

, we get

d! = df ^ dn

i

1

^ � � � ^ dn

i

r

where the exterior di�erential is df =

P

d

i=1

�f

��

i

dn

i

, and the exterior di�eren
e df =

P

d

i=1

(�

i

f)dn

i

,

where �

i

is the �nite di�eren
e operator de�ned by (�

i

f)(�

1

; : : : ; �

d

) = f(�

1

; : : : ; �

i

+ 1; : : : ; �

d

)�

f(�

1

; : : : ; �

d

).

In order to make the link between di�eren
e forms and summation, we restri
t to hyper
ubi


manifolds given by setting some of the 
oordinates �

i

to 0 and letting all others vary freely in [ 0; 1),

and to the manifolds obtained after translating the latter by ve
tors with integer entries. Note that

all those elementary manifolds (in various dimensions) have volume 1, and that we have restri
ted

di�eren
e forms to be 
onstant on su
h sets. As a 
onsequen
e, the integral of a form f dn

1

^� � �^dn

d

on [ 0; 1)

d

is just f(0; : : : ; 0), as is for i

1

< � � � < i

r

the integral of f dn

i

1

^� � �^dn

i

r

on the hyper
ube

de�ned by 0 � �

j

< 1 for ea
h j = i

k

and �

j

= 0 for all other j. By integration over a union of

elementary manifolds, we are naturally led to integral representing sums; for example:

Z

R

d

f dn

1

^ � � � ^ dn

d

=

X

(n

1

;:::;n

d

)2Z

d

f(n

1

; : : : ; n

d

):

We are now ready to derive a di�eren
e variant of Stokes's theorem: 
onsider the oriented hyper
ube


 = [ 0; 1)

d

and its boundary �
 de�ned as usual as a formal linear 
ombination of 2d fa
es,

�
 = F (�

1

= 0)�F (�

2

= 0)+� � �+(�1)

d+1

F (�

d

= 0)�F (�

1

= 1)+F (�

2

= 1)+� � �+(�1)

d

F (�

d

= 1);
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where F (�

i

= a) is the (oriented) fa
e 
 \ f � j �

i

= a g. Boundaries of other elementary manifolds

are obtained by translating �
, keeping the same 
oeÆ
ients. In this way, we 
an de�ne the integral

of a form over a linear 
ombination of manifolds to be the very same linear 
ombination of integrals

of the same form over the manifolds. For

(1) ! =

d

X

i=1

f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

we get

Z

�


! =

d

X

i=1

(�1)

i

Z

F (�

i

=1)�F (�

i

=0)

f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

=

�

d

X

i=1

(�1)

i

f

i

(0; : : : ; 1; : : : ; 0)�

d

X

i=1

(�1)

i

f

i

(0; : : : ; 0)

�

dn

1

^ � � � ^ dn

d

=

d

X

i=1

(�1)

i

(�

i

f

i

)(0; : : : ; 0) dn

1

^ � � � ^ dn

d

=

Z




d!:

We 
ould have as well 
onsidered forms ! de�ned on the integer latti
e Z

d

, and de�ned their sums

P




! on a manifold 
 by the integrals

R




! of the form ! extended to R

d

by !(�

1

; : : : ; �

d

) =

!

�

b�

1


; : : : ; b�

d




�

. We shall adopt this equivalent viewpoint from the next se
tion on. By linearity

with respe
t to manifolds, we obtain the following dis
rete variant of Stokes's formula [4℄.

Theorem 1 (Zeilberger{Stokes formula). For any di�eren
e p-form ! su
h that !(�

1

; : : : ; �

d

) =

!

�

b�

1


; : : : ; b�

d




�

on any manifold 
 that is a linear 
ombination of elementary hyper
ubi
 mani-

folds, we have

P

�


! =

P




d!.

2. Closed Form Identities (Pun Intended!)

An interesting situation is that of a 
losed (di�eren
e) form, whi
h by de�nition is a di�eren
e

form ! su
h that d! = 0. In this 
ase, the sum

P

�


! = 0 for any manifold 
 on all of whi
h 
 is

de�ned, owing to Theorem 1 above. If more spe
i�
ally ! is given by (1), we obtain

d

X

i=1

X

�


f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

= 0;

in other words a relation between a priori in�nite sums! Using the leeway available in the 
hoi
e

of 
 yields several kinds of identities: sum equals 
onstant, sum equals sum, et
. In the following,

we detail this situation in the spe
ial 
ase r = 2. Let us denote dn and dk for dn

1

and dn

2

,

respe
tively, and 
onsider a 
losed 1-form ! = g dn+ f dk, so that �

n

f = �

k

g.

2.1. Stripe-shaped manifolds. Consider 
 = R

+

� [ 0; n ℄ =

�

(x; y)

�

�

x � 0 and 0 � y � n

	

and the 
losed form ! obtained for

f(n; k) =

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

and g(n; k) =

mk � p(n+ 1)

(n+m+ 1)(n+ 1� k)

f(n; k):

Stokes's theorem on 
 then yields (after elementary manipulations of binomial sums)

n

X

k=0

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

=

X

k2N

f(n; k) =

X

k2N

f(0; k) +

n

X

l=0

g(l; 0) =

�

m+ p

m

��

n+ p

n

�

:
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More generally, many 
losed-form identities like the one above, where \
losed form" now means

that both the summand and the sum are hypergeometri
 sequen
es, 
orrespond to a \
losed form"

that involves the summand as one of its 
oeÆ
ients. Hen
e Zeilberger's \pun intended."

But some magi
 takes pla
e here: 
hanging 
 to [ 0; k ℄ � R

+

and summing with respe
t to n

instead of k, the same method sometimes yields a 
ompanion identity. Moreover, the more variables

there are, the more ampli�ed this phenomenon is: for r variables and in lu
ky 
ases where all

summations make sense, a single 
losed di�eren
e (r�1)-form with hypergeometri
 
oeÆ
ients 
an

be viewed as a simultaneous en
oding of r 
losed form summation identities [4℄.

2.2. Triangular-shaped manifolds. Zeilberger observed that for a 
losed form !

1

= g

1

dn+f

1

dk,

the fun
tions f

s

(n; k) = f

1

(sn; k) and g

s

(n; k) = g

1

(sn; k) + g

1

(sn + 1; k) + � � � + g

1

(sn + s� 1; k)

provide for ea
h s > 1 with another 
losed form !

s

= g

s

dn+ f

s

dk. Basing on this, Amdeberhan

and Zeilberger [1℄ derived the following representations for �(3):

�(3) =

5

2

1

X

n=1

(�1)

n�1

�

2n

n

�

n

2

=

1

4

1

X

n=1

(�1)

n�1

(56n

2

� 32n+ 5)

(2n� 1)

2

�

3n

n

��

2n

n

�

n

3

=

1

72

1

X

n=0

(�1)

n

(5265n

4

+ 13878n

3

+ 13761n

2

+ 6120n + 1040)

(4n+ 3)(4n+ 1)(3n + 2)

2

(3n+ 1)

2

(n+ 1)

�

4n

n

��

3n

n

�
:

Spe
i�
ally, they 
onsidered 
 =

�

(x; y)

�

�

y � bx + 1


	

and the fun
tions

f

1

(n; k) = (�1)

k

k!

2

(n� k � 1)!

(n+ k + 1)! (k + 1)

and g

1

(n; k) = 2(�1)

k

k!

2

(n� k)!

(n+ k + 1)! (n+ 1)

2

:

The representations above have respe
tively been obtained for s = 1, 2, and 3; their general terms

de
rease like O(n

�3=2

4

�n

), O(n

�2

27

�n

), O(n

�2

64

�n

), respe
tively|at the 
ost of more and more

operations for ea
h term, though! Changing 
 to 


s

=

�

(x; y)

�

�

y � sbx + 1


	

leads to other

representations [1℄, like, for s = 2,

�(3) =

1

X

n=0

(�1)

n

P (n)

80(5n+ 4)(5n+ 3)(5n + 2)(5n + 1)(4n+ 3)

2

(4n+ 1)

2

(2n+ 1)

2

(n+ 1)

�

5n

n

��

4n

n

�

where P = 1613824n

8

+ 7638016n

7

+ 15700096n

6

+ 18317312n

5

+ 13278552n

4

+ 6131676n

3

+

1763967n

2

+289515n+20782. The general term is now O(n

�2

(27=3125)

�n

), with 27=3125 � 115:74.

To sket
h the proof, we apply Stokes's theorem to !

s

on 


s

, and obtain:

1

X

n=0

g

s

(n; 0) +

1

X

k=0

f

s

(sk + s; k) +

1

X

k=0

�

g

s

(sk; k) + � � �+ g

s

(sk + s� 1; k)

�

= 0:

Next, noting that g

1

(n; 0) = 2=(n+1)

3

and grouping the sums over k yields the announ
ed identity.

2.3. Finite triangular-shaped and re
tangular-shaped manifolds. Other identities like

�(x+ n)�(y + n)

�(n)�(x + y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

�

�

�

�

1

�

=

�(x+ k)�(y + k)

�(k)�(x + y + k)

3

F

2

�

x; y; v + k � 1

v; x + y + k

�

�

�

�

1

�

and

P

n+m=s

�

2n

n

��

2m

m

�

= 4

s

are based on other 
hoi
es for 
, like a re
tangle [ 0; k ℄ � [ 0; n ℄ or a

\triangle"

�

(x; y)

�

�

bx
+ by
 � s

	

for 
 [5℄.
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3. Closed Forms with Holonomi
 CoeÆ
ients

Consider a 
losed form ! = g dn + f dk with hypergeometri
 
oeÆ
ients. Sin
e f is hypergeo-

metri
 in n, one 
an �nd some rational fun
tion R of (n; k) su
h that �

k

g = �

n

f = Rf . It is also

well-known that if a hypergeometri
 sequen
es h has a hypergeometri
 anti-di�eren
e H, there has

to be some rational fun
tion S su
h that H = Sh. Here we get g = S�

n

f = SRf . This situation

extends to more variables, whi
h legitimates Zeilberger's fo
us to 
losed forms whose 
oeÆ
ients

are all multiples of the same hypergeometri
 sequen
e f by polynomials in the variables; he 
alled

su
h forms WZ forms [4℄. Here we extend this situation to forms whose 
oeÆ
ients are rational

multiples of the same holonomi
 sequen
e, and make the link between 
losed forms and 
reative

teles
oping expli
it.

Let a summation identity

P

b

k=a

f

n;k

= F

n

be given, where both f and F are holonomi
 �-�nite

sequen
es. In view of verifying it, knowing F allows to 
ompute a non-zero operator P

0

(n; S

n

) su
h

that P

0

�F = 0. Proving the identity thus redu
es to proving

P

b

k=a

(P

0

�f)(n; k) = 0. By restri
ting

to holonomi
 hypergeometri
 summands and right-hand sides, Zeilberger's presentation essentially

only dealt with the 
ase P

0

= S

n

� 1: F 
an always be assumed to be 1, otherwise we repla
e

f(n; k) with f(n; k)=F (n). In this spirit, we now require that P

0

be a right multiple of S

n

� 1 and

write P

0

= (S

n

� 1)R this fa
torization.

The holonomy of f ensures that there exists a pair (P;Q) with non-zero P su
h that

(2)

�

P + (S

k

� 1)Q

�

� f = 0:

Provided that there exists su
h a pair for P = P

0

, the operator Q 
an be 
omputed by Chyzak's

�-�nite extension of Gosper's algorithm [3℄. Let A be the algebra of di�eren
e operators with

respe
t to n and k with 
oeÆ
ients that are rational fun
tions in n and k, and introdu
e the

module M = A � f . The form

(3) ! = (R � f) dk � (Q � f) dn;

whose 
oeÆ
ients all lie in M is 
losed:

d! =

�

(S

n

� 1)R � f

�

dn ^ dk �

�

(S

k

� 1)Q � f

�

dk ^ dn =

�

�

P + (S

k

� 1)Q

�

� f

�

dn ^ dk = 0:

Conversely, assume that there exists a 
losed form ! (with 
oeÆ
ients in M) given by (3). By


losedness, we have

�

(S

n

� 1)R+ (S

k

� 1)Q

�

� f = 0, when
e after summation over k, and provided

that R involves neither k nor S

k

,

(S

n

� 1)R �

b

X

k=a

f(n; k) = 0:

More generally, if the r-form f dk

1

^ � � � ^ dk

r

+

P

r

i=1

(P

i

� f) dn^ dk

1

^ : : :

^

dk

i

� � � ^dk

r

is 
losed,

i.e., (S

n

� 1) � f + (S

k

1

� 1)P

1

� f + � � � + (S

k

r

� 1)P

r

� f = 0;

the r-fold summation

P

k

1

;:::;k

r

f yields a 
onstant with respe
t to n.

4. Extended WZ Cohomology

Is it easily shown that any 1-form with 
oeÆ
ients de�ned on Z

r

is exa
t. Even more is true:

any 1-form with holonomi
 
oeÆ
ients derives from a holonomi
 sequen
e. More spe
i�
ally, a

1-form ! given by (3) is exa
t if and only if there exists a fun
tion �(n; k) su
h that ! = d�, or

more expli
itly

�(Q � f) = (S

n

� 1) � � and R � f = (S

k

� 1) � �:
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This always holds if we look for un
onstrained �: simply de�ne � by

�(n; k) =

k�1

X

i=0

(R � f)(0; i) �

n�1

X

j=0

(Q � f)(j; k):

The non-trivial problem is to impose � 2 M. (For example, when f is hypergeometri
, all


oeÆ
ients of ! as well as � have to be rational multiples of f .) Then, not all 1-forms ! remain

exa
t. Vieweing 
losed forms modulo exa
t forms we are led to a 
ohomology that Zeilberger named

WZ 
ohomology in [4℄ in the 
ase of hypergeometri
 f , and that we 
all extended WZ 
ohomology

in the more general 
ase of holonomi
 �-�nite f . Following Zeilberger [4℄, we suggest the following

extended resear
h problem: 
hara
terize those holonomi
 �-�nite sequen
es f for whi
h there exists

a non-exa
t 
losed form with 
oeÆ
ients in M = A�f and 
ompute the 
orresponding 
ohomology.

5. Pullba
ks

In the di�erential 
ase, the notion of pullba
k propagates a 
hange of variables in fun
tions to

the level of di�erential forms, thus permitting 
hange of variables in integrals: for a di�erentiable

map � from a manifold N to another manifold M , one gets a mapping �

�

that transforms a p-form !

on M to a p-form on N while preserving 
losedness of forms by simply requiring

(4) (�

�

!)(�)(v

1

; : : : ; v

p

) = !

�

�(�)

��

�

0

(�)(v

1

); : : : ; �

0

(�)(v

p

)

�

:

In the di�eren
e 
ase, a simple example of a pullba
k has already been given in Se
tion 2.2: the


losed form !

s

is the pullba
k of the 
losed form !

1

under the map given by �(n; k) = (sn; k).

However, no simple de�nition of a pullba
k seems possible: the obvious guess that mimi
ks (4),

substituting �

�

for �

0

, unfortunately does not preserve 
losedness (taking �nite di�eren
es is not

a lo
al operation). Zimmermann [5℄ and Gessel independently gave a de�nition for the 
ase of a

linear mapping � that maps integer points to integer points.

The key observation is that for a linear transform l = �(n), de�ned by l

i

=

P

j

a

i;j

n

j

, shifting by 1

with respe
t to n

j

after performing the substitution indu
ed by � is equivalent to doing shifts with

respe
t to ea
h l

i

before substituting, as detailed by the formula S

l

j

�

�

= �

�

S

a

1;j

n

1

: : : S

a

n;j

n

r

. It then

follows from a te
hni
al but easy 
al
ulation that �

l

j

�

�

= �

�

P

i

P

i;j

�

n

i

for some operators P

i;j

.

Imposing the natural relations �

�

(f) = f Æ � and �

�

(df) = d(�

�

f) for 0-forms f leads to

X

i

�

�

�

(�

n

i

f) dn

i

�

=

X

j

�

�

l

j

(�

�

f)

�

dl

j

=

X

i;j

�

�

(P

i;j

�

n

i

f) dl

j

:

Choosing f su
h that df = (�

n

i

f) dn

i

, we get �

�

(g dn

i

) =

P

j

�

�

(P

i;j

g) dl

j

, a de�nition that proves

to preserve 
losedness.
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Abstra
t

This talk presents an algorithm to perform transformations exhibiting the rank (TER) on

a large 
lass of matri
es with entries in skew polynomial rings. This algorithm only uses

elementary linear algebra operations and has various appli
ations in solving very general

linear fun
tional systems.

1. Motivation

The question of �nding polynomial solutions for linear fun
tional systems is of parti
ular inter-

est in treating various problems in di�erential and di�eren
e algebra, as well as in 
ombinatori
s.

It appears as a basi
 subtask in algorithms for �nding all rational solutions of di�erential and

(q-)di�eren
e equations, for 
omputing liouvillian solutions of di�erential equations and (q-)hyper-

geometri
 solutions of (q-)di�eren
e equations. It also applies in fa
toring linear di�erential and

di�eren
e operators, or in designing e�e
tive Gr�obner basis algorithms in multivariate Ore algebras,

whi
h in turn are used in generalization of Gosper's algorithm for inde�nite hypergeometri
 sum-

mation and Zeilberger's \
reative teles
oping" algorithm for de�nite summation and integration.

The traditional 
omputer algebra approa
h to solving fun
tional systems is via an elimination

method like the 
y
li
-ve
tor method, whi
h 
onverts the system to s
alar equations (this pro
edure

is 
alled un
oupling). The major problem of this approa
h is the in
rease in size of the 
oeÆ
ients

of equations.

The algorithm des
ribed in the next se
tion o�ers a dire
t alternative for transforming a linear

system of re
urren
es into an equivalent one of a simpler form, well-suited for the purpose of


omputing solutions with �nite support of su
h a system. This gives a useful tool for 
onstru
ting

polynomial solutions of very general linear fun
tional systems; see Se
tions 4.1 and 4.2 below.

The main advantage of this approa
h is that it does not require preliminary un
oupling of linear

systems, but only performs elementary linear algebra operations on the original matrix.

2. Des
ription of the Algorithm

The existen
e of 
anoni
al forms for matri
es over various types of rings, su
h as prin
ipal ideal

domains, has been known sin
e the middle of the last 
entury; their 
omputation has important

appli
ations in both theoreti
al and pra
ti
al areas of mathemati
s, s
ien
e, and engineering.

Suppose that we 
onsider matri
es over a ring for whi
h the notion of rank makes sense. A method

for obtaining 
anoni
al forms of a matrix is performing elementary operations on its rows. Here, by

elementary operation we mean permuting two rows, adding a multiple of a row to another row, and

multiplying a row by a nonzero element of the base ring. Su
h a �nite sequen
e of elementary row
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operations on a matrix A 
an be represented by a matrix E. It will be 
alled a TER (transformation

exhibiting the rank) if it has the additional property that the rank of A equals the number of nonzero

rows of the matrix EA.

In the 
ommutative 
ase, Gaussian elimination is the 
lassi
al example of a TER, but it is a very

greedy one, be
ause of the exponential growth of the intermediate expressions; see [5℄. The Popov

form from linear 
ontrol theory [8, 9℄ and the redu
ed matrix form [10, 11℄ are two other examples.

In [6℄ Mulders and Storjohann gave a simple algorithm that 
omputes a simpli�ed, non-
anoni
al

version of the Popov form, 
alled the weak Popov form of a polynomial matrix. The algorithm

performs only deli
ate elementary transformations whi
h avoid intermediate expression swell. As

a by-produ
t, fast algorithms are obtained for 
omputing the rank, the determinant, the Hermite

form, the triangular fa
torization, and also the Popov form.

In the following, we des
ribe an algorithm that 
omputes a TER in a non-
ommutative setting.

Let R be an integral domain and � an automorphism of R. Lo
alizing the skew polynomial

ring R[X;�℄ at the set of powers of X, we obtain the skew Laurent polynomial ring

S = R[X;X

�1

;�℄;

with the 
ommutation rules X � r = �(r) �X, for all r in R (and therefore X

�1

� r = �

�1

(r) �X

�1

).

It is a left Ore domain, in the sense that any nonzero elements of S have a nonzero 
ommon left

multiple in S. This implies that for any S-module M , the rank of M , denoted by rk(M) is a

well-de�ned notion; see [4℄. If A is a matrix with entries in S, we will 
all the rank of A the rank

of the S-module generated by the rows of the matrix A.

We detail an algorithm whi
h 
omputes a TER of a n �m matrix A with entries in the skew

Laurent polynomial ring S = R[X;X

�1

;�℄. If we write

A = A

t

X

t

+A

t�1

X

t�1

+ � � �+A

s+1

X

s+1

+A

s

X

s

;

where s � t are integers, A

i

are matri
es with entries in R, the leading matrix A

t

and the

trailing matrix A

s

are nonzero, we are interested in �nding a TER E su
h that the trailing matrix

(respe
tively the leading matrix) of EA be nonsingular.

Remark that a straightforward appli
ation of the algorithm given in [6℄ does not do the job, even

in the 
ommutative 
ase. The algorithm hereafter is essentially the algorithm proposed in [2℄ for

the parti
ular 
ase of re
urren
e polynomials and improves the EG-elimination method [1℄.

The algorithm 
onsists in iterating the following two basi
 steps, as long as the �rst operation


an be performed:

1. look for a nonzero v 2 R

n

in the left kernel of the trailing (respe
tively leading) matrix of

A, i.e., su
h that v

T

A

s

= 0 [respe
tively v

T

A

t

= 0℄ and su
h that v

i

is zero whenever the

ith row of A is zero;

2. 
hoose i

0

in the set of indi
es i su
h that the maximal degree in X of the polynomials of

the ith row of A be maximal [respe
tively, its valuation be minimal℄ and repla
e this row by

X

�1

v

T

A [respe
tively by Xv

T

A℄.

Remark that

P

i

deg(

i

A) de
reases after ea
h iteration, where

i

A denotes the ith row of A, so

the above algorithm terminates after at most n(t� s+ 1) iterations.

Let N denote the number of iterations ne
essary for the previous algorithm to terminate and A

(p)

the matrix obtained from A = A

(0)

after p iterations. Then it 
an easily be seen that the number r

of nonzero rows in the matrix A

(N)

equals its rank, as any linear nontrivial dependen
y over S of

these nonzero rows would imply a linear nontrivial dependen
y over R of the 
orresponding rows

of its trailing matrix.
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On the other hand, the ranks of the matri
es A

(p)

do not 
hange all along the algorithm. This

is implied by the formula rankA

(p)

= rankA

(p+1)

+ rank

�

M

(p)

=M

(p+1)

�

, where M

(p)

denotes the

S-module generated by the rows of the matrix A

(p)

, and by the fa
t thatM

(p)

=M

(p+1)

is a torsion

module, therefore of rank zero.

This shows that the previous algorithm provides a TER for A.

3. Complexity

The previous algorithm only needs to 
ompute nonzero elements of the kernels of matri
es with

entries in R. When R is a polynomial ring over some �eld K of 
hara
teristi
 0, whi
h is the 
ase for

di�erential and (q-)di�eren
e equations, one 
an use modular and probabilisti
 methods (like [7℄)

to �nd elements of the kernel. Their worst-
ase 
omplexity is O(n

3

d

2

) operations in K, where d is

a bound on the degrees of the entries of A. Sin
e the algorithm loops at most n(t� s + 1) times,

its 
omplexity is O

�

(t� s)n

4

d

2

�

. Re�nements are possible; see [2℄.

4. Appli
ations

4.1. Desingularisation of re
urren
es. As mentioned in the �rst se
tion, linear systems of

re
urren
es with variable 
oeÆ
ients are of interest in 
ombinatori
s and numeri
 
omputation. In

addition, as shown in [3℄, they give a useful tool for 
onstru
ting solutions of very general linear

fun
tional equations.

Consider the system A

t

(n)Y

n+t

+ � � � + A

s+1

(n)Y

n+s+1

+ A

s

(n)Y

n+s

= 0, where A

i

are m �m

matri
es with entries in the polynomial ring K[n℄. This system is equivalent to AY = 0, where

A = A

t

E

t

+ � � � + A

s

E

s

is now viewed as a matrix with entries in K[n℄[E;E

�1

;�℄, � being the

shift automorphism of K[n℄.

If either the leading matrix A

t

or the trailing matrix A

s

is nonsingular, its determinant is a

nonzero polynomial in K[n℄ and the �nite set of its integer roots gives the singularities of the

re
urren
e and the possible degrees of polynomial solutions of the initial system. If the matri
es A

s

and A

t

are singular, one fa
es the ne
essity to transform su
h a re
urren
e system into an equivalent

one, with nonsingular leading (or trailing matrix). The following method is taken from [2℄. If

rankA = m > rankA

t

, then applying the previous algorithm to the matrix A yields a new matrix

A

�

= A

�

t

E

t

+ � � �+A

�

s

0

E

s

0

su
h that rankA

�

t

= m.

4.2. Solutions with �nite support. As already mentioned, the question of �nding polynomial

solutions of linear fun
tional systems may be redu
ed to the problem of �nding solutions with �nite

support (Y

0

; Y

1

; : : : ; Y

N

; 0; : : : ) of the previous re
urren
e system; see [3℄. In [2℄ a similar method

to that of Se
tion 4.1 was given, in order to �nd 
onstraints on the set of the possible values of the

bound N for the support of su
h a solution.

If rankA = m = rankA

s

then we 
an �nd a �nite set of 
andidates for N , given by the rela-

tion Æ(N � s) = 0 for Æ(n) = detA

s

. If rankA = m > rankA

s

, then applying the previous TER to

the matrix A gives a matrix A

�

= A

�

t

0

E

t

0

+ � � �+A

�

s

E

s

where rankA

�

s

= m and (detA

�

s

)(N � s) = 0.

4.3. Hensel lifting for singular linear systems. Let A be a nonsingular matrix with entries

in K[X℄, where K is a �eld. We 
onsider the problem of re
overing a v 2 K(X) su
h that Av = b,

or determine that no su
h v exists.

X-adi
 lifting works by 
omputing a ve
tor series w = w

0

+w

1

X+w

2

X

2

+� � � , with ea
h w

i

2 K

n

and su
h that

A(w

0

+ w

1

X + w

2

X

2

+ � � � ) = b:
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A rational solution v of the system Av = b is then re
onstru
ted from the trun
ated series solution

w (mod X

l

) using Pad�e approximation. In general, we 
an 
ompute the series solution w, by

undetermined 
oeÆ
ients method, only when A is nonsingular modulo X.

In the 
ase A(0) is singular, one 
an manage by applying the previous TER to the extended

matrix [A j b ℄ to transform the system AY = b into an equivalent one A

�

Y = b

�

, with A

�

(0)

nonsingular. A similar idea already appeared in [7℄.

4.4. Solving linear di�erential systems. We now 
onsider the problem of solving a linear dif-

ferential system Y

0

= B(x)Y where B is a m�m matrix with entries in K[x℄. By solving su
h a

system we mean �nding its formal power solutions. The system may be written in the 
ompressed

form AY = 0, where A is a matrix with entries in K[X℄[D; d=dx℄.

Using the isomorphism of K-algebras:

R : K[x; x

�1

℄[D; d=dx℄ �! K[n℄[E;E

�1

;�℄

given byRx = E

�1

andRD = (n+1)E, we remark that there is a bije
tive 
orresponden
e between

formal power solutions Y =

P

n�0

Y

n

x

n

of the linear di�erential system AY = 0 and sequen
es

Y = (Y

n

)

n�0

, solutions of the re
urren
e system R(A)(Y ) = 0. This redu
es the problem of �nding

(polynomial) solutions of the di�erential system AY = 0 to �nding solutions (with �nite support)

of the re
urren
e system R(A)(Y ) = 0.
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A Criterion for Non-Complete Integrability of Hamiltonian Systems

Delphine Bou
her

Universit�e de Limoges (Fran
e)

January 15, 2001

Summary by Philippe Dumas and Bruno Salvy

Abstra
t

Finding polynomial solutions of linear di�erential equations is a building blo
k implemented

in several algorithms of 
omputer algebra systems. In parti
ular, this is a ne
essary sub-step

when looking for rational, algebrai
 or Liouvillian solutions of linear di�erential equations.

When there are no parameters, several algorithms are available, but the general 
ase with

parameters is unde
idable. However, spe
ial families 
an be handled by ad ho
 methods.

Su
h methods were developed by Bou
her who applied them to the ni
e example of integra-

bility of the 3-body problem. The key idea there is to rely on a re
ent result of Morales-Ruiz

and Ramis who relate 
omplete integrability and di�erential Galois group. It turns out that

spe
ial properties of this group 
an be related to 
omputable properties of an appropri-

ate linear di�erential equation, whi
h leads Bou
her to a \simple" suÆ
ient 
ondition for

non-
omplete integrability.

1. Polynomial Solutions of Linear Di�erential Equations

The 
lassi
al method to �nd polynomial solutions of linear di�erential equations over K (x),

where K is a �eld, starts by determining a bound on the degree of potential solutions. This is a

bound on the integer solutions of the indi
ial equation at in�nity.

On
e a bound on the degree has been found, one uses an indeterminate 
oeÆ
ients method. The

linear system on these 
oeÆ
ients has a band-matrix stru
ture whi
h 
an be exploited to a

el-

erate the 
omputation [1℄. This linear system is re
tangular, with more equations than unknown


oeÆ
ients, thus existen
e of solution is related to the vanishing of a determinant.

When parameters o

ur in the equation (K is a �eld of rational fun
tions), there are two dif-

�
ulties: the size of the matrix may depend on the parameters and even when it does not, the

determinant whi
h must vanish is a polynomial in the parameters. Using Matijasevi
h's result on

the unde
idability of Hilbert's 10th problem (Is there a �nite pro
ess whi
h determines if a polyno-

mial equation is solvable in integers?), it is possible to show that this problem itself is unde
idable.

More pre
isely, Ja
ques-Arthur Weil observes that the equation

y

0

(x)�

�

a

1

x� 1

+ � � �+

a

m

x�m

+ P (a

1

; : : : ; a

m

)

�

y(x) = 0

has rational solutions if and only if P (a

1

; : : : ; a

m

) = 0 has integral solutions.

There are still 
ases where all polynomial solutions 
an be found: this happens when either the

size of the matrix is bounded independently of the parameters and the vanishing of the required

determinant 
an be determined or when the stru
ture of the matrix is suÆ
iently regular to make

the de
ision possible. Examples of both 
ases are given in [4℄.
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2. Complete Integrability

2.1. Hamiltonian Me
hani
s. In the Hamiltonian approa
h to 
lassi
al me
hani
s, the state of

a system is 
hara
terized by 2n variables, q

i

(positions) and p

i

(momenta), i = 1; : : : ; n, living

in an open subset U of R

2n

(the phase spa
e). More generally, the phase spa
e of a system is the


otangent �bre bundle T

?

M of an n-dimensional real manifold M . The formulae we give below are

expressions in a 
hart of useful quantities. The state variables satisfy

(1) _p

i

=

�H

�q

i

; _q

i

= �

�H

�p

i

;

where a dot denotes a derivative with respe
t to time and H(p; q; t) is the Hamiltonian. Physi
ally,

the Hamiltonian often represents the energy of the system. The system (1) governs the evolution

of the system (in the phase spa
e U). Solutions 
(t) of (1) are the traje
tories of the system.

In a more abstra
t setting, R

2n

is endowed with a non-degenerate 2-form

! =

n

X

i=1

dp

i

^ dq

i

;

known as Liouville's symple
ti
 2-form. Sin
e ! is non-degenerate, it indu
es an isomorphism

between R

2n

and its dual under whi
h �dH is the image of a ve
tor �eld X

H

. In this language,

the Hamiltonian system (1) redu
es to

_
 = X

H

(
):

First integrals are fun
tions F (p; q) that are 
onstant along the solutions 
(t). A ne
essary and

suÆ
ient 
ondition is

fF;Hg :=

X

i

�F

�p

i

�H

�q

i

�

�H

�p

i

�F

�q

i

= 0;

where fF;Hg is known as the Poisson bra
ket of F and H. In parti
ular, the Hamiltonian itself is

a �rst integral.

Two �rst integrals are in involution if their Poisson bra
ket vanishes. A Hamiltonian system is


ompletely integrable when it possesses a set of n �rst integrals in involution that are independent

(i.e., their Ja
obian matrix is regular in the open set U).

Informally, a 
ompletely integrable system 
an be \solved" in terms of its �rst integrals. Indeed,

given a �rst integral, a pro
ess known as symple
ti
 redu
tion makes it possible to redu
e the

number of degrees of freedom by 1, i.e., the dimension by 2 [2, p. 91℄.

2.2. Many-Body Problem. In the many-body problem, n parti
les obeying Newton's law are

governed by the following Hamiltonian:

H(p; q) =

1

2

X

i

kp

i

k

2

m

i

�

X

i 6=j

m

i

m

j

kq

j

� q

i

k

:

Note that here ea
h p

i

and q

i

has 
oordinates in R

3

, thus the phase spa
e has dimension 6n.

Apart from the Hamiltonian itself, known �rst integrals for this system are the momentum of

the 
entre of mass and the angular momentum

P

q

i

^ p

i

. Thus, the number of degrees of freedom


an be redu
ed from 3n to 3n� 6 (or from 2n to 2n� 4 in the planar 
ase).

For the 3-body problem, Poin
ar�e proved that there are no other 
omplex analyti
 �rst integrals.

Bruns proved a similar result for 
omplex algebrai
 �rst integrals.
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2.3. Theorem of Morales-Ruiz and Ramis. We now present a simple version of a result of

Morales-Ruiz and Ramis in [10, 11, 12, 13℄ (see also [3℄) on non-
omplete integrability in terms

of meromorphi
 �rst integrals. The Hamiltonian is analyti
 over an open set of C

2n

and t (time)

is a 
omplex variable. Given a non-stationary traje
tory �(t), following an idea of Poin
ar�e, one


onsiders the linear di�erential equation that must satisfy a \small" variation �, su
h that �(t)+�(t)

is solution of the Hamiltonian system. This equation

(2) _� = X

0

H

(
) � �

is 
alled the variational equation along �. A theorem of Morales-Ruiz and Ramis relates 
omplete

integrability and Galois group of this equation. (For an introdu
tion to di�erential Galois theory,

see [14℄ or the summary of Ulmer's talk in this seminar in 1994.) However, sin
e the Galois group

is often very diÆ
ult to 
ompute, it is useful to 
onsider a di�erential equation of lower order. This

is a
hieved by the following result.

Theorem 1 (Morales-Ruiz and Ramis). If the system possesses n meromorphi
 �rst integrals in

the neighbourhood of �, independent and in involution, then the 
onne
ted 
omponent of identity

in the di�erential Galois group of the normal variational equation along � is abelian.

Similar earlier results of Ziglin based on the monodromy group and of Chur
hill, Singer et alii

based on the Galois group did not extend to the 
ase where the variational equation has an irregular

singular point. In this theorem, the normal variational equation is an equation obtained from the

variational equation through symple
ti
 redu
tion. Indeed, dH

�

�(t)

�

� � is a �rst integral of the

variational equation, as 
an be seen by a �rst-order expansion.

3. Bou
her's Criterion and its Appli
ation

It is not ne
essary to 
ompute the Galois group of a linear di�erential equation in order to dete
t

that it is not abelian. Thanks to a suÆ
ient 
riterion [5, 6℄, Bou
her has proved that the planar

3-body problem is not 
ompletely integrable in terms of meromorphi
 �rst integrals. Unfortunately,

the formulae involved in this derivation are mu
h too large to be reprodu
ed here. Thus we 
ontent

ourselves with a sket
h of the steps and a des
ription of the tools used in the 
al
ulations.

3.1. Criterion.

Theorem 2. Assume that the linear di�erential operator L 
an be fa
tored as KM , with M =

l
m(L

1

; : : : ; L

m

) where the L

i

, i = 1; : : : ;m, are irredu
ible (and l
m denotes the least 
ommon

left multiple). Assume moreover that M(y) = 0 has a formal solution with a logarithm. Then the


onne
ted 
omponent of the di�erential Galois group of L(y) = 0 is not abelian.

Given a linear di�erential equation, this theorem redu
es the task to fa
toring and �nding formal

solutions. Fa
toring 
an be done by an algorithm of van Hoeij [19, 20℄, and formal solutions 
an

be 
omputed at any singularity, in
luding in�nity [15, 20℄.

3.2. Appli
ation to the 3-Body Problem. Tsygvintsev and Bou
her have proved independently

that the planar 3-body problem is not 
ompletely integrable in terms of meromorphi
 �rst integrals.

Their approa
hes [5, 17℄ follow the same initial steps till the normal variational equation. Then [17℄

uses Ziglin's result. We now outline Bou
her's approa
h.
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Redu
ed Hamiltonian. Using the �rst integrals obtained in Se
tion 2.2, the problem is redu
ed to

a Hamiltonian with three degrees of freedom, given in [17℄. The parameters in this equation are the

three masses m

1

, m

2

, m

3

and the value 
 of the angular momentum (whi
h redu
es to a s
alar in

this dimension). By homogeneity, we 
an freely assume m

3

= 1. (Note that these transformations

make the resulting expressions asymmetri
 with respe
t to the bodies.)

In order to apply Theorem 1, we need a parti
ular solution of the system. This is provided by

the 
elebrated Lagrange solutions. In these solutions, the three parti
les have orbits on similar


oni
s with a 
ommon fo
us lo
ated at their 
entre of mass (see [8, p. 400℄). Sin
e any parti
ular

solution 
an be 
hosen, Tsygvintsev and Bou
her 
on
entrate on the paraboli
 orbit (for angular

momentum 
 6= 0).

Variational Equation. The variational equation (2) is a linear system of order n = 6. The normal

variational equation is obtained via a linear 
hange of symple
ti
 basis as follows. We observe

that X

H

itself is a solution of the variational equation. It will be the �rst ve
tor e

1

of the new

basis. Next, we 
ompute a basis (e

1

= X; e

2

; : : : ; e

n

; e

n+2

; : : : ; e

2n

) of the kernel of dH

�

�(t)

�

satisfying !(e

i

; e

n+i

) = 1 for 1 < i � n and !(e

i

; e

j

) = 0 otherwise. Finally, we 
ompute a

ve
tor e

n+1

= Y su
h that !(e

i

; Y ) = 0 for i 6= 1 and !(X;Y ) = 1. In the new basis (e

1

; : : : ; e

2n

),

the �rst 
olumn of the matrix of the variational equation is 0, sin
e X

H

is a solution. Now, for any

ve
tor �eld �, !(X; �) = �dH

�

�(t)

�

� �, therefore for any solution � of the variational equation,

the value of this �rst integral is the 
oordinate of � on the ve
tor Y in the new basis. The normal

variational equation is obtained by setting this 
oordinate to 0 and 
onsidering the indu
ed matrix A

on the subspa
e with basis (e

2

; : : : ; e

n

; e

n+2

; : : : ; e

2n

).

Cy
li
 Ve
tor. The 
riterion of Theorem 1 applies to equations rather than systems. A 
lassi
al

method to 
onvert a system of order m into an equation L(u) = 0 is to start from a random

ve
tor u and �nd a linear dependen
y between the m+1 ve
tors u; u

0

; : : : ; u

(m)

where the derivatives

are 
omputed using the matrix A. Unfortunately, this pro
ess generi
ally introdu
es spurious

singularities that are roots of the determinant of the 
hange of basis (u; u

0

; : : : ; u

(m�1)

). Bou
her

therefore sele
ts 
y
li
 ve
tors in su
h a way that no new singularity o

urs and this requires

distinguishing two 
ases depending on the value of the mass m

1

.

Right Fa
tors. In the simplest 
ase of Bou
her's 
riterion, the operator L has an irredu
ible

right fa
tor M whose formal solutions exhibit logarithms. This requires M to have order at least 2.

Fa
tors of order k are found by 
onstru
ting an auxiliary equation L

^k

of order (

m

k

) whose solutions

are Wronskians of k independent solutions of L [7℄. (Note that this 
an be 
omputed dire
tly

from L.) Indeed, a moni
 right fa
tor of order k has for 
oeÆ
ient of order k � 1 the logarithmi


derivative w

0

=w of some parti
ular Wronskian of its solutions. Finding right fa
tors then amounts

to looking for so-
alled exponential solutions of L

^k

(i.e., those with logarithmi
 derivative that

is rational). From a basis of su
h solutions, 
orresponding to linear 
ombinations of Wronskians,

Pl�u
ker's relations help sele
t those that are indeed Wronskians [16℄. From there, the 
omplete

fa
tor 
an be re
onstru
ted. Exponential solutions are found by looking at formal solutions at all

singularities of the equation [19℄. This requires a dis
ussion in the parametri
 
ase. If a fa
tor

is found, the next step is to 
he
k whether this fa
tor is irredu
ible, or to �nd 
onditions on the

parameters that make it irredu
ible. This is done again by sear
hing for fa
tors of the fa
tor. It

turns out that in this appli
ation, in all 
ases an irredu
ible right fa
tor of order 2 is found.
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Logarithms. Logarithms in formal solutions o

ur when the indi
ial equation at a singularity has

roots that di�er by an integer. A ne
essary and suÆ
ient 
ondition has been given by Frobenius [9,

p. 404{406℄. Again, in all generality nothing 
an be said when parameters are present but Bou
her

manages to show that logarithms are present in all 
ases for this appli
ation.

4. Con
lusion

This appli
ation is a very good show
ase for many of the algorithms that have been developed

in 
omputer algebra for linear di�erential equations: formal solutions, fa
torization, polynomial

solutions, . . .

What Bou
her has shown is that, even in the presen
e of parameters, these algorithms 
an be

exploited to provide useful information by 
on
entrating on those points where spe
i�
 quantities

su
h as the indi
ial equation or its solutions do not depend \too mu
h" on the parameters.

A re
ent trend in 
omputer algebra is to revisit all these algorithms that have been designed

for equations and extend them to deal with systems, without using the 
y
li
 ve
tor. It would be

a natural step to try and adapt Bou
her's 
riterion so that the symple
ti
 stru
ture is not lost.

(Work on this has been started by Bou
her and Weil.)

Remark. A new result of Tsygvintsev [18℄ shows the stronger result that there is no additional

meromorphi
 �rst integral. Also, Theorem 2 has been extended to the 
ase when L is a produ
t of

irredu
ible fa
tors one of whi
h has a solution with logarithms.
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Abstra
t

In the 1960's, Malgrange made use of D-module theory for studying linear systems of

PDEs [2℄. Several aspe
ts of this approa
h, now 
alled algebrai
 analysis, have then been

made e�e
tive in the 1990's, owing to the extension of the theory of Gr�obner bases to rings

of di�erential operators. Correspondingly, algorithms have also been implemented in several

systems. Re
ently, the introdu
tion of algebrai
 analysis to 
ontrol theory has allowed to


lassify linear multidimensional 
ontrol systems a

ording to algebrai
 properties of asso
i-

ated D-modules, to rede�ne their stru
tural properties in a more intrinsi
 fashion, and to

develop e�e
tive tests for de
iding these stru
tural properties [3, 6, 7, 8, 9, 10, 12, 14℄.

1. From Linear Multidimensional Control Systems to Algebrai
 Analysis

A 
ontrol system relates the state x of a physi
al pro
ess with an external 
ommand u and some

output y. Ea
h of u, x, and y is a ve
tor of fun
tions of the time t, and the system des
ribes their

evolution with t. Several 
lasses of su
h systems 
an be represented by matri
es with 
oeÆ
ients

in a ring of operators. Sample 
lasses are the following:

1. Kalman systems are �rst-order linear (ordinary) di�erential systems

_x = Ax+Bu; y = Cx+Du;

where A, B, C, and D are matri
es with real entries [5℄. For example, RLC 
ir
uits 
an be

des
ribed by Kalman systems.

2. Polynomial systems are higher-order di�erential systems expressed without the help of any

state variable, in the form

(1) P (d=dt)y(t) +Q(d=dt)u(t) = 0:

Here P and Q are matri
es with 
oeÆ
ients that are s
alar linear di�erential operators with

real 
oeÆ
ients [5℄. For example, a harmoni
 os
illator 
ommanded by a for
e is des
ribed by

a se
ond-order polynomial system. By Lapla
e transform, an equivalent formulation of (1) is

P (s)ŷ(s) +Q(s)û(s) = 0;

the matri
es P and Q are now matri
es of polynomials in s with real 
oeÆ
ients [5℄.

3. Di�erential-delay systems with 
onstant delays are a generalization 
ommon to Kalman sys-

tems and polynomial systems by introdu
ing the 
onstant-delay operators Æ

i

de�ned by
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(Æ

i

f)(t) = f(t� t

i

) for some real t

i

. The generalized forms are

_x(t) =

r

X

i=0

A

i

x(t� t

i

) +B

i

u(t� t

i

); y(t) =

r

X

i=0

C

i

x(t� t

i

) +D

i

u(t� t

i

);

and

P (d=dt; Æ

1

; : : : ; Æ

r

)y +Q(d=dt; Æ

1

; : : : ; Æ

r

)u = 0;

respe
tively. A typi
al o

urren
e of delay is when transmitting a signal u through a 
hannel.

4. Multivariate linear di�erential systems with real 
oeÆ
ients appear frequently to des
ribe

physi
al phenomena, like ele
tromagnetism, (linear) elasti
ity, hydrodynamism, and so on

[7, 8, 12℄.

In ea
h 
ase, the 
olumn ve
tor � = (y; x; u)

T

satis�es R� = 0 for a (re
tangular) matrix R

with 
oeÆ
ients in some ring A . Thus, we hen
eforth 
onsider a linear 
ontrol system as de�ned

by a matrix R with 
oeÆ
ients in an entire ring A . To give simple examples, the matrix forms


orresponding to Kalman and polynomial systems respe
tively are

R =

�

0 A� d=dt Id B

Id C D

�

and R =

�

P Q

�

:

In these di�erential 
ases, the ring A is R[d=dt℄ or a multivariate generalization, but more general

rings of 
oeÆ
ients are also 
onsidered in pla
e of R in appli
ations, like the ring R(t) of rational

fun
tion, or the ring C

1

(I) of in�nitely di�erentiable fun
tions over some real interval I. In

the equivalent formulation by Lapla
e transform or in the mixed di�erential-delay situation with


onstant 
oeÆ
ients, the ring is isomorphi
 to the polynomial ring R[s℄ or a multivariate analogue.

Here again, more general rings of fun
tions often appear in appli
ations, like: R

�

s; exp(�s)

�

, for

situations related to the wave equation; or the ring H

1

(C

+

) of 
omplex-analyti
 fun
tions bounded

in the right half 
omplex plane C

+

(Hardy spa
e) and its subring RH

1

(C

+

) of real rational fun
tions

with no pole on the right half 
omplex plane, for the study of the stability of some distributed

systems [11℄.

Several stru
tural properties of systems are all-important in 
ontrol theory. An observable of a


ontrol system is any s
alar fun
tion of its 
ommand u, state x, and output y and of their derivatives

up to a 
ertain order. An observable is 
alled autonomous if it satis�es a non-trivial PDE. A 
ontrol

system is 
alled 
ontrollable if no observable is autonomous. The study of stru
tural properties of

a system turns out to lead to linear algebra: 
ontrollability and observability are related to various

notions of primeness of the linear maps

z 7! Rz and z 7! zR;

in the polynomial systems 
ase, stability is related to poles and zeroes of the system, that are

invariant fa
tors of the matrix R; similarly with the existen
e of generalized B�ezout identities and


atness of a 
ontrol system; et
.

By asso
iating an A-module M to the matrix R, another interpretation of the stru
tural proper-

ties is in terms of module-theoreti
 and homologi
al properties of M (torsion, torsion-free, re
exive,

and proje
tive modules; extension and torsion fun
tors). In fa
t, a full 
lassi�
ation of modules by

homologi
al algebra methods translates into a 
lassi�
ation of linear 
ontrol systems.

2. Duality Between Di�erential Operators and D-Modules

Let us turn to the formal theory of PDEs [13℄. Starting with a naive viewpoint on di�erential

operators (so as to avoid the formalism of jet bundles), we introdu
e formally exa
t sequen
es of

di�erential operators. For ea
h k, let F

k

denote the algebra of fun
tions in k variables, and 
onsider
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a di�erentiel operator D from F

m

to F

l

(of �nite order). Given � 2 F

n

, the ne
essary 
onditions

for the existen
e of � 2 F

m

su
h that D� = � are 
alled 
ompatibility 
onditions of D; they take

the form D

1

� = 0 for some di�erential operator D

1

. Writing D

0

= D, we have D

1

Æ D

0

= 0. When

D

1

en
apsulates all 
ompatibility 
onditions, the sequen
e

F

m

D

0

! F

l

0

D

1

! F

l

1

of di�erential operators is 
alled formally exa
t (at F

l

0

). Formally exa
t sequen
es 
an always be

extended (to the right) into longer sequen
es, so that denoting the solution set of D = D

0

in F

m

by �, we obtain a formally exa
t sequen
e

0! �! F

m

D

0

! F

l

0

D

1

! F

l

1

D

2

! F

l

2

! � � �

(at � and ea
h F

l

k

) where the �rst two maps denote in
lusions. Under te
hni
al 
onditions (regu-

larity and involutivity), the formal theory of PDEs proves the existen
e of a �nite formally exa
t

sequen
e for D, in the sense that F

l

n

= 0 from some n on, by exhibiting a 
anoni
al, formally exa
t

sequen
e

(2) 0! � = kerD

0

! F

m

D

0

! F

l

0

D

1

! F

l

1

D

2

! F

l

2

! � � �

D

r

! F

l

r

! 0


alled the Janet sequen
e of D, in whi
h ea
h (non-zero) D

i

is of order 1 (and involutive) for i � 1,

and r is the number of derivatives.

A dual, more algebrai
 
ounterpart to this di�erential viewpoint is in terms of exa
t sequen
es of

D-modules. To this end, we now view ea
h D

i

as de�ned by an l

i

� l

i�1

matrix R

i

of multivariate

linear di�erential operators in

A = R(x

1

: : : ; x

r

)[�

1

; : : : ; �

r

℄:

(We set l

�1

= m.) In terms of matri
es,

D

i

= R

i

� = (� 7! R

i

�);

so that R

i+1

R

i

� = 0. We then 
onsider the maps � R

i

from A

l

i

to A

l

i�1

, whose elements are

viewed as row ve
tors. To start with, the map �R

0

de�nes an algebrai
 representation of a generi


solution � the PDE system D

0

� = 0 in the following way. Let (e

1

; : : : ; e

m

) be the 
anoni
al basis

of A

m

and 
onsider the maps

(3) 0 M = A

m

=A

l

0

R

0

�

 A

m

�R

0

 A

l

0

;

where � denotes the 
anoni
al proje
tion �(v) = v + A

l

0

R

0

. The 
okernel

M = 
oker( � R

0

) = A

m

=A

l

0

R

0

of �R

0


ontains the announ
ed generi
 solution: setting

�

i

= �(e

i

) = e

i

+ A

l

0

R

0

;

we get D

0

� = �R

0

= 0. Other members of M 
orrespond to linear 
ombinations of the �

i

and their

derivatives, i.e., to the observables de�ned above. We now pro
eed to follow up with the next D

i

's.

A sequen
e

L

u

! L

0

v

! L

00

of linear maps (between modules) is said to be exa
t (at L

0

) if imu = ker v. (Thus (3) is exa
t at

M and A

l

0

.) It 
an be shown that any Janet sequen
e (2) gives rise to the exa
t sequen
e

(4) 0 M

�

 A

m

�R

0

 A

l

0

�R

1

 A

l

1

�R

2

 A

l

2

 � � �

�R

r

 A

l

r

 0
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(at M and ea
h A

l

k

). Here, � R

i+1

R

i

= 0 by exa
tness. Sin
e A has no zero divisor, this means

that R

i+1

R

i

= 0. The sequen
e (4) of (left) D-modules is 
alled a free resolution of M : it en
ap-

sulates the obstru
tion of M to be free (as the module ker � = im( � R

0

)), then the obstru
tion

of ker � to be free (as the module ker( � R

0

) = im( � R

1

)), et
. (A module is 
alled free when it is

isomorphi
 to some A

r

, when
e the name \free resolution.")

3. Parametrization and Controllability

A problem dual to the sear
h of 
ompatibility 
onditions is, for a given di�erential equation

D� = 0, to determine whether the solutions 
an be parametrized by 
ertain arbitrary fun
tions

whi
h, in physi
al systems, play the role of potentials. In other words, the problem is to determine

whether there exists another operator

D

�1

: F

l

�1

! F

l

0

whose 
ompatibility 
onditions are des
ribed by D = D

0

, i.e., to look for a formally exa
t sequen
e

F

l

�1

D

�1

! F

l

0

D

0

! F

l

1

:

In this situation, for any � 2 F

l

0

the existen
e of � 2 F

l

�1

satisfying D

�1

� = � is equivalent to

the fa
t that � solves the di�erential equation D

0

� = 0, and so D

�1

\parametrizes"|in the usual

sense|all its solutions.

The existen
e of a parametrization has a ni
e appli
ation to optimal 
ommand : assume one needs

to minimize a 
ost fun
tion provided by the integral

R

�

0

F (t) dt of an observable F of some systemD

0

.

The optimization problem is then to minimize over all tuples � = (y; x; u)

T

of fun
tions 
onstrained

by D

0

� = 0. On the other hand, on
e the solutions � are given by a parametrization � = D

�1

�, the

optimization problem redu
es to the non-
onstrained problem of minimizing the integral

R

�

0

G(t) dt

of a new observable G of D

�1

over un
onstrained � [12℄.

To study the 
ontrol-theoreti
 properties of the di�erential operator D, starting with the existen
e

of a parametrization, we in fa
t study the module-theoreti
 properties of M , whi
h in turn are

derived from the study of the right D-module de�ned by

(5) A

l

�1

R

0

�

! A

l

0

! N = 
oker(R

0

� ) = A

l

0

=R

0

A

l

�1

! 0

(re
all that l

�1

= m and 
ompare with (3)). The key ingredient to be used 
omes from linear

algebra: dualization, whi
h maps a left A -module L to the right module hom

A

(L; A ) of A -linear

appli
ations from L to A . Correspondingly, any linear map L

u

! L

0

indu
es a map from the dual

of L

0

to the dual of L: to � 2 hom

A

(L

0

; A ), one asso
iates � Æ u 2 hom

A

(L; A ). This takes a simple

form when the modules are free and of �nite rank (i.e., L = A

m

and L

0

= A

l

, viewed as left modules

of row ve
tors). Indeed, the linear map u is just the appli
ation of an m � l matrix U : u = � U .

Elements � 2 hom

A

(A

k

; A ) are de�ned by their values on the 
anoni
al basis (e

i

) of A

k

by

� = �

�

�(e

1

); : : : ; �(e

k

)

�

T

;

so that the dual of A

k

is isomorphi
 to A

k

(now viewed as a right module of 
olumn ve
tors). In

this setting, the dual of a map A

m

�U

! A

l

is A

m

U �

 A

l

. The same ideas apply mutatis mutandis for

the dual of right modules.

To sear
h for a parametrization, one thus extends the exa
t sequen
e (5) into an exa
t sequen
e

A

l

�2

R

�1

�

! A

l

�1

R

0

�

! A

l

0

! N ! 0:
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An algorithm for this purpose will be given in Se
tion 5. By dualization (i.e., appli
ation of the

hom

A

( � ; A ) fun
tor), it be
omes a sequen
e

A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 hom

A

(N; A )  0

of left D-modules that is usually no longer exa
t. In parti
ular, we may well have ker( �R

�1

) stri
tly

larger than im( �R

0

). Upon forgetting the map �R

0

and prolonging �R

�1

into

A

l

�2

�R

�1

 A

l

�1

�R

0

0

 A

l

0

0

;

we obtain an \exa
t" representation of ker( �R

�1

) as im( �R

0

0

). It 
an be proved that the quotient

im( �R

0

0

)= im( � R

0

) �M

is the torsion module t(M) of M , i.e., the set of all its members m for whi
h there exists a non-zero

s
alar a 2 A su
h that am = 0. Thus we have obtained that a (linear) 
ontrol system system

is 
ontrollable if and only if its asso
iated module M of observables is torsion-free, whi
h 
an be

tested algorithmi
ally. Moreover, a basis for the module t(M) of autonomous elements is obtained

from the rows of R

0

0

(that are elements of im( �R

0

0

)), viewed modulo im( �R

0

).

4. More Stru
tural Properties of Control Systems as Extension Modules

Other stru
tural properties of D will be des
ribed in terms of the extension modules of N , a


entral tool in homologi
al algebra. Consider a free resolution

(6) � � �

R

�n

�

! A

l

�n

R

�n+1

�

! � � �

R

�2

�

! A

l

�2

R

�1

�

! A

l

�1

R

0

�

! A

l

0

! N ! 0

(as obtained, for example, with the algorithms of Se
tion 5). This is an exa
t sequen
e of right

D-modules. By dualization it be
omes a sequen
e

(7) � � �

�R

�n

 A

l

�n

�R

�n+1

 � � �

�R

�2

 A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 hom

A

(N; A )  0

of left D-modules that, again, is usually no longer exa
t. By dropping hom

A

(N; A ) from (7), we

obtain another non-exa
t sequen
e, but of free modules only,

� � �

�R

�n

 A

l

�n

�R

�n+1

 � � �

�R

�2

 A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 0:

Its defe
ts of exa
tness are en
apsulated by its 
ohomology sequen
e, that is to say, by the quotients

ker( � R

�i

)= im( � R

�i+1

):

An all-important fa
t is that this family depends on N only, and not of the 
hoi
e of a free

resolution (6). This motivates the notation

ext

i

A

(N; A ) = ker( �R

�i

)= im( �R

�i+1

)

for extension modules (with in parti
ular ext

0

A

(N; A ) = ker( �R

0

) = hom

A

(N; A )).

The nullity or non-nullity of the ext

i

's provides with the 
lassi�
ation of modules in Theorem 1

below; in turn this 
lassi�
ation provides with the 
lassi�
ation of 
ontrol systems in Theorem 3

below. Here are two more module-theoreti
 notions missing to state Theorem 1. A module L is

proje
tive whenever there exists a module L

0

su
h that L� L

0

is free; it is re
exive whenever it is

isomorphi
 to the dual of its dual through the linear map

� : M ! hom

A

�

hom

A

(M; A ); A

�

de�ned by

�(m)(f) = f(m):
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Then, a free module is always proje
tive, a proje
tive module always re
exive, and a re
exive

module always torsion-free. (For modules over a prin
ipal ideal, these notions 
oin
ide; for modules

over a multivariate polynomial ring with 
oeÆ
ients over a �eld, free and proje
tive are equivalent,

a theorem by Quillen and Suslin.)

The following theorems [1, 4℄ make the link between properties of a module and the nullity of

the extension modules of its transposed module.

Theorem 1 (Palamodov, Kashiwara). For the modules M and N de�ned by (3) and (5), we have:

1. M is torsion-free if and only if ext

1

A

(N; A ) = 0;

2. M is re
exive if and only if ext

1

A

(N; A ) = ext

2

A

(N; A ) = 0;

3. M is proje
tive if and only if ext

1

A

(N; A ) = � � � = ext

r

A

(N; A ) = 0.

Theorem 2 (Palamodov, Kashiwara). Let M and N be the two modules de�ned by (3) and (5).

Then there exists an exa
t sequen
e

0!M ! A

p

1

! A

p

2

! � � � ! A

p

r

if and only if ext

i

A

(N; A ) = 0 for i = 1; : : : ; r.

We �nally obtain the following 
lassi�
ation of linear 
ontrol systems, whi
h admits some re�ne-

ments in the 
ase of di�erential operators with 
onstant 
oeÆ
ients, i.e., matri
es with entries in

R[�

1

; : : : ; �

r

℄ � A [7, 8, 12℄.

Theorem 3. For a 
ontrol system de�ned by the di�erential operator D = R � where R is an l�m

matrix with l � m and entries in

A = R(x

1

: : : ; x

r

)[�

1

; : : : ; �

r

℄;

introdu
e the two left D-modules M = 
oker( �R) and N = 
oker(R � ) of the maps between the free

modules A

m

and A

l

. Then:

1. if M has torsion, the 
ontrol system has autonomous elements, and in the event R has


onstant 
oeÆ
ients and full row module, it has no primality property;

2. M is torsion-free if and only if ext

1

A

(N; A ) = 0. In this 
ase, the 
ontrol system is 
ontrol-

lable, and in the event R has 
onstant 
oeÆ
ients and full row module, it is prime in the

sense of minors, i.e., there is no 
ommon fa
tor between the minors of R of order l;

3. M is re
exive if and only if ext

1

A

(N; A ) = ext

2

A

(N; A ) = 0;

4. in the event R has 
onstant 
oeÆ
ients and full row module, and if

ext

1

A

(N; A ) = � � � = ext

r�1

A

(N; A ) = 0 while ext

r

A

(N; A ) 6= 0;

the 
ontrol system is weakly prime in the sense of zeroes, i.e., all minors of order l simulta-

neously vanish at �nitely many points only;

5. M is proje
tive if and only if

ext

1

A

(N; A ) = � � � = ext

r

A

(N; A ) = 0:

In this 
ase the 
ontrol system has an inverse generalized B�ezout identity, and in the event

R has 
onstant 
oeÆ
ients and full row module, it is prime in the sense of zeroes, i.e., all

minors of order l simultaneously vanish at no point;

6. ifM is free, the 
ontrol system is 
at and has dire
t and inverse generalized B�ezout identities.

Further intermediate situations, ext

1

A

(N; A ) = � � � = ext

k�1

A

(N; A ) = 0 and ext

k

A

(N; A ) 6= 0,


orrespond to further intermediate primeness 
onditions (des
ribed in terms of the dimension of

the algebrai
 variety de�ned by the l � l minors of R).
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5. Gr�obner Basis Cal
ulations for Compatibility Conditions and Parametrizations

The whole ma
hinery of the previous se
tions 
ru
ially bases on prolongations of exa
t sequen
es.

A point that is important in view of 
omputations is that these 
an be obtained by Gr�obner basis


al
ulations for free modules over A .

The prolongation of a map A

m

�R

 A

l

into an exa
t sequen
e A

m

�R

 A

l

�S

 A

k

is done in the

following fashion. Let (e

1

; : : : ; e

m

) and (f

1

; : : : ; f

l

) be the 
anoni
al bases of A

m

and A

l

, respe
tively,

and denote the ith row of R = (r

i;j

) by �

i

. Thus �

i

=

P

m

j=1

r

i;j

e

j

. Prolonging the map amounts

to �nding non-trivial relations

P

l

i=1

s

i

�

i

= 0. Now introdu
e the submodule Z of A

m+l

generated

by the formal linear 
ombinations f

i

� �

i

. We 
ontend that 
omputing a Gr�obner basis for this

module and for a term order that eliminates the e

i

results in linear 
ombinations

P

l

i=1

s

i

f

i

2 Z,

ea
h of whi
h 
orresponds to a relation between the �

i

. Additionally, any relation 
an be obtained

as a linear 
ombination of the relations thus obtained.

In e�e
t, 
onsider an element z =

P

l

i=1

s

i

f

i

2 Z; thus

P

l

i=1

s

i

�

i

is in Z and is a 
ombination

P

l

i=1

�

i

(f

i

� �

i

), whi
h is only possible, in view of the 
oeÆ
ients of the f

i

, if the �

i

are zero, thus

if

P

l

i=1

s

i

�

i

= 0; the 
onverse property is also true. Sin
e the Gr�obner basis 
al
ulation pre
isely


omputes a �nite generating set, say of k elements, for all the z's free of the e

i

, it suÆ
es to 
onsider

ea
h of those k elements as a row, and to glue them in 
olumn to obtain a new matrix S = (S

i;j

)

su
h that the sequen
e A

m

�R

 A

l

�S

 A

k

is exa
t.

Now, existing pa
kages often 
ontain fa
ilities to 
ompute Gr�obner bases for left modules only;

some of our 
omputations require to deal with right modules. A last ingredient, adjun
tion, enables

one to turn any left module into a right module, and vi
e versa, in a way that preserves the exa
tness

of sequen
es. Indeed, the adjoint map P 7!

~

P de�ned by asso
iativity from the rules ~x

i

= x

i

,

~

�

i

= ��

i

, and (PQ)~ =

~

Q

~

P , is an (anti)automorphism of the algebra A whi
h extends to matri
es

by mapping itself to the entries of the transpose matrix. Thus, for example, the exa
t sequen
e (5)

of right D-modules of 
olumns in Se
tion 3 is repla
ed with the exa
t sequen
e

A

l

�1

�

~

R

0

! A

l

0

!

~

N = 
oker( �

~

R

0

)! 0

of left D-modules of lines, for the purpose of expli
it 
al
ulations.
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Abstra
t

In 
ontrol and systems theory, the problem of stru
tural algebrai
 observability 
onsists in

de
iding whether the state variables involved in a model 
an be determined in terms of


ommands and measures supposed perfe
tly known. Stru
tural identi�ability is a variant

where one tries to know whether the parameters of a model are observable.

We propose a probabilisti
 algorithm with polynomial 
omplexity to answer the question

in the ordinary di�erential framework. This algorithm relies on seminumeri
al te
hniques

(modular 
omputations, series expansions, and Newton operator) that allow the 
ompu-

tation of the generi
 rank of the Ja
obian matrix of measures and their derivatives with

respe
t to time.

To 
on
lude, we present experimental results that illustrate the notion of algebrai
 ob-

servability and show the eÆ
ien
y of our approa
h.





Part IV
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Summary by Mi
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~

ên-Th

�

ê

Abstra
t

Using properties of the Airy fun
tions, we analyze the re
e
ted Brownian bridge area W

b


onditioned on its lo
al time b at the origin. We give a 
losed form expression of the Lapla
e

transform of W

b

, a re
urren
e equation for the moments, leading to an eÆ
ient 
omputation

algorithm and an asymptoti
 form for the density f(x; b) of W

b

for x! 0.

1. Introdu
tion

Let us �rst introdu
e the standard Brownian motion denoted by x(t) and a few 
lassi
al variants:

the re
e
ted Brownian motion x

+

(t) =

�

�

x(t)

�

�

; the Brownian bridge B(t); the re
e
ted Brownian

bridge B

+

(t) on [ 0,1 ℄; the Brownian ex
ursion e(t).

The obje
t of interest in this talk is W

b

:=

R

1

0

B

+

(t) dt, the area of the re
e
ted Brownian bridge


onditioned on having a lo
al time at the origin equal to b. This random variable appeared in [4℄ as

the limit law for m

�3=2

D

m;m�b

p

m

, where D

m;m�b

p

m

denotes the total displa
ement for a hash table

with m lo
ations and b

p

m empty lo
ations, using linear probing. It also represents the limit law for

the total height of random forests with b

p

m trees and m nodes or leaves. The only des
ription of

it was given by its moments, related to the 
lassi
al Airy fun
tion Ai(z) :=

1

�

R

+1

0


os

�

1

3

t

3

+ zt

�

dt

(re
all Ai

00

= zAi) in the following way:

E

�

W

k

b

�

= k!

k

X

j=1

 

X

k

1

;:::;k

j

�1; �k

i

=k

j

Y

i=1

!

k

j

!

b

j�1

j!

q

3k�j�2

(b);

where the !

k

are de�ned by the asymptoti
 expansion

Ai

0

(z)

Ai(z)

�

z!+1

P

+1

k=0

!

k

(�1)

k

z

�3(k�1)=2

2

k

; and

q

r

(b) :=

R

+1

0

x

r

r!

e

�bx�x

2

=2

dt.

We will provide a 
losed form expression for the Lapla
e transform of W

b

, a better way to


ompute its moments, and an asymptoti
 form for the density f(x; b) of W

b

when x! 0.

2. Lapla
e Transform of W

b

Computing the Lapla
e transform of W

b

essentially requires using Ka
's formula [3℄ and a few

te
hni
alities. Eq. (30) in [5, p. 491℄ states that, if we denote by t

+

(t; a) the lo
al time of x(t) at a,

(1)

Z

1

0

e

��t

E

0

�

exp

�

�

Z

t

0

x

+

(u) du� Æt

+

(t; 0)

�

�

�

�

�

x(t) = 0

�

dt

p

2�t

=

�

Æ �

2

?

Ai

0

(2

?

�)

Ai(2

?

�)

�

�1

;

where 2

?

:= 2

1=3

. From it we 
an derive the following theorem:
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Theorem 1. The Lapla
e transform �(z; b) of W

b

has the 
losed form expression

�(z; b) = E

�

e

�zW

b

�

=

�z

1=3

e

b

2

=2

i 2

1=6

p

�

Z

i1

�i1

e

bz

1=3

2

1=3

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

e

uz

2=3

=2

1=3

du:

Proof. Given [

R

t

0

x

+

(u) du

�

�

x(t) = 0℄

D

� t

3=2

Y and t

+

(t; 0)

D

�

p

tt

+

(1; 0) (s
aling property), Eq. (1)

leads to

E

0

Z

1

0

e

��t

Z

1

0

e

�t

3=2

W

b

be

�b

2

=2

e

�Æ

p

tb

db dt

p

2�t

= [Æ � 2

?

�(�)℄

�1

;

where �(�) :=

Ai

0

(2

?

�)

Ai(2

?

�)

. The 
hange of variable v =

p

tb and an inversion on Æ delivers

(2)

Z

1

0

e

�b

2

=2

e

��v

2

=b

2

E

h

e

�v

3

=b

3

W

b

i

2 db

p

2�

= e

v2

?

�(�)

:

After setting b =

v

p

2

?

�

; u = 2

?

�, di�erentiating with respe
t to u and using

�

Ai

0

Ai

�

0

= u�

�

Ai

0

Ai

�

2

:

1

p

2�

Z

1

0

e

�u�

E

h

e

�

p

2�

3=2

W

v=

p

2

?

�

i

e

�v

2

=(2

4=3

�

)

d�

p

2�

= �e

v2

?

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

:

The inversion formula for Lapla
e transforms then writes:

(3) E

h

e

�

p

2�

3=2

W

v=

p

2

?

�

i

e

�v

2

=(2

4=3

�)

=

p

4�� =

�1

2�i

Z

i1

�i1

e

v2

?

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

e

u�

du:

Now set v = b

p

2

?

�, z =

p

2�

3=2

, �(z; b) = E[e

�zW

b

℄. Eq. (3) be
omes

2

1=6

�(z; b)e

�b

2

=2

2

p

�

=

�z

1=3

2�i

Z

i1

�i1

e

bz

1=3

2

?

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

e

uz

2=3

=2

?

du

whi
h proves the theorem. �

3. Re
urren
e Formulae

Using Lapla
e transforms and inversions of Lapla
e transforms, we show here how to �nd an

algorithm to 
ompute the moments  

k

(b) := E[W

k

b

℄ by re
urren
e. We �rst need:

Lemma 1. De�ne G(�) := 2

?

�(�)=

p

� and s = 1=b

2

; we have

(4)

Z

1

0

e

�1=(2s)

e

�ws

(�1)

k

s

3=2k

 

k

(b)

ds

s

3=2

p

2�k!

= [�

k

℄

e

p

wG

0

w

3=2k

1

X

i=1

�

p

w

�

G(�)�G

0

�

�

i

i!

:

Proof. Set s := 1=b

2

, w = �v

2

, and � = �

�3=2

. Eq. (2) be
omes

Z

1

0

e

�1=(2s)

e

�ws

E

h

e

��w

3=2

s

3=2

W

b

i

ds

s

3=2

p

2�

= e

p

wG(�)

;

Set G

0

:= G(0). Eq. (3) leads to

Z

1

0

e

�1=(2s)

e

�ws

E

h

e

��w

3=2

s

3=2

W

b

� 1

i

ds

s

3=2

p

2�

= e

p

wG(�)

� e

p

wG

0

= e

p

wG

0

1

X

i=1

�

p

w

�

G(�) �G

0

�

�

i

i!

:(5)

Upon expanding both sides of (5) with respe
t to �, this gives the desired formula. �
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To invert the Lapla
e transforms of the form e

�

p

2w

=w

(j+1)=2

, we will use the following lemmas:

Lemma 2. Set �

(1)

(x) := �(x) :=

1

p

2�

R

x

�1

e

�t

2

=2

dt (
lassi
al Gaussian distribution fun
tion) and

�

(j+1)

(x) :=

R

x

�1

�

(j)

(u) du. Then

Z

1

0

�

(j)

(�b)e

�ws

(2s)

(j+1)=2

s

ds =

e

�

p

2w

w

(j+1)=2

; j � 1; where b = 1=

p

s.

Sket
h of proof. Ones proves the lemma by indu
tion and uses an integration by part and an inte-

gration with respe
t to w to prove it at rank k + 1 from rank k. �

Lemma 3. The �

(j)

(x) 
an be expressed in the form:

�

(k)

(z) = p

1

(k; z)�(z) + p

2

(k; z)e

�z

2

=2

=

p

2�;

where p

1

(k; z) is of degree k � 1, p

2

(k; z) is of degree k � 2.

Using integration by parts on

R

z

�1

x

j

�(x) dx and identi�
ation of 
oeÆ
ients, it is possible to

prove the following proposition, enabling us to 
ompute ni
e expressions of the �

(j)

(x):

Proposition 1. De�ne, for k � 1, j � 0, P

1

[k; j℄ := [z

j

℄p

1

(k; z), and P

2

[k; j℄ := [z

j

℄p

2

(k; z).

Then the sequen
es (P

1

[k; j℄)

k�1;j�0

and (P

1

[k; j℄)

k;j�0

are de�ned by the initial values P

1

[1; 0℄ = 1,

P

2

[1; 0℄ = 0, P

1

[1; j℄ = P

2

[1; j℄ = 0 for j � 1, and the re
urren
e relations, for k � 1:

P

1

[k + 1; j℄ := P

1

[k; j � 1℄=j; j = 1; : : : ; k;

P

2

[k + 1; j℄ :=

b(k�1�j)=2


X

l=0

P

1

[k; j + 2l℄=(j + 2l + 1)(j + 2l + 1)

l

�

b(k�3�j)=2


X

l=0

P

2

[k; j + 2l + 1℄(j + 2l + 1)

l

; j = 0; : : : ; k � 1;

P

1

[k + 1; 0℄ := �

X

l=1;3;:::;k�1

P

1

[k; l℄=(l + 1)(l + 1)

(l+1)=2

+

X

l=0;2;:::;k�2

P

2

[k; l℄(l)

l=2

:

Determining a re
urren
e relation for the moments  

k

(b) hen
e amounts to determining a re
ur-

ren
e relation for the Z

j

de�ned by (see (4)):

(�1)

j

b

�3j

Z

j

j!

= [�

j

℄

1

w

3=2j

1

X

i=1

�

p

w

�

G(�) �G

0

�

�

i

i!

:

Indeed, along the me
hani
al transfer rule

1

w

(l+1)=2

!

�

(l)

(�b)

b

l+1

b

2

2

(l+1)=2

,  

j

(b) is equivalent to

Z

j

p

2�e

b

2

=2

=b

3

. To get a re
urren
e formula giving Z

k

in fun
tion of the Z

1

; : : : ; Z

j

, we introdu
e

S

k

(�) :=

k

X

j=1

(�1)

j

b

�3j

Z

j

j!

w

3j=2

�

j

=

k

X

j=1

�

j

[�

j

℄

0

B

�

P

k

l=1

(�1)

l

(d

l

� 


l

)

�

3�

2

3=2

�

l

P

k

l=0

(�1)

l




l

�

3�

2

3=2

�

l

1

C

A

j

�

�

p

2w

�

j

j!

;

where the 
oeÆ
ients 


l

and d

l

are de�ned in [1, Eq. (10.4.59) and (10.4.61)℄ by asymptoti
 expan-

sions of Ai and Ai

0

for jzj large,

�

�

arg(z)

�

�

< �:

Ai(z) �

1

2

p

�

z

�1=4

e

��

1

X

k=0

(�1)

k




k

�

�k

; Ai

0

(z) � �

1

2

p

�

z

1=4

e

��

1

X

k=0

(�1)

k

d

k

�

�k

;
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with � :=

2

3

z

3=2

. More expli
itly: 


0

= 1, 


k

= �(3k + 1=2)=

�

�(k + 1=2) � 54

k

k!

�

, d

0

= 1,

d

k

= �

6k+1

6k�1




k

. The relation

[�

k

℄

k

X

j=1

(�1)

j

b

�3j

Z

j

j!

w

3j=2

�

j

 

k

X

l=0

(�1)

l




l

�

3�

2

3=2

�

l

!

k

[�

k

℄

k

X

j=1

 

�

p

2

z

!

j

1

j!

 

k

X

l=1

(�1)

l

(d

l

� 


l

)

�

3�

2

3=2

�

l

!

j

 

k

X

l=0

(�1)

l




l

�

3�

2

3=2

�

l

!

k�j

provides an algorithm that 
an easily be implemented in Maple and proves more tra
table than the

general expressions of the moments given by Janson.

4. Asymptoti
 Form of Density

4.1. Asymptoti
s of f(x; b) as b!1. Using E[W

b

℄ �

1

2b

and Var[W

b

℄ �

1

4b

4

as b!1, already

mentioned in [4℄, asymptoti
s of (log Ai)

0

and (log Ai)

0

, and a saddle point method, we re
over the

fa
t that we obtain a density of a Gaussian distribution when b!1.

4.2. Asymptoti
s of �(z; b) as jzj ! 1. Using a saddle point again, setting z = �

6

, we obtain

� � e

�

3

�

1

e

��

1

�

4

=2

?

 

2

1=2

�

3=2

2b

3=4

+

b

1=4

2

1=6

�

1

4�

1=2

+O

�

1

�

3=2

�

!

:

4.3. Asymptoti
s of f(x; b) as x ! 0. The formula f(x; b) =

1

2�i

<

R


+i1


�i1

e

xz

�(z; b) dz, 
 > 0,

the former asymptoti
s and a saddle point method lead to:

f(x; b) � e

�

2

=x

2

p

2

p

�

 

3

1=4

�

9=4

1

9x

11=4

b

3=4

�

3

3=4

�

3=4

1

3x

9=4

b

1=4

+

b

1=4

3

1=4

(27 + 16�

3

1

)

x

7=4

�

3=4

1

+O

�

1

x

5=4

�

!

:

5. Open Questions

It remains to �nd an asymptoti
 form for the density f(x; b) as x ! 1|this not even known

for the 
lassi
al Airy density|and an expli
it form for the density f(x; b). Are also missing an

analysis of the lo
al time t

+

(t; a) of B

+

(t) at a, 
onditioned on its lo
al time b at the origin, and

some analyti
 variations on W

b

(see [2℄ for the 
lassi
al Airy distribution).
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od�eme

Abstra
t

In this talk, Amir Dembo 
onsiders random walks on Z

2

and presents a proof of the Erd}os{

Taylor 
onje
ture related to frequently 
overed points. The Kesten{R�ev�esz 
onje
ture on

the 
overing time of the two-dimensional torus Z

2

n

= Z

2

=nZ

2

is also solved. These results

are a 
ommon work of Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni.

1. Introdu
tion

Let (X

n

) be a simple random walk on Z

2

and T

n

(x) =

P

n

j=1

1

fX

j

=xg

be the number of visits

to x before time n. Let T

?

n

= max

x2Z

2
T

n

(x) be the number of visits to the most visited point. The

Erd}os{Taylor 
onje
ture asserts that

(1) lim

n!1

T

?

n

(log n)

2

=

1

�

; almost surely.

Erd}os and Taylor [7℄ proved the upper bound 1=� and a lower bound 1=(4�). The main result of

the talk is that the Erd}os{Taylor 
onje
ture is true.

Let (

e

X

j

) be a simple random walk on the two-dimensional torus Z

2

n

= Z

2

=nZ

2

. Consider T (x) =

minf j � 0 j

e

X

j

= x g, the time to attain the point x for the �rst time and

T

n

= max

x2Z

2

n

T (x);

the 
overing time of the torus. The Aldous-Lawler 
onje
ture asserts than

(2) lim

n!1

T

n

(n log n)

2

=

4

�

; in probability:

Kesten, R�ev�esz, Lawler, and Aldous proved an upper bound 4=� (see [1, Corollary 25, Chapter 7℄)

and a lower bound 2=�. A related question is the Kesten{R�ev�esz 
onje
ture for the simple random

walk on Z

2

(see [4℄).

The proofs for the upper bounds rely on the se
ond moment method, the approximation of

random walks by Brownian motions, and an underlying tree stru
ture for the o

upation of small

disks by a Brownian motion. We give here a sket
h of the proofs; see [4, 5℄ for 
omplete proofs.

2. The Se
ond Moment Method

Janson gives a short a

ount of the se
ond moment method in [2℄. Basi
ally, we 
onsider a

sequen
e of non-negative random variables X

n

, and we want to estimate P(X

n

> 0). The se
ond



122 Cover Time and Favourite Points for Planar Random Walks

moment method asserts that if

(3)

Var(X

n

)

(EX

n

)

2

! 0; or equivalently,

EX

2

n

(EX

n

)

2

! 1 (as n!1);

then

(4) P(X

n

> 0)! 1:

The method is frequently used in the 
ontext of random graphs; for example, this method proves

the existen
e of a Hamilton 
y
le in random graphs satisfying suitable 
onditions.

The se
ond moment method is a 
onsequen
e of the Chebyshev inequality,

P(jXj > t) �

1

t

2

E(X

2

):

As a 
onsequen
e of the latter,

P(X = 0) � P

�

jX � �j � �

�

�

Var(X)

�

2

; for � = EX:

3. Proof of the Erd}os{Taylor Conje
ture

3.1. Upper bound. By de�nition, the trun
ated Green fun
tion G

n

(x; y) is the expe
tation of

the number of passages at y in n steps, when starting from x.

We have

G

n

(0; 0) =

n

X

j=0

E

�

1

fX

j

=0g

�

=

n

X

j=0

P(X

j

= 0) �

log n

�

:

(See Feller [8, p. 361℄.) Applying [3, Theorem 8.7.3℄ for the renewal sequen
e u

n

= P(X

n

= 0), we

dedu
e that for large n, and �xed small Æ > 0,

P

�

X

j

6= 0 for j = 1; : : : ; n� 1

�

�

(1� Æ)�

log n

:

This implies by the strong Markov property that

(5) P

�

T

n

(0) � ��(log n)

2

�

�

�

1�

(1� Æ)�

log n

�

�(log n)

2

� e

���(log n)(1�Æ)

= n

�(1�Æ)��

:

We now 
onsider the disk of 
enter zero and radius n

(1+Æ)=2

. The probability that the random walk

exits this disk before time n tends to zero as n tends to in�nity, and the number of points of Z

2

inside this disk is 
lose to �n

(1+Æ)

. From Equation (5), we then get

(6) P

�

n

� P

�

max

0�i�n

jX

i

j > n

(1+Æ)=2

�

+ �n

(1+Æ)

n

�(1�Æ)��

;

where P

�

n

= P

�

T

?

n

� �(log n)

2

�

. The �rst term of the right member of Equation (6) vanishes as

n tends to in�nity. Therefore, applying the Borel{Cantelli lemma to the subsequen
e P

�

2

m

, for

� > 1=�, and using interpolation for all n, we have P

�

limT

?

n

� ��(log n)

2

)

�

! 0. This gives an

upper bound 1=�.
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3.2. Lower bound. We 
an try to adapt the proof from the upper bound and use the se
ond

moment method. Let D(x; r) be the disk of 
enter x and radius r and

Z

n

=

X

x2D(0;

p

n)

1

�

T

n

(x)��(log n)

2

	

:

Adapting the proof of the upper bound (Equation (6)) gives EZ

n

� n

(1���)

. Therefore,

EZ

2

n

(EZ

n

)

2

=

1

E(Z

n

)

+

�

x;y

�

x;y

+ �

x

; where �

x

=

X

x2D(0;

p

n)

�

P

�

T

n

(x) � �(log n)

2

�

�

2

and �

x;y

=

X

x6=y2D(0;

p

n)

P

�

T

n

(x) � �(log n)

2

�

P

�

T

n

(y) � �(log n)

2

�

:

A naive approa
h would say the following: the number of summand in �

x;y

is O

�

n

2(1���)

�

while it

is only O

�

n

(1���)

�

in �

x

. Therefore, for � < 1=�, EZ

2

n

=(EZ

n

)

2

! 1 and P(T

?

n

�

1

�

(log n)

2

) = 1

almost surely. However, Erd}os and Taylor [7℄ show that the 
orrelation stru
ture between points x

su
h that P

�

T

n

(x) � �(log n)

2

�

is too strong to get this result. They obtain an upper limit 1=(4�).

We move in the following se
tion to a tree model to over
ome this diÆ
ulty.

Modelling by a (toy) tree problem. We

1


on-

sider a 
omplete binary tree B

m

of height m

and a (nearest neighbor) random walk X start-

ing from the left-most leaf a, with probability

1/3 of 
hoosing any dire
tion when being at an

internal node. In this model, the starting point

a and the root 0 respe
tively represent the origin

(0,0) and the boundary of a \disk" of radius m

on Z

2

. Let L

m

be the set of leaves of B

m

. We


onsider T

m

(x), the time spent at leaf x before

hitting the root 0, and

T

?

m

= max

x2L

m

T

m

(x);

�

�

�

�

� �

�
�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

S

S

S

E

E

E

E

E

E

E

E

�

�

�

�

L

L

L

L

�

�

�

�

�

�

�

�

L

L

L

L

�

�

�

�

6

?

m

0

a

x

its maximum over all leaves.

Let us denote by 0; 1; 2; : : : ; a = m the nodes of the ray going from the root 0 to a and let P

y

denote probability for walks starting from node y. We 
onsider

H

y

= H

y

(u) =

X

u�0

P

y

(X spends time k at a before hitting 0) u

k

:

For any node i of the ray (0; a), and for any node y of the subtree rooted at the right 
hild of i, the

probability of k visits to a before hitting 0 of the walk starting from y is the same as if the walk

starts from i; this implies H

y

= H

i

. This last result is true for all i from 1 to m� 1.

We 
an therefore 
onsider only the nodes of the ray (0; a), whi
h provide the set of equations

H

1

=

H

2

3

+

H

1

3

+

1

3

; H

k

=

H

k�1

3

+

H

k

3

+

H

k+1

3

(2 � k � m�2); H

m�1

=

H

m�2

3

+

(1 + u)H

m�1

3

:

1

The elementary proof leading to Equation (7) was not presented by the speaker and is due to the authors of the

summary.
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Solving yields

(7) H

a

(u) = H

m

=

1

m

�

1

1�

�

1�

1

m

�

u

; and H

1

(u) =

m� 1� (m� 2)u

m� (m� 1)u

:

The random variable T

m

(a) therefore has a geometri
 distribution with mean m� 1, whi
h indu
es

(for large m)

P

�

T

m

(a) > �m

2

�

=

��

1�

1

m

�

m

�

�m

' e

��m

and P(T

?

m

> �m

2

) � e

��m

2

m

= e

�(��log 2)m

:

This implies the same upper bound as pre
edently (up to the 
hange of model).

We now 
onsider a variation of the se
ond moment method. We �x some K large. We denote

by x-ray the ray from the root 0 to a leaf x and N

i

(x) 
ounts the number of ex
ursions from level i

to level i+ 1 on the ray x. We de�ne the x-ray as �-su

essfull if

N

i

(x) ' �i

2

; for i = 0;K; 2K; : : : ;K

j

m

K

k

:

We have

P

�

N

i+K

(x) ' �(i+K)

2

�

�

N

i

(x) ' �i

2

�

' e

��K

) P(x-ray is �-su

essfull) ' e

��m

:

We now have

P(x-ray and y-ray are �-su

essfull) ' e

�2�m

e

�r(x;y)

;

where r(x; y) is the depth of the �rst 
ommon an
estor of x and y. This indu
es a redu
tion of

varian
e. Considering now the random variable Z

m

de�ned by

Z

m

=

X

x2L

m

1

fx-ray �-su

essfullg

;

we have

EZ

2

m

(EZ

m

)

2

'

m=K

X

s=1

e

(��log 2)Ks

! 1 for � < log 2;

when �rst m and then K tend to in�nity. There is no obvious way to adapt this result to the

standard random walk, but it is possible to adapt it to the planar Brownian motion that we denote

w = (w

t

).

De�ne � as the �rst time where the Brownian

motion w hits the 
ir
le of radius 1 and �

w

�

(A)

as the o

upation time of a subset A of the dis


D(0; 1) until this time. We have

� = min

�

t

�

�

jw

t

j = 1

	

and �

w

�

(A) =

Z

�

0

1

A

(w

t

)dt:

The Perkins{Taylor 
onje
ture states for the

Brownian motion that

(8) lim

�!0

sup

jxj<1

�

w

�

(D(x; �))

�

2

(log �)

2

= 2:

x

y

0

ak

2

ex
ursions

x

y

0
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We shall in a �rst time sket
h a proof of this 
onje
ture and apply then the KMT approximation

theorem of the Brownian motion by the standard random walk.

Sket
h of proof for the Perkins{Taylor 
onje
ture. In the following, let �D(x; r) be the boundary

of the disk D(x; r).

The proof of the upper bound of the 
onje
ture follows the same line as for the standard random

walk. When 
onsidering the lower bound, the diÆ
ulty relies again in the 
orrelation stru
ture.

Let �

k

= e

�k

and de�ne a point x of D(0; 1) as k-su

essful if the number of ex
ursions of

the Brownian motion between �D(x; �

k

) and �D(x; �

k+1

) is ak

2

for �xed a. We remark that if x

is su

essful, the time spent at the ball D(x; �

k+1

) is ak

2

�

2

' a�

2

(log �)

2

, where � = �

k+1

, with

probability 
lose to 1.

KMT approximation theorem. The Koml�os{Major{Tusn�ady (KMT) approximation theorem [9℄

states that for ea
h n it is possible to 
onstru
t a random walk fX

k

g

n

k=1

and the Brownian motion

fw

t

g

0�t�1

on the same probability spa
e so that for any Æ > 0 and any � > 0

(9) lim

n!1

P

 

max

k=1;:::;n

�

�

�

�

w

k=n

�

p

2

p

n

S

k

�

�

�

�

> Æn

��1=2

!

= 0:

(The original one-dimension KMT approximation has been extended to the multivariate 
ase by

Einmahl [6℄).

Note that the Brownian motion between two su

essful points x and y before rea
hing the

boundary may again be modelized by a tree stru
ture, and that the same te
hnique as for trees

works on
e more (with many te
hni
al issues).

Appli
ation of the KMT approximation theorem. The proof follows by 
onsidering the latti
e

points inside the 
ir
le fz : j

p

2z � yj <

p

n(1 + 2Æ)�

n

g whose number is less than

�

2

n(1 + 2Æ)

3

�

2

n

:

4. Covering Time of the Torus

�

�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

S

S

S

E

E

E

E

E

E

E

E

�

�

�

�

L

L

L

L

�

�

�

�

�

�

�

�

L

L

L

L

�

�

�

�

6

?

m

0

x

a

First, we on
e again 
onsider the \toy" problem

of the 
overing time of the binary tree B

m

. Let

X = (X

n

) be the �rst neighbor random walk

starting from the left son a of the root, and 
on-

sider hits to x, the leftmost leaf. P

x

again refers

to walks starting at point x.

4.1. Upper bound. From Se
tion 3.2 we get

P

a

(X hits x before 0) = 1�H

1

(0) =

1

m

:

This implies that

P

0

(X does not 
over x during �rst N visits to 0) '

�

1�

1

2m

�

N

:



126 Cover Time and Favourite Points for Planar Random Walks

Let �

0

be the probability that the random walk starting at zero does not 
over the binary tree B

m

during N visits to 0. We have

�

0

� 2

m

�

1�

1

2m

�

N

so that �

0

! 0 for N = 2(1 + Æ)m

2

log 2:

The time needed for N visits to the root is 2

m+1

N ; this implies that

P

0

�

X does not 
over B

m

before time 2(1 + Æ) log 2�m

2

2

m+1

�

! 0:

4.2. Lower bound. A ray x is 
alled su

essful if the number of ex
ursions from level i to level i+1

in the ray is a(m� i)

2

. Dembo et al. apply a se
ond moment analysis to the su

essful rays to show

that, with probability one, before 2(1� Æ)m

2

log 2 visits to the root, there are points whi
h are not


overed. Then, the time needed to visit the root that many times is about 2(1� Æ)m

2

(log 2)2

m+1

.

To solve the standard random walk problem on Z

2

, Dembo et al. �rst solve the equivalent problem

for the Brownian motion on the torus T

2

, where T

2

is identi�ed with the set (�1=2; 1=2 ℄

2

.

Let T (x; �) denote the time needed by the Brownian motion to enter the ball D(x; �),

T (x; �) = inf

�

t > 0

�

�

w

t

2 D(x; �)

	

; and C

�

= sup

x2T

2

T (x; �):

Therefore, C

�

is the minimum time needed for the Brownian motion W

t

to 
ome within � of ea
h

point of T

2

. Equivalently, C

�

is the amount of time needed for the Wiener sausage of radius � to


ompletely 
over T

2

. Dembo et al. [4℄ prove that

lim

�!0

C

�

(log �)

2

=

2

�

; almost surely:

Using the KMP strong approximation theorem again provides the result for the standard random

walk on T

2

.
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Introdu
tion to Random Walks on Groups

Yves Guivar
'h

Irmar, Universit�e Rennes 1 (Fran
e)

Mar
h 5, 2001

Summary by Philippe Robert

Abstra
t

In this talk simple examples are presented to illustrate some aspe
ts of random walks on

groups from the point of view of probability theory, statisti
al physi
s, ergodi
 theory,

harmoni
 analysis, and group theory.

1. Shu�ing Cards

A de
k of 
ards is des
ribed by J = (a

1

; : : : ; a

r

), where a

i

indi
ates the position of the ith 
ard in

the de
k. The 
ards are shu�ed so that the state of the de
k of 
ards is

�

�(a

1

); : : : ; �(a

r

)

�

, where

� 2 � is some permutation on J . Another shu�e would give the de
k

�

�(�(a

1

)); : : : ; �(�(a

r

))

�

,

and so on. Of 
ourse, the permutation is likely to be di�erent from one shu�e to another, but

the habits of a given player will be su
h that he will 
hoose at random among a given set A of

permutations. For � 2 A, the permutation � is 
hosen with probability p(�) > 0. After a shu�e,

the next permutation is 
hosen independently of the past. The position of the ith 
ard is j after

the �rst shu�e with probability

X

�2A:�(a

i

)=j

p(�);

after two shu�es the probability will be

X

(�;�)2A:�(�(a

i

))=j

p(�)p(�):

If p

n

denotes the nth 
onvolution of p,

p

n

(�) =

X

�

i

2A: �

n

Æ�

n�1

Æ���Æ�

1

=�

p(�

n

)p(�

n�1

) � � � p(�

1

);

the distribution of the position of the ith 
ard after the nth shu�e is given by

�

i

n

=

X

�2�

p

n

(�)Æ

�(a

i

)

;

where Æ

x

is the Krone
ker symbol at x: Æ

x

(x) = 1 and Æ

x

(y) = 0 when y 6= x. A natural question

in this setting is: provided that the set A is ri
h enough, is the position of the 
ard a

j

uniformly

distributed on f1; : : : ; rg when n gets large?

The distribution �

n

on � of the 
on�guration of the de
k of 
ards after n shu�es is given by

�

n

=

X

�2�

p

n

(�)Æ

�

;
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with this notation �

i

n

(j) = �

n

(� : �(i) = j). Does the distribution �

n

on � 
onverges to the

uniform distribution on the group of permutations as n gets large? The answer to both questions is

positive if the probability p satis�es some assumptions. It 
an then be shown that the 
onvergen
e

to the uniform distribution is exponentially fast with n (see Dia
onis [2℄).

This simple problem gives an illustration of the ergodi
 prin
iple introdu
ed in statisti
al physi
s

after the work of Boltzmann and Gibbs:

{ the limit is independent of the initial state;

{ the limit is independent of the parti
ular 
hoi
e of the probability p;

{ the limit is the most disordered distribution m on �, i.e., the distribution with the maximal

entropy H(m), with

H(m) =

X

�2�

�m(�) log(m(�)):

2. Random Walks in Z

d

This random walk is de�ned as follows: starting from x 2 Z

d

, it jumps to x� e

i

with probability

1=2d, where e

i

is the ith unit ve
tor. If S

n

denotes the position after n steps it is well known that

when d � 2, the sequen
e (S

n

) almost surely visits the origin in�nitely often; the random walk is

then said to be re
urrent. When d � 3 the random walks visits 0 only a �nite number of times;

the random walk is transient. These results 
an be expressed in terms of ele
tri
al networks: ea
h

edge of Z

d

is assumed to have resistan
e 1, R

d

is the e�e
tive resistan
e of Z

d

when the potential

at 0 is 1 and 0 at in�nity. It turns out that for d � 2, R

d

is in�nite and R

d

is �nite when d � 3.

The Lapla
ian � of the random walk is given by

�(f)(x) =

1

2d

 

d

X

i=1

�

f(x+ e

i

) + f(x� e

i

)

�

!

� f(x);

where f is some fun
tion on Z

d

. The potential fun
tion v(x) for the ele
tri
al network should

satisfy �(v) = 0 with v(0) = 1 and lim

x!+1

v(x) = 0.

3. Polymer Dynami
s in the Plane

A simpli�ed model of a polymer in the plane is given by a broken line A

0

A

1

: : : A

n

where ea
h

segment A

i

A

i+1

has length 1 and the angle between A

i�1

A

i

and A

i

A

i+1

is �� 2 [ 0; 2�) with

probability 1=2. If A

0

= (0; 0) and A

1

= (1; 0), the ve
tor Z

n

= A

0

A

n


an be represented in the


omplex plane as

Z

n

= 1 +

n

X

k=1

e

i�S

k

;

where S

k

= �

1

+ � � � + �

k

and the �

i

are independent Bernoulli random variables with P(�

i

= 1) =

P(�

i

= �1) = 1=2; (S

n

) is the simple random walk on Z. The average quadrati
 length of the

polymer with N segments is given by

l

n

=

p

E (Z

2

n

):

It has been shown by Eyring that l

n

=

p

n 
onverges to a 
onstant as n tends to in�nity. The average

length is 
onje
tured to grow like n

�

with � > 1=2.
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4. Random Rotations on the Sphere

This problem has been 
onsidered by Arnold and Krylov [1℄. The a
tion of two rotations a and b

of R

3

on the unit sphere S

2


entered at 0 is analyzed. If �(a; b) is a produ
t of n su
h rotations,

one writes j�j = n. For p 2 S

2

, the distribution �

n

of �(a; b)(p) is given by

�

n

=

1

2

n

X

j�j=n

Æ

�(a;b)(p)

:

The problem is to determine when �

n


onverges to the uniform distribution on S

2

and, if it o

urs,

the rate of 
onvergen
e. The answer to the �rst point is positive under mild assumptions. The

question 
on
erning the speed is, for the moment, unsolved. This example is in some sense, a


ontinuous analogue of the example of 
ard shu�ing.

5. Random Walks on the Free Group

The free group with two generators a and b is denoted by �. An element 
 is a string of letters

a, a

�1

, b and b

�1

where a letter 
annot be the inverse of the previous letter or the next letter in

the string (otherwise the two letters 
an
el). The distan
e d(
; 


0

) is given by the length of the

string 


�1




0

. The group � 
an be 
ompa
ti�ed by adding the set �� of in�nite strings. If � is su
h

a string and 
 2 �, it is easily seen that, if (x

n

) is a sequen
e of � and e is the empty string (the

neutral element of the group), the quantity

�(
; �) = lim

x

n

!�

�

d(
; x

n

)� d(e; x

n

)

�

is well de�ned.

The random walk 
onsidered here just adds a, a

�1

, b or b

�1

at the end of the string, with the


onvention that the inverse of the last letter suppresses this letter. This random walk is equivalent

to a random walk on a homogeneous tree with degree 4. In parti
ular it is transient and the length

of the string almost surely 
onverges to in�nity. The Lapla
ian � of this random walk is given by

�(f)(
) =

1

4

�

f(
a) + f(
a

�1

) + f(
b) + f(
b

�1

)

�

� f(
);

for 
 2 � and f a fun
tion on �. For � 2 ��, h

�

(
) = (1=3)

�(
;�)

is harmoni
 with respe
t to

this Lapla
ian, i.e., �(h

�

) = 0. Dynkin and Malyutov [4℄ have shown that every positive harmoni


fun
tion f 
an be expressed as an integral of the elementary fun
tions h

�

, � 2 ��, i.e.,

f(
) =

Z

��

h

�

(
) �(d�);

where � is a positive measure on ��.

This situation has to be 
ompared with the 
ase of the random walks on Z

d

with d � 3 whi
h

are also transient but without non-
onstant positive harmoni
 fun
tions. Similarly, in a 
ontinuous

setting, there does not exist any non-
onstant positive harmoni
 fun
tion f on R

d

, i.e., su
h that

d

X

i=1

�

2

f

�x

2

i

= 0:

But restri
ted to the unit dis
 of R

2

, su
h fun
tions exist and 
an be represented as

1

2�

Z

2�

0

P (z; �) �(d�);
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where � is some �nite measure on [ 0; 2�) and P is the Poisson kernel

P (z; �) =

1� jzj

2

je

i�

� zj

2

:

One 
an 
he
k that z 7! P (z; �) is harmoni
: it is the equivalent of the fun
tion h

�

for the unit dis
.
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Random Matri
es and Queues in Series
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e)
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ember 11, 2000

Summary by Marianne Durand

Abstra
t

Queues in series are de�ned as an in�nite sequen
e of 
lients queuing in front of an in�nite

sequen
e of servers where ea
h time a 
lient is served by a server, it immediatly enters

the next queue. Simple questions about this model are very hard to solve dire
tly. This

talk des
ribes the 
entralized and normalized law of the departure of the kth 
lient from

the nth server, as n tends to in�nity while k remains bounded; this law is related to a

sequen
e of largest eigenvalues of random matri
es. This relation allows us to use the

numerous asymptoti
 results known regarding the spe
tra of random matri
es and gain

useful informations about the queuing pro
esses.

1. Queues and Brownian Motions

Consider an in�nite series of queues 
orresponding to servers, and an in�nity of jobs. At �rst

all the jobs are in the �rst queue; then when a job leaves the server Q

i

, it immediatly enters the

queue 
orresponding to the server Q

i+1

. The question asked is: When does the ith job leave the

jth server? This 
an be modeled by pathweights in an in�nite matrix. Let w

k;l

denote the time

needed to pro
ess the kth job on the lth server. The 
ost of the maximal weight of a path from

(0; 0) to (i; j) in the matrix (w

k;l

) is noted 
(i; j). The path is made of steps of size one where

only one 
omponent in
reases. Then one observes that 
(i; j) is equal to the time when the ith

job leaves the jth server. This equality illustrates the fa
t that server j 
an pro
ess job i if it has

already pro
essed job i� 1 and if job i has left queue j � 1.

The problem of queues in series 
an thus be modeled by an in�nite matrix, where we assume

from now on that the entries are independent identi
ally distributed random variables, with �nite

varian
e. For the main theorem and for Se
tion 3 the distribution is assumed to be geometri


with parameter q. The aim of the talk [1℄ is to link the queue problem to the distribution of the

largest eigenvalues of random Hermitian matrix with appropriate distribution. An in�nite matrix

of weights is also a model for a physi
al problem, the intera
ting parti
le pro
ess, see [7℄; there we

assume that all the integers 
orresponds to sites that are 
apable of 
ontaining one parti
le, and

that at �rst all the sites with negative positions are full. In this model the weight w

i;j

is the time

taken by a parti
le to move from i to i+ j.

A preliminary remark links this queue problem to Brownian motion [3℄. Given (B

k

)

k=1;2;:::

independent standard Brownian motions, and D

(n)

k

=


(k;n)�en

p

vn

, where e is the expe
tation of w

1;1

and v its varian
e, the following theorem holds:
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Theorem 1. The pro
esses D

(n)

=

�

D

(n)

k

�

k=1;2;:::


onverge in law as n ! 1 to the sto
hasti


pro
ess D = (D

k

)

k=1;2;:::

where D

k

= sup

0=t

0

<t

1

<���<t

k

=1

P

k�1

i=0

�

B

i

(t

i+1

)�B

i

(t

i

)

�

:

This 
an easily be seen by modeling a path from (0; 0) to (k;N) for large N by k long verti
al

lines, where the path uses the ith verti
al line from the time t

i

to the time t

i+1

.

We now introdu
e the Gaussian Unitary Ensemble (GUE) [8℄ as the probability distribution on

the Hermitian matri
es with the density r

GUE

(H) = Z

�1

e

� trH

2

=2

where Z is a normalizing 
onstant

equal to

R

e

� trH

2

=2

dH. A useful property is that a Hermitian matrix H is drawn from GUE if

<(h

ij

) and =(h

ij

) are i.i.d. Gaussian random variables with mean 0 and varian
e 1. Given a

matrix H, let H

k

=

�

h

(i;j)

�

1�i;j�k

be the main minor of size k of H and �

k

the largest eigenvalue

of H

k

.

Theorem 2. The laws of both pro
esses � = f�

k

g for H drawn from GUE, and D = fD

k

g 
oin
ide.

This theorem is proven in the next se
tions. We �rst exhibit a bije
tion between a �nite restri
tion

of size M of the queue problem and a subspa
e of N

M(M+1)=2

via Young tableaux. The se
ond part

of the proof is to relate this subspa
e of N

M(M+1)=2

to the dominant eigenvalues of minors of the

matrix H.

2. Combinatori
s

The bije
tion between the matrix H and Young tableaux is a generalization of the Robinson{

S
hensted{Knuth 
orresponden
e (see [5℄) between Young tableaux and permutations. The ma-

trix W of size N �M with 
oeÆ
ients the weights w

i;j


an be represented as a generalized permu-

tation �,

� =

�

i

1

i

2

: : : i

k

j

1

j

2

: : : j

k

�

;

where i

l

2 N

N

, the integers between 1 and N , j

l

2 N

M

and j

l

represents �(i

l

). The integers i

l

are not ne
essarily distin
t, this is why the permutation is said to be generalized. The number of


olumns of type

�

i

j

�

is equal to w

i;j

. As the generalized permutation � is written in a lexi
ograph-

i
ally sorted fashion, the bije
tion is quite obvious. Indeed, given a matrix, the set of 
olumns

is well de�ned, and sorting gives the uniqueness of the image; 
onversely given a generalized per-

mutation, one simply has to 
ount the numbers of 
olumns of type

�

i

j

�

to re
onstru
t the matrix.

Re
all that a Young diagram � is a de
reasing sequen
e (�

1

; �

2

; : : : ; �

r

) that 
an be represented as

r rows of boxes of heights �

i

. A semi-standard Young tableau is a �lling of the boxes by positive

integers su
h that the �lling is in
reasing rightwards in rows and stri
tly in
reasing in 
olumns.

The Young diagram underlying a Young tableau P is 
alled the shape and is denoted by sh(P ).

The Robinson{S
hensted{Knuth (RSK) 
orresponden
e is a bije
tion between the set of general-

ized permutations with k 
olumns and the set of pairs of semi-standard Young tableaux (P;Q)

having the same shape � su
h that

P

i

�

i

= k. With the previous bije
tion between matri
es and

generalized permutations, we thus have a bije
tion between matri
es of size N �M and pairs of

semi-standard Young tableaux (P;Q) with shape �, su
h that

P

i

�

i

= k. We denote

�

P (w); Q(w)

�

Young tableaux obtained by the RSK 
orresponden
e from a matrix w.

Some properties make this 
orresponden
e really interesting. We denote by W

N;M;k

the set of

matri
es of size N �M whose 
oeÆ
ients add up to k, to state a result on the way the distribution

of the Young tableaux behaves through this 
orresponden
e.

Lemma 1. If the set W

N;M;k

is given the uniform distribution, then the distribution of P (w) for

w 2W

N;M;k

given sh

�

P (w)

�

= � is uniform on the semi-standard Young tableaux of shape �.
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Moreover the shape sh(P ) en
odes a few 
hara
teristi
s of w: the length �

1

of the �rst row is

the maximal weight of the monotonous paths from (0; 0) to (M;N) in the table w, be
ause it is the

length of the longest in
reasing subsequen
e of the se
ond line of �. This is a dire
t 
onsequen
e

of the RSK algorithm. It is then possible to 
onsider the Young tableau P as an embedding of

several Young tableaux P

1

; : : : ; P

M

where P

M

equals P and P

i

is obtained from P

i+1

by removing

all boxes �lled with i+ 1. A ni
e 
onsequen
e of the way the tableau P is built is that the sequen
e

of the lengths of the �rst rows of the embedded Young tableaux 
oin
ides with the sequen
e of

maximal paths from (0; 0) to (i;N) as i goes from 1 to M . Thus we now fo
us on Young tableaux

instead of the weight matrix. We introdu
e a representation of the Young tableaux that en
odes

the shape of the tableaux, and also the shape of all the embedded tableaux inside. To des
ribe a

Young tableau P �lled with N

M

, let x

i

j

be the 
oordinate of the rightmost box �lled with a number

at most i in the jth row of the tableau. Equivalently, this is just the length of the jth row in the

tableau P

i�1

de�ned by the embedding above. The elements x

i

j

, 1 � i �M , 1 � j � i 
an be seen

as a triangular array of size

M(M+1)

2

. The image x of a tableau P by this transformation has the

property that its last line is equal to � = (�

1

; : : : ; �

M

), and that its �rst 
olumn is equal to 
(k;N),

k 2 N

M

, 
orresponding to the length of maximal paths from (0; 0) to (k;N). This 
orresponden
e

is formalized in the following lemma.

Lemma 2. Let the Gelfand{Cetlin 
one C

GC

be the set of triangular arrays (x

i

j

) of size

M(M+1)

2

su
h that x

i

j�1

� x

i�1

j�1

� x

i

j

for 1 � i � M , 1 � j � i. Then the Young tableaux �lled with N

M

are in one-to-one 
orresponden
e with the integer points in the Gelfand{Cetlin 
one.

What we have now is a mapping from W

N;M;k

, the set of matri
es of size N�M whose 
oeÆ
ients

add up to k, to the set of integers point in the Gelfand{Cetlin 
one. This mapping has the property

that if W

N;M;k

is given the uniform distribution, then the distribution of x, given that the last line

is equal to � = (�

1

; : : : ; �

M

), is uniform on the integers points of the Gelfand{Cetlin 
one.

3. Gaussian Unitary Ensemble

From now on we add the restri
tion that the distributions of the 
oeÆ
ients w(i; j) are i.i.d.

geometri
 with parameter q, that is P(w

i;j

= k) = (1� q)q

k

. All the results of the previous se
tion

still hold in this 
ontext, as they were obtained in full generality. The aim of this se
tion is to

�nish the proof of Theorem 2. For this we des
ribe the distribution of x(w) by its distribution


onditioned upon values of its last line, and the distribution of its last line. This is then linked to

the distribution of the limit pro
esses D

k

.

The probability that the RSK 
orresponden
e applied to a random matrix w with i.i.d. geometri


entries with parameter q yields a pair of Young tableaux of shape � = (�

1

; : : : ; �

M

) is

(1)

(1� q)

MN

M !

M�1

Y

j=0

1

j!(N �M + j)!

Y

1�i<j�M

(�

i

� �

j

� i+ j)

2

M

Y

i=1

(�

i

+N � i)!

(�

i

+M � i)!

q

k

where k =

P

�

i

. The proof of this formula 
an be found in [4℄ and is based on the fa
t that there

are

Q

1�i<j�M

�

i

��

j

�i+j

j�i

semi-standard tableaux of shape � �lled with N

N

. The ve
tor of 
entered

and normalized variables �

i

=

�

i

�eN

p

vN

(with e the average and v the varian
e of w

1;1

), is noted �.

Plugging the Stirling approximation in Equation (1) yields that for �xed q su
h that 0 < q < 1,

�xed M and N !1, the distribution of � 
onverges weakly to Z

�1

Q

i<j

(�

i

� �

j

)

2

Q

i

e

��

2

i

=2

(Z is

a normalizing 
onstant). This is the distribution of the ve
tor of ordered eigenvalues of a random

matrix drawn from GUE. This property leads to the following theorem:
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Theorem 3. The distribution of the sequen
e (D

1

; : : : ;D

M

) de�ned in Theorem 1 is the distribu-

tion of the �rst 
olumn of the random triangular array x of size M(M + 1)=2 distributed uniformly

for a �xed last line, and the distribution of its last line is the distribution of the eigenvalues of

matri
es drawn from GUE [6℄.

The distribution of (D

1

; : : : ;D

M

) is the same as the distribution of the �rst 
olumn of x(w),

up to a proper normalization. And if the distribution on w is uniform, then the distribution on x,

knowing its last line, is uniform. As the probability of getting a Young tableau of shape �, and

thus an array x of last line �, is the same as getting the ve
tor of ordered eigenvalues of a random

matrix drawn from GUE equal to �, Theorem 3 is proved.

The Gelfand{Cetlin polyhedron GC(�) is de�ned as a subset of C

GC

su
h that the last line of

the array is equal to � = (�

1

; : : : ; �

M

). Theorem 3 means that the distribution of (D

1

; : : : ;D

M

) is

uniform on GC(�).

This allows us to state the theorem below, whi
h is a major step in the proof of Theorem 2.

Theorem 4. Let H = (h

ij

), i, j � M be a random matrix drawn from GUE with eigenvalues

(�

1

; : : : ; �

M

), and

x(H) =

0

B

B

�

x

1

1

: : : : : :

x

M�1

1

: : : x

M�1

M�1

x

M

1

x

M

2

: : : x

M

M

1

C

C

A

where x

i

j

is the jth eigenvalue of the main minor of size i of H. Then the triangular array x(H) is

uniformly distributed in the polyhedron GC(�).

The proof of this theorem is based on the fa
t that the last line of the array x 
orresponds

to the eigenvalues of the matrix H, whi
h is drawn from GUE, and that given this last line, the

distribution is uniform. The last line of x is equal to � and its �rst 
olumn to the ve
tor (�

k

) by

de�nition. This together with Theorems 3 and 4 proves Theorem 2.

Theorem 2 
an be used to prove the 
onje
ture of Peter Glynn and Ward Witt [3℄ stating that

D

k

=

p

k ! 2. The proof uses the already known fa
t that the largest eigenvalue of random Hermitian

matrix drawn from GUE res
aled by

p

k 
onverges in distribution to 2, see [2℄.
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ise Minimax Redundan
y
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h 5, 2001

Summary by Thomas Klausner

1. Introdu
tion

The redundan
y-rate problem of universal 
oding is 
on
erned with determining by how mu
h the

a
tual 
ode length (representation of a word in a 
ode) ex
eeds the optimal 
ode length. Revisiting

the theme of his last year's seminar talk [1℄, Szpankowski went into more detail explaining di�erent

models for redundan
y, and introdu
ed the generalized Shannon 
ode in order to solve the minimax

redundan
y problem for a single memoryless sour
e.

A 
ode is de�ned as follows:

De�nition 1. A 
ode C

n

is a mapping from the set A

n

of all sequen
es of length n over the

alphabet A to the set f0; 1g

�

of binary sequen
es.

Most of the time we use sour
e models whi
h spe
ify probabilities for spe
i�
 messages. For

these, P(x

n

1

) is the probability of the message x

n

1

, the 
ode length of a message x

n

1

= x

1

: : : x

n

, with

x

i

2 A, in the 
ode C

n

will be denoted by L(C

n

; x

n

1

), and H

n

(P) = �

P

x

n

1

P(x

n

1

) logP(x

n

1

) is the

entropy of the probability distribution, where log is taken to base 2.

2. Basi
 Results

A pre�x 
ode or instantaneous 
ode is a 
ode in whi
h no 
odeword is a pre�x for another


odeword; in other words, if you present the 
odewords as a binary trie, the valid 
odewords are

only in the leaves (not in the internal nodes).

For pre�x 
odes the following inequality holds:

Lemma 1 (Kraft's inequality). For any pre�x 
ode (over a binary alphabet), the 
odeword lengths

l

1

, l

2

, . . . , l

m

satisfy the inequality

m

X

i=1

2

�l

i

� 1:

A related problem is to �nd out how many tuples l

1

, . . . , l

m

exist where equality holds. This

has been ta
kled and solved by Flajolet and Prodinger [2℄. Asymptoti
ally, it grows as ��

m

, where

� � 0:254 and � � 1:794.

Another important result is Shannon's 
lassi
 lower bound on the average 
ode length (see [3℄):

Lemma 2 (Shannon). For any 
ode, the average 
ode length E

�

L(C

n

;X

n

1

)

�


annot be smaller than

the entropy of the sour
e H

n

(P):

E

�

L(C

n

;X

n

1

)

�

� H

n

(P)
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Trivially, one 
an see that there must exist at least one ~x

n

1

with

L(~x

n

1

) � � logP(~x

n

1

):

A lemma by Barron deals with the individual lengths of the 
ode words:

Lemma 3 (Barron). Let L(X

n

1

) be the length of a 
odeword in a 
ode satisfying Kraft's inequality,

where X

n

1

is generated by a stationary ergodi
 sour
e. For any sequen
e of positive 
onstants a

n

satisfying

P

2

�a

n

<1, the following holds:

P

�

L(X

n

1

) � � logP(X

n

1

)� a

n

	

� 2

�a

n

:

From this we immediately get

L(X

n

1

) � � logP(X

n

1

)� a

n

(almost surely):

3. Redundan
y

Redundan
y measures the distan
e to the optimal 
ode state, rea
hing the lower bound given

by the entropy. Sin
e there are di�erent ways to de�ne the \worst 
ase," we de�ne three types of

redundan
y: pointwise R

n

(C

n

;P;x

n

1

), average

�

R

n

(C

n

;P) and maximal R

�

(C

n

;P):

R

n

(C

n

;P;x

n

1

) = L(C

n

; x

n

1

) + logP(x

n

1

) (� �a

n

(a:s:));

�

R

n

(C

n

;P) = E

X

n

1

�

R

n

(C

n

;P;X

n

1

)

�

= E

�

L(C

n

;X

n

1

)

�

�H

n

(P);

R

�

(C

n

;P) = max

x

n

1

�

R

n

(C

n

;P;x

n

1

)

�

:

The redundan
y-rate problem 
onsists in �nding the rate of growth of the 
orresponding minimax

quantities

�

R

n

(S) = min

C

n

sup

P2S

E

�

R

n

(C

n

;P;x

n

1

)

�

;

R

�

n

(S) = min

C

n

sup

P2S

max

x

n

1

�

R

n

(C

n

;P;x

n

1

)

�

;

as n!1 for a 
lass S of sour
e models.

There are also other measures of optimality, e.g. for 
oding, gambling, or predi
tions. For these,

the following fun
tions, 
alled minimax regret fun
tions, are used:

�r

n

= min

C

n

sup

P2S

X

x

n

1

P(x

n

1

)

�

L

i

+ log sup

P

P(x

n

1

)

�

;

r

�

n

= min

C

n

max

x

n

1

�

L

i

+ log sup

P

P(x

n

1

)

�

:

Note that r

�

n

= R

�

n

. Sometimes, the maximin regret is of interest:

~r

n

= sup

P2S

min

C

n

X

x

n

1

P(x

n

1

)

�

L

i

+ log sup

P

P(x

n

1

)

�

:

These fun
tions are sometimes 
alled the average minimax regret (�r

n

), the maximal minimax

regret (r

�

n

), and the average maxmin regret (~r

n

). One 
an interpret these fun
tions as target

fun
tions for the game theoreti
al problem of 
hoosing L so that for all x

n

1

, the value of the fun
tion

gets as good as possible, that is, � log supP(x

n

1

).

In the following, we will only look at the redundan
y fun
tions.
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4. Pre
ise Maximal Redundan
y

In 1978, Shtarkov proved the following bounds for the minimax redundan
y:

log

�

X

x

n

1

sup

P2S

P(x

n

1

)

�

� R

�

n

(S) � log

�

X

x

n

1

sup

P2S

P(x

n

1

)

�

+ 1:

We want to �nd a pre
ise result for R

�

n

(S). We start with the easier problem of �nding the

optimal 
ode for maximal redundan
y for a known sour
e P

R

�

n

(P) = min

C

n

2C

R

�

(C

n

;P):

We already know that for the average redundan
y of one known sour
e

�

R

n

(P) = min

C

n

2C

E

x

n

1

�

R

n

(C

n

;P;x

n

1

)

�

;

the Hu�mann 
ode is optimal|indeed, it is designed so as to solve this optimization problem. For

the maximal redundan
y problem we introdu
e a new 
ode, the generalized Shannon 
ode.

In the ordinary Shannon 
ode, the length of its symbol in the 
ode for a given P is

�

1=P(x

n

1

)

�

.

In the generalized Shannon 
ode, on the other hand, we set the length to be

�

1=P(x

n

1

)

�

for some

symbols x

n

1

2 L and

�

1=P(x

n

1

)

�

for the others in su
h a way that Kraft's inequality holds. For

non-dyadi
 
odes (dyadi
 ones ful�ll R

�

n

(P) = 0), we sort the probabilities P(x

n

1

):

0 � h� log p

1

i � h� log p

2

i � � � � �




� log p

jAj

n

�

� 1 (where hxi = x� bx
)

and 
hoose j

0

to be the maximal j su
h that Kraft's inequality still holds:

j�1

X

i=0

p

i

2

h� log p

i

i

+

jAj

n

X

i=j

p

i

2

h� log p

i

i�1

� 1:

Then R

�

n

(P) = 1� h� log p

j

0

i and the generalized Shannon 
ode with L = f1; : : : ; j

0

g is optimal.

Now we generalize to systems of probability distributions S. Let

Q

�

(x

n

1

) =

sup

P2S

P(x

n

1

)

P

y

n

1

2A

n

sup

P2S

P(y

n

1

)

:

Then

R

�

n

(S) = R

�

n

(Q

�

) + log

�

X

x

n

1

2A

n

sup

P2S

P(x

n

1

)

�

;

with

R

�

n

(Q

�

) = 1� h� log q

j

0

i

as above.

If we now take the generalized Shannon 
ode that minimizes the maximal redundan
y, we get

for a sequen
e generated by a single memoryless sour
e, for n!1, and � = log

1�p

p

irrational:

R

�

n

(P

p

) = �

log log 2

log 2

+ o(1) = 0:5287 + o(1):
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5. Average Minimax Redundan
y

In the simple 
ase where S 
onsists of one distribution P, the 
omputation of

�

R

H

n

is the Hu�man

problem:

�

R

H

n

(P) = min

C

n

2C

X

x

n

1

P(x

n

1

)R

n

(C

n

;P;x

n

1

):

From known results (where we have

�

R

H

n

� R

�

n

), we 
onje
ture:

Conje
ture 1. Under 
ertain additional 
onditions, we have, as n!1,

�

R

n

= R

�

n

+ �(1) = log

�

X

x

n

1

2A

n

sup

P2S

P(x

n

1

)

�

+ �(1):

6. Average Redundan
y for Parti
ular Codes

For single memoryless sour
es, we have expli
it results for n!1 for some 
odes. In parti
ular,

we have for the Hu�man 
ode

�

R

n

=

(

3

2

�

1

ln 2

if � irrational,

3

2

�

1

M

�

hMn�i �

1

2

�

�

�

M(1� 2

�1=M

)

�

�1

2

�hMn�i=M

if � =

N

M

;

for the Shannon 
ode

�

R

n

=

(

1

2

if � irrational;

1

2

�

1

M

�

hMn�i �

1

2

�

if � =

N

M

;

and for the generalized Shannon 
ode

�

R

n

=

3

2

� 2 ln 2 + o(1) � 0:113705639:

For more basi
s and in-depth knowledge regarding analyti
 information theory, the interested

reader is referred to Szpankowski's book [4℄.
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Summary by Bruno Salvy

Abstra
t

An analyti
 study of linear q-di�eren
e equations leads to a simple derivation of some 
on-

ne
tion formulae, generalizing the asymptoti
 expansion of the Bessel J

�

fun
tions.

1. Di�erential and q-Di�eren
e Equations

Linear di�erential operators are polynomials in x and �

x

= d=dx. These operators 
an be

dis
retized using q-di�eren
e operators expressed in terms of q, x, and �

q

where �

q

(f)(x) := f(qx).

When q ! 1, (�

q

� 1)(f)(x)=(q � 1) tends to xf

0

(x). This dis
retization is not unique. It gives

rise to several generalizations of 
lassi
al fun
tions and identities relating them. C. Zhang's work

is an analyti
 study of these operators, of the asymptoti
s of their solutions and the divergen
e of

their series expansions.

A simple example of a q-di�eren
e equation is given by (x�

q

� 1)y(x) = 0. For jqj < 1 and

x 2 C

�

:= C n f0g, a solution of this equation is the Ja
obi fun
tion

�

q

(x) :=

X

n2Z

q

n(n�1)=2

x

n

= (q; q)

1

(�x; q)

1

(�q=x; q)

1

where the last equality is Ja
obi's triple produ
t identity, using the notation

(a; q)

1

= (1� a)(1 � aq)(1� aq

2

) � � � :

The produ
t form shows that �

q

(x) is analyti
 in C

�

, and that its set of zeroes is �q

Z

.

Another important solution of the same equation is e

q

(x) := q

log

q

x(log

q

x�1)=2

, equivalent to �

q

(x)

when x ! 0. In the asymptoti
 behaviour of solutions in the neighbourhood of irregular singular

points, the fun
tion e

q

plays the same role as the exponential in the di�erential 
ase. Another

simple equation is (�

q

� x)y(x) = 0, whi
h has q

� log

q

x(log

q

x�1)=2

and 1=�

q

(x) as solutions. As

opposed to the di�erential 
ase, inverses of these analogues of the exponential are not obtained by


hanging x into �x.

A 
omplete 
lassi�
ation of the possible formal lo
al behaviours of solutions of linear q-di�eren
e

equations was obtained by Carmi
hael in 1912. For an equation of order m in �

q

with analyti



oeÆ
ients at the origin, there exists a family of m formal solutions, ea
h of whi
h is of the form

(1) y

j

(x) = x

r

j

e

�k

j

q

(x)

m

j

�1

X

�=0

(log

q

x)

�

f

j;�

(x); j = 1; : : : ;m;

where r

j

2 C , k

j

2 Q , m

j

2 N

�

, and f

j;�

(x) 2 C [[x

1=d

℄℄ for some d 2 N

�

. Ea
h of these 
an be


omputed from the equation.
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2. Hypergeometri
 and q-Hypergeometri
 Conne
tion Formulae

The 
onne
tion problem lies in expressing (the analyti
 
ontinuation of) one of the above y

j

's

that are de�ned at the origin as a linear 
ombination in terms of a similar basis at another singular

point. There is no general method to 
ompute \
losed forms" for these 
onstants, ex
ept in spe
ial


ases su
h as the hypergeometri
 
ase.

Hypergeometri
 series in the 
lassi
al (di�erential) 
ase are series F (x) =

P

n�0

a(n)x

n

su
h

that a(n + 1)=a(n) =: r(n) = P (n)=Q(n) is a �xed rational fun
tion in n. In terms of the shift

operator S

n

this means that the sequen
e a(n) 
an
els Q(n)�P (n)S

�1

n

from whi
h it follows that

the generating series F 
an
els the linear di�erential operator Q(x�

x

)� P (x�

x

)x. Introdu
ing the

roots of P and Q, hypergeometri
 series are 
lassi
aly denoted

p

F

q

�

a

1

; : : : ; a

p

b

1

; : : : ; b

q

�

�

�

�

x

�

:=

X

n�0

(a

1

)

n

� � � (a

p

)

n

(b

1

)

n

� � � (b

q

)

n

x

n

n!

;

where (a)

n

= a(a + 1) � � � (a + n � 1). This series is 
onvergent for q > p and has only regular

singularities if and only if p = q + 1.

The q-analogue of this fun
tion is known as the

r

�

s

basi
 hypergeometri
 series. In this 
ase the

ratio of two 
onse
utive 
oeÆ
ients is a �xed rational fun
tion in q

n

. The general form is

r

�

s

�

a

1

; : : : ; a

r

b

1

; : : : ; b

s

; q; x

�

:=

X

n�0

(a

1

; q)

n

� � � (a

p

; q)

n

(b

1

; q)

n

� � � (b

s

; q)

n

�

(�1)

n

q

n(n�1)=2

�

s+1�r

x

n

;

where (a; q)

n

= (1� a)(1� aq) � � � (1� aq

n�1

).

A simple example is Heine's

2

�

1

(a; b; 
; q; x), whi
h has Gauss's

2

F

1

(�; �; 
;x) as a limit when

a = q

�

, b = q

�

, 
 = q




, and q ! 1. Heine's fun
tion satis�es a se
ond-order q-di�eren
e equation.

This equation has no irregular singularity (it is a Fu
hsian equation). A general te
hnique to

relate solutions of su
h equations at 0 and in�nity in the 
lassi
al hypergeometri
 
ase is based on

a Mellin{Barnes integral representation. This approa
h was extended to the q-di�eren
e 
ase by

Watson in 1910, who found that for ab 6= 0,

(2)

2

�

1

(a; b; 
; q; x) = C

1

(x)

2

�

1

(a; aq=
; aq=b; q; 
q=abx) +C

2

(x)

2

�

1

(b; bq=
; bq=a; q; 
q=abx);

where

C

1

(x) =

(b; 
=a; q)

1

(ax; q=ax; q)

1

(
; b=a; q)

1

(x; q=x; q)

1

; C

2

(x) =

(a; 
=b; q)

1

(bx; q=bx; q)

1

(
; a=b; q)

1

(x; q=x; q)

1

:

This method is presented in detail in Slater's book [4℄. The 
onne
tion \
onstants" C

1

(x) and C

2

(x)

are annihilated by �

q

� 1 and are uniform (they satisfy C

k

(xe

2i�

) = C

k

(x)). Thus they are ellipti
,

sin
e when expressed in (u; �) de�ned by x = exp(2i�u) and q = exp(�2i��) with =(�) > 0 they

are doubly periodi
.

3. Ja
kson's q-Bessel Fun
tions

Bessel fun
tions are 
lassi
ally de�ned as solutions of the Bessel equation

�

(x�

x

� �)(x�

x

+ �) + x

2

�

y(x) = 0:

When � 62 Z, a basis of solutions is given by the Bessel J

�

(x) and J

��

(x) fun
tions, whi
h 
an be

expressed in terms of the hypergeometri
 series by

J

��

(x) =

(x=2)

��

�(�� + 1)

2

F

1

(1; 1;�� + 1;�x

2

=4):
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The Bessel equation 
an be derived from the di�erential equation of the

2

F

1

by 
on
uen
e: this is

a
hieved by 
onsidering

2

F

1

(� + 1=2; �; 2� + 1;x=�) and letting � tend to in�nity. In this pro
ess,

the singularity at in�nity be
omes irregular.

Similarly, Ja
kson introdu
ed in 1905 two q-analogues of the Bessel fun
tions,

J

(1)

�

(x; q) =

(q

�+1

; q)

1

(q; q)

1

�

x

2

�

�

2

�

1

�

0; 0; q

�+1

; q;�

x

2

4

�

;

J

(2)

�

(x; q) =

(q

�+1

; q)

1

(q; q)

1

�

x

2

�

�

0

�

1

�

; q

�+1

; q;�

x

2

q

�+1

4

�

:

(3)

The 
lassi
al J

�

fun
tion is re
overed in two ways by letting q tend to 1 in J

(k)

�

�

x(1 � q); q

�

for k 2 f1; 2g. The radiuses of 
onvergen
e of the basi
 hypergeometri
 series (in q) given here are

respe
tively �nite for J

(1)

�

(provided jxj < 2) and in�nite for J

(2)

�

.

These fun
tions are solutions of two q-di�eren
e equations of order 2 in �

p

with p =

p

q that are

easily derived from (3). These equations 
an be seen as arising from the equation of the

2

�

1

by


on
uen
e, but it is not 
lear how to use this pro
ess in order to obtain a 
onne
tion formula by a

limiting pro
ess from (2). As in the 
lassi
al 
ase, both J

(k)

�

and J

(k)

��

are independent solutions of

their respe
tive q-di�eren
e equation, for k = 1; 2. The equations have a regular singularity at the

origin and an irregular singularity at in�nity.

4. Derivation of Conne
tion Formulae

Conne
tion formulae between the series expansions (3) and the (unique) basis of formal solutions

at in�nity of the form given by (1) generalize the 
lassi
al asymptoti
 expansion

(4) J

�

(x) =

e

�i

�

4

(2�+1)

p

2�x

e

ix

2

F

0

�

�� +

1

2

; � +

1

2

; ;

2i

x

�

+

e

i

�

4

(2�+1)

p

2�x

e

�ix

2

F

0

�

�� +

1

2

; � +

1

2

; ;�

2i

x

�

:

(A ni
e appli
ation of this formula is the derivation of an asymptoti
 expansion of the lo
ation of

the zeroes of J

�

(x); this generalizes to those of J

(2)

�

.)

We start with J

(1)

�

and its q-di�eren
e equation

�

�

2

p

� (p

�

+ p

��

)�

p

+ (1 + x

2

=4)

�

y(x) = 0:

By 
hanging x into 1=t and y(x) into z(1=t), the equation be
omes

�

�

1 +

1

4p

4

t

2

�

�

2

p

� (p

�

+ p

��

)�

p

+ 1

�

z(t) = 0:

The exponential part of the behaviour (see Eq. (1)) is sought in terms of E

�

(t) = 1=�

p

(��t), whi
h

is 
an
elled by �

p

+ �t. The 
hange of unknown fun
tion z(t) = E

�

(t)f

�

(t) leads to

�

�

1 +

1

4p

4

t

2

�

�

2

pt

2

�

2

p

� �t(p

�

+ p

��

)�

p

� 1

�

f

�

(t) = 0:

Thus, by 
hoosing � su
h that �

2

= 4p

3

, one gets an equation for f

�

whi
h has power series solu-

tions. A further simpli�
ation is a
hieved by 
onsidering the \p-Borel transform" of the series f

�

:

(5) g

�

(�) := B

p

f

�

(�) =

X

n�0

a

n

p

�n(n�1)=2

�

n

;
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where a

n

are the 
oeÆ
ients of f

�

. By the 
ommutation rule B

p

(t

m

�

`

p

) = p

�m(m�1)=2

�

m

�

`�m

p

B

p

,

g

�

is solution of a two-term q-di�eren
e equation. This is easily solved to �nd

g

�

(�) =

1

(��p

�

� ; q)

1

(��p

��

� ; q)

1

:

It follows that g

�

is meromorphi
 in C with (simple) poles at f�p

��2n

=�;�p

���2n

=�g for n 2 N,

whi
h implies that f

�

is an entire fun
tion.

In order to re
over f

�

from g

�

, the p-Borel transform of (5) is reverted by means of a Hadamard

produ
t of g

�

with �

p

. This leads to a Cau
hy integral representation from whi
h a residue 
om-

putation yields the 
onne
tion formula. The Cau
hy integral is

f

�

(t) =

1

2�i

Z

j� j=r

g

�

(�)�

p

(t=�)

d�

�

;

where r < min

�

jp

�

=�j; jp

��

=�j

�

. The only residues 
ome from the poles of g

�

. The asymptoti
 be-

haviour of g

�

implies that this integral is equal to the sum of the residues and an a
tual 
omputation

of these residues leads to

f

�

(t) =

�

p

(��q

�=2

t)

(q; q)

1

(q

��

; q)

1

2

�

1

(0; 0; q

�+1

; q;�x

2

=4) +

�

p

(��q

��=2

t)

(q; q)

1

(q

�

; q)

1

2

�

1

(0; 0; q

��+1

; q;�x

2

=4);

where xt = 1 and jxj < 2. With very little rewriting, this is the desired 
onne
tion formula. The

limiting behaviour of this formula when q ! 1 is studied in [5℄.

The se
ond family of q-Bessel fun
tions is a
tually related to the �rst one by a relation dis
overed

by Hahn in 1949:

J

(2)

�

(x; q) = (�x

2

=4; q)

1

J

(1)

�

(x; q); jxj < 2:

Another way of viewing the relation between these fun
tions is through the p-Lapla
e transform

that sends x

n

to p

n(n�1)=2

x

n

. Then the transform of the

2

�

1

in the de�nition of J

(1)

�

is the

0

�

1

in

that of J

(2)

�

. From there, a Cau
hy integral representation follows and again a residue 
omputation

gives the 
onne
tion formula, thanks to extra 
onsiderations about the asymptoti
 behaviour of the

integrand.

5. Comments

It has been observed that the 
onne
tion \
onstants" possess the ni
e property that they are

ellipti
 in the 
ase of Heine's fun
tion. This is a general phenomenon [3℄. The formulae in the

q-world imply important identities (after all, Ja
obi's triple produ
t 
an be seen as a 
onne
tion

formula). Re
ent work by Changgui Zhang shows that the limiting behaviour of these q-
onne
tion

formulae when q ! 1 yields the Stokes phenomenon of the di�erential world.
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Summary by Marianne Durand

Abstra
t

For some \irregular singular" problems 
oming from di�erential equations, there exist formal

power series solutions that are everywhere divergent. These power series turn out to make

sense as asymptoti
 expansions of a
tual solutions. The Borel summation te
hnique is used

to re
over 
onvergent representations for these a
tual fun
tions solutions.

1. Resummation

Some \irregular singular" problems 
oming from di�erential equations have formal power series

solutions that are everywhere divergent. By resummation te
hniques, one 
an obtain 
onvergent

solutions [7, 10℄. We 
onsider a power series, solution of a linear di�erential equation, that is

everywhere divergent, noted ~x(z) =

P

1

1

x

n

z

�n

: We assume that it has Gevrey order equal to

one, whi
h means that there exist 
onstants A and 
 su
h that jx

n

j � A


n

n!: For a fun
tion f(z),

holomorphi
 in an angular se
tor S extending to in�nity and 
ontaining the real positive axis, we

say that ~x(z) is the Gevrey expansion of order 1 of f(z) if there exist 
onstants K and C su
h that

�

�

�

f(z)�

N�1

X

1

x

n

z

�n

�

�

�

� CK

N

N ! jzj

�N

when z 2 S and N � 0.

This fun
tion f is a resummation of ~x, and it exists if the opening angle of S is smaller than �.

The formal Borel transform of ~x(z) is de�ned by y(z) =

P

1

1

x

n

z

n�1

(n�1)!

: It 
onverges for jzj <

1




.

We assume that the fun
tion y 
an be 
ontinued analyti
ally along a line that does not meet a

singularity. In the parti
ular 
ase when x is a solution of a linear di�erential equation with rationnal


oeÆ
ients, so does y, as this property is stable under the Borel transform. Thus y has a �nite

number of singularities and veri�es the above hypothesis. Up to a possible linear 
hange of variable,

we may assume that there is no singularity on the real axis, whi
h implies that y 
an be 
ontinued

analyti
ally on the positive real axis. If y satisfy the expe
ted growth 
onditions at in�nity, we

apply the Lapla
e transform. This transform is de�ned by

x(z) = L(y) =

Z

1

0

e

�zt

y(t) dt;

and is 
onvergent for <(z

a

) greater than a 
ertain positive 
onstant, the 
onstant a being made

pre
ise later. The asymptoti
 expansion of x(z) when z ! 0

+

is equal to

P

1

1

x

n

z

�n

. The fun
tion x

is a solution of the initial di�erential equation [2, 8℄.
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2. Balser, Lutz, and S
h�afke's Te
hnique

The next step is to �nd a way to 
ompute this fun
tion x qui
kly and in a large domain. For

this, Lutz et al. [1℄ reformulate x as a 
onvergent series of the type x(z) =

P

1

0

d

n

q

n

(z). This series

is obtained by introdu
ing a mapping fun
tion � that maps [ 0; 1 ℄ onto [ 0;1 ℄, so as to write the

equation

(1) x(z) =

Z

1

0

e

�zt

y Æ � Æ �

�1

(t) dt =

Z

1

0

e

�zt

1

X

0

d

n

�

�1

(t)

n

dt;

where for the se
ond equality we have used the re-expansion y Æ �(u) =

P

1

0

d

n

u

n

in terms of the

sequen
e d

n

. The sequen
e q

n

is thus determined by q

n

=

R

1

0

e

�zt

�

�1

(t)

n

dt, under the assumption

that the interversion of the integral and the sum holds, permitting termwise integration. We observe

that q

n

does not depend on x and on the initial problem, but only on the mapping fun
tion �. This

means that these 
oeÆ
ients 
an be pre
omputed. On the other hand the 
oeÆ
ients d

n


orrespond

to a 
omposition of the fun
tion � with the Borel transform y. This is formalized in the following

theorem.

Theorem 1 (Balser, Lutz and S
h�afke). Let x(z) =

R

1

0

e

(�zt)

y(t) dt where the fun
tion y is

holomorphi
 in the domain

D �

n

�

�

Arg(1 + t=a)

�

�

< �=2p

o

and satis�es

�

�

y(t)

�

�

e

�bjtj

! 0 as jtj ! 1 in D. Choose � holomorphi
 in � =

�

j� j < 1

	

so that

�(�) � D, �

�

[ 0; 1 ℄

�

= [ 0;1 ℄, and (1��)




�(�)! A as � ! 1 in �. De�ne (d

n

) by its generating

series y

�

�(�)

�

=

P

1

0

d

n

�

n

, and (q

n

) by

q

n

(z) =

Z

1

0

e

�z�(�)

�

n

�

0

(�) d� for z su
h that

�

�

Arg(z)

�

�

< �(1 + 
)=2:

Then for suitable positive 
onstants (independent of n)

jd

n

j � Ke

Ln


=(
+1)

and jq

n

(z)j �

~

Ke

�An


=(
+1)

<

(

z

1=(
+1)

)

:

So we have x(z) =

1

X

0

d

n

q

n

(z) for <

�

z

1=(
+1)

�

large.

Proof. Starting from Equation (1), we obtain x(z) =

R

1

0

P

1

n=0

e

�zt

d

n

�

�1

(t)

n

dt: The saddle-point

method gives upper bounds for d

n

and q

n

that allows us to inter
hange the order of integrand

and summation in the equation above for <(z

1=(
+1)

) large enough. This inter
hange yields the

expe
ted result x(z) =

P

1

n=0

d

n

q

n

(z). �

Some other 
lassi
al 
onformal mappings 
an be found in [6℄. Here is an example. The mapping

(2) � = 1�

2

(1 + t=a)

p

+ 1

with a 2 R and p � 1=2

takes the se
torial domain de�ned by

�

�

Arg(1 + t=a)

�

�

< �=(2p) onto the unit disk. The 
hoi
e of the


onformal mapping � is important be
ause it has an e�e
t on the speed of 
onvergen
e and on the

area of 
onvergen
e.

In the parti
ular 
ase where the di�erential equation is linear with polynomial 
oeÆ
ients, some

eÆ
ient 
omputation 
an be done using re
urren
es. We also suppose now that the fun
tion �

is algebrai
. The pre
omputation of the 
oeÆ
ients q

n

is based on the fa
t that they follow a

linear re
urren
e. We �rst note that the 
oeÆ
ients q

n

are equal to

R

1

0

e

�z�(u)

u

n

�

0

(u) du as shown
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by a simple 
hange of variable t = �(u). The fun
tion e

�z�(u)

�

0

(u) satis�es the �rst-order linear

di�erential equation

(3) G

0

(t) =

�

�

00

(t)

�

0

(t)

� z�

0

(t)

�

G(t):

If we note

P

K

k=0

p

k

(n)a(n + k) = 0 the linear re
urren
e satis�ed by the Taylor 
oeÆ
ients at

the origin a(n) of a power series solution of the equation (3), then the integrals q

n

(z) satisfy the

re
urren
e

P

K

k=0

p

k

(�n)q

n�k�1

(z) = 0. On
e we have the re
urren
e satis�ed by the 
oeÆ
ients q

n

and the initial 
onditions that are given by q

n

=

R

1

0

e

�zt

�

�1

(t)

n

dt, all the q

n


an be 
omputed

qui
kly. A problem is that we seek for numeri
al and not exa
t 
omputations, and so we have,

on ea
h example, to seek for numeri
al stability. This point uses a ba
kward s
heme whi
h is

developped on an example below.

The 
omputation of the 
oeÆ
ients d

n


an be done eÆ
iently by �nding a re
urren
e for example

using the gfun pa
kage [9℄, be
ause it is a 
omposition of a known algebrai
 fun
tion � and a

fun
tion y known by its di�erential equation. The initial 
onditions for the d

n

derive dire
tly from

the initial 
onditions of the di�erential equation satis�ed by y and so from the initial 
onditions of

the di�erential equation satis�ed by ~x. This is illustrated by the example of the Heun equation.

3. Heun Equation

The Heun equation is the generi
 di�erential equation with four regular singular points lo
ated

at 0, 1, 
, and1; see [5℄. The double 
on
uent Heun equation is obtained by letting the singularity

lo
ated at 
 tend to the one lo
ated at 1, and the singularity lo
ated at 1 tend to 0. The equation

obtained then has two irregular singular points lo
ated at 0 and 1. The example we study [3℄ is

the 
on
uent Heun equation in the form

(4) z

2

f

00

(z) + (z + �z

2

+ �)f

0

(z) +

(2�z

2

�

1

+ �z

2

+ �

2

z � 2
z + 2��

�1

� �)

2z

f(z) = 0:

The a

eleration is realised by the fun
tion � =

1

(1�z)

2

� 1 whi
h maps from [ 0; 1 ℄ onto [ 0;1 ℄.

The re
urren
e satis�ed by q

n

is thus

(5) q(n) =

(�6 + 3n)q(n� 1) + (�2z + 6� 3n)q(n� 2) + (n� 2)q(n� 3)

n� 2

:

The initial 
onditions, that are easily 
omputed, using the de�nition of q

n

, 
orrespond to a dom-

inated solution, so any numeri
al error makes the dominating solution appear. A solution to this

problem is to 
ompute the re
urren
e ba
kwards, whi
h ex
hanges the roles of dominating and

dominated regimes. The idea is to 
hoose arbitrary values for q

N�d

, . . . , q

N

where d is the order of

the re
urren
e and N is a suÆ
iently large integer. All the values of q

n

for n � N are then 
om-

puted from these \�nal" values ba
kwards. This te
hnique is developped in [11℄. The dominating

solution of Re
urren
e 5 disappears and so the initial values found di�er only by a multipli
ative


onstant � from the a
tual initial values. The sequen
e q

n

thus found has to be multiplied by this


onstant � to give the expe
ted sequen
e q

n

.

For the 
oeÆ
ients d

n

, the re
urren
e is found easily using gfun. For parameters � = �1,

�

�1

= 1=2, �

1

= 1=2, and 
 = 1=3, it is

0 = (6n

2

+ 3n

3

)a

n

+ (�93n� 36� 75n

2

� 18n

3

)a

n+1

+ (568n + 404 + 267n

2

+ 42n

3

)a

n+2

+ (�1193n � 1176 � 411n

2

� 48n

3

)a

n+3

+ (1042n+ 1240 + 291n

2

+ 27n

3

)a

n+4

+ (�78n

2

� 336n � 480 � 6n

3

)a

n+5
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with initial 
onditions a

0

= 0, a

1

= 1, a

2

= 1=3, a

3

= �23=108, and a

4

= �2749=3888.

Now for ea
h �xed z, we 
an 
ompute the value of x(z) to arbitrary pre
ision, by 
hoosing the

number of terms we take into a

ount. The ba
kwards 
omputation for the q

n


oeÆ
ients implies

that the number of 
omputable terms is limited by the starting point. If it is too low, we have to


hoose a larger starting point to get more terms. It is generally not possible to de
ide where a good

starting point for the 
omputation of the ba
kward 
omputation would be. This 
an be done on

parti
ular examples, but the starting point strongly depends on z.

4. Appli
ations

Many problems related to di�erential equations yield formal power series of Gevrey order one.

Whenever the Borel{Lapla
e transform applies, the results of Se
tion 2 also applies. A 
on
rete

appli
ation 
oming from physi
s is the one-dimensional 
omplex heat equation:

u

�

(�; z) = u

zz

(�; z); u(0; z) = �(z):

The Cau
hy data �(z) is assumed to be holomorphi
 near the origin. A formal solution is

~u(�; z) =

1

X

0

�

(2n)

(z)

�

n

n!

:

Lutz et al. have shown that either ~u(�; z) is 
onvergent, or the method of Se
tion 2 applies. If

v(�; z) is the Borel transform of ~u(�; z) with respe
t to � , then applying the Lapla
e transform in

the variable � to v(�; z) for �xed z gives a 
onvergent solution u(�; z) of the Cau
hy problem. Better

knowledge on the fun
tion � may easily lead to fast rate 
onvergen
e possibly using the mapping

fun
tion (2). Another appli
ation is about 
onvergent Liouville{Green expansions for se
ond order

linear di�erential equations [4℄.
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Abstra
t

The primary purpose of this 
ourse is the elaboration of methods for providing answers to

problems that arise in enumerative 
ombinatori
s. The main tool to be used in this respe
t

are (ordinary) generating fun
tions. The obje
ts that will be dealt with are 2-dimensional

walks (for whi
h several 
onvexity 
onstraints will be taken into a

ount) and trees. These

obje
ts are more generally des
ribed as \de
omposable" obje
ts. A des
ription of the prin-


ipal 
ombinatorial de
ompositions by means of fun
tional equations of generating fun
tions

will be presented as an equivalent but more syntheti
 approa
h to the use of re
urren
es.

The modelling by generating fun
tions of 
ombinatorial stru
tures like trees and walks will

be dis
ussed. The same prin
iples hold for maps, animals, and polyominoes. The \ker-

nel method" and \quadrati
 method" te
hniques will be presented. The 
ourse will be

illustrated by numerous examples.

1. Enumeration Problems and the Way of Solving Them

The approa
h in solving an enumerative problem 
onsists in a 
ombinatorial step that examines

the stru
ture of the obje
ts under 
onsideration, and a step that resolves the re
urren
e relations

or fun
tional equations. By observing the stru
ture of the obje
ts, some (re
ursively de�nable)

property 
an be translated into a mathemati
al, non-tautologi
al information on a

n

, the number

of obje
ts of size n. Instead of manipulating re
urren
e relations, generating fun
tions des
ribing

the 
orresponding fun
tional equations are used:

A(t) =

X

n�0

a

n

t

n

=

X

A2A

t

jAj

is 
alled the ordinary generating fun
tion of the 
ombinatorial 
lass A endowed with the size

fun
tion j:j, where the number of obje
ts a

n

are to be �nite. A power series with 
oeÆ
ients in A


an be written

P

n�0

a

n

t

n

with a

n

2 N. Using 
ounting generating fun
tions it 
an be noti
ed

that paths of various sorts are invariably algebrai
 fun
tions, whi
h are de�ned as solutions of a

polynomial equation [11℄.

There is a simple 
orresponden
e between operations on 
ombinatorial 
lasses of obje
ts and


ombinations of the asso
iated generating fun
tions. This allows us to derive dire
tly fun
tional

relations between generating fun
tions starting from de�nitions of 
ombinatorial obje
ts.

y

Le
ture notes for a 
ourse given during the workshop AL

�

EA'01 in Luminy (Fran
e).
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1. Union: A(z) +B(z) is the enumerative ordinary generating fun
tion of A [ B. If a

n

and b

n

are the numbers of obje
ts of size n in A and B respe
tively, then a

n

+ b

n

is the number of

obje
ts of size n in A [ B.

2. Cartesian Produ
t: A(z)B(z) is the enumerative ordinary generating fun
tion of A � B.

The number of obje
ts of size n in A � B equals the simple 
onvolution

P

0�k�n

a

k

b

n�k

.

Alternatively:

X


2A�B

z

j
j

=

X

�2A

X

�2B

z

j�j+j�j

= A(z)B(z):

3. Sequen
es:

�

1�A(z)

�

�1

is the enumerative ordinary generating fun
tion of sets of obje
ts of

A =

�

(B

1

; B

2

; : : : ; B

k

)

�

�

B 2 B; k � 0

	

:

The 
ardinality of A is jAj =

P

k

i=1

jB

i

j, and the generating fun
tion of A(z) is

A(t) =

X

k�0

B(t)

k

=

�

1�B(t)

�

�1

a

ording to the statements of union and 
artesian produ
t.

It 
an be proven that a strong algebrai
 de
omposability prevails for dire
ted latti
e paths, whi
h

is obtained by a spe
i�
 te
hnique, the\kernel method" [2, 6℄. The de
omposability enables us to

determine the lo
ation and nature of dominant singularities.

2. Enumeration Example

Fix a �nite set of ve
tors of Z� Z, S =

�

(a

1

; b

1

); : : : ; (a

m

; b

m

)

	

. A latti
e path or walk relative

to S is a sequen
e v = (v

1

; : : : ; v

n

) su
h that ea
h v

j

is in S. The geometri
 realization of a

latti
e path v = (v

1

; : : : ; v

n

) is the sequen
e of points (P

0

; P

1

; : : : ; P

n

) su
h that P

0

= (0; 0) and

����!

P

j�1

P

j

= v

j

. The quantity n is referred to as the size of the path. The elements of S are 
alled steps

or jumps. For these paths, the solution F (t; u) (whi
h is always an algebrai
 fun
tion of t and u),

and 
ombinatorial explanations for the simple formulae obtained from the re
urren
e relations 
an

be found in [9℄.

2.1. Dy
k paths. A 
lassi
al example 
an be given with Dy
k paths. A Dy
k path of length 2n

is a path in the plane from (0; 0) to (2n; 0) whi
h uses only steps (1; 1) (North-East), 
alled rises,

and (1;�1) (South-East), 
alled falls. A Dy
k path ends on the x-axis and does not go below

the x-axis. A Dy
k path therefore has even length, with the number of North-East steps equal to

the number of South-East steps. A latti
e point on the path is 
alled a peak if it is immediately

pre
eded by a North-East step and immediately followed by a South-East step [10℄. A peak is

at height k if its y-
oordinate is k. By D

n

we denote the set of all Dy
k paths of half-length n.

Obviously, D

0

= f�g. Every nonempty Dy
k path � 
an be de
omposed uniquely in the following

manner [7℄:

� = u�

1

d


1

;

when writing u for a North-East step, and d for a South-East step, and where �

1

and 


1

are possibly

empty Dy
k paths. This relation implies that

D

n

= uD

0

dD

n�1

[ uD

1

dD

n�2

[ � � � [ uD

n�2

dD

1

[ uD

n�1

dD

0

; n � 1:

Alternatively, we 
an write � = �

2

u


2

d in a unique manner, where �

2

and 


2

are possibly empty

Dy
k paths. This relation implies that

D

n

= D

0

uD

n�1

d [D

1

uD

n�2

d [ � � � [D

n�2

uD

1

d [D

n�1

uD

0

d; n � 1:
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Both equations have disjoint unions. Thus we obtain

jD

n

j = jD

0

jjD

n�1

j+ jD

1

jjD

n�2

j+ � � �+ jD

n�2

jjD

1

j+ jD

n�1

jjD

0

j; n � 1:

As jD

0

j = 1, this sequen
e with n � 0 satis�es the same re
urren
e relation as the sequen
e

(


n

)

n�0

of Catalan numbers.

2.2. Enumeration of Dy
k paths. Let p be a �xed nonnegative integer-valued parameter of a

Dy
k path, i.e., a mapping from

S

n�A

D

n

into f0, 1, 2, : : : g. If D is a �nite set of Dy
k paths,

then by D(t) we denote the enumerating polynomial of D relative to the parameter p given by

D(t) =

X

n�0

d

n

t

n

with d

n

=

X

Æ2D

t

p(Æ)

:

D(t) is the generating fun
tion for the enumeration of Dy
k paths a

ording to semi-length (
oded

by t). Thus, d

n

is the enumerating polynomial of the set of all Dy
k paths of length n.

The re
urren
e relation for Dy
k paths satis�es

�

d

2n

=

P

n�1

k=0

d

2k

d

2n�2k�2

; n � 1;

d

0

= 1:

�

�

�

��

�

�

��

��

�

�

�

�

��

��

��

�

�

��

��

�

2n-2k-2

�

� �

�

2k

2n

This gives on summation:

D(t) =

X

n�0

d

2n

t

2n

= 1 +

�

X

n�1

t

2n

��

n�1

X

k=0

d

2k

d

2n�2k�2

�

= 1 + t

2

D(t)

2

:

This quadrati
 equation is easily solved for D(t):

D(t) =

1�

p

1� 4t

2

2t

2

:

The solution

1�

p

1�4t

2

2t

2

is 
hosen in order to as
ertain the existen
e of a Taylor series expansion

at t = 0. It is known [2, 7, 8, 10, 11℄ that the number of Dy
k paths of length 2n is 


n

, the nth

Catalan number, given by 


n

=

1

n+1

�

2n

n

�

.

2.3. Enumeration of Dy
k pre�xes. Let b

n;k

be the number of pre�xes of length n, with �nal

height k. Then

b

n;0

= d

n

(Dy
k paths)

F (t; u) =

X

n;t�0

b

n;k

t

n

u

k

2 Q [[t; u℄℄ =

�

X

n�0

t

n

��

n

X

k=0

b

n;k

u

k

�

2 Q [u℄[[t℄℄
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whi
h is a series in t whose 
oeÆ
ients are polynomials in u. The last equation is equivalent to:

F (t; u) = 1 + t(u + u

�1

)F (t; u) � tu

�1

F (t; 0);

whi
h de�nes the generating fun
tion F (t; u) for these paths, 
ounted by their length (variable t)

and their height (variable u). This equation uniquely de�nes F (t; u) as a power series in t with

polynomial 
oeÆ
ients in u.

More 
onstraints 
an be imposed on su
h Dy
k pre�xes.

2.3.1. Dy
k Paths with no peaks at height m. Let G

m

(x) =

P

n�0

g(m;n)x

n

be the generating

fun
tion for Dy
k paths of length 2n with no peaks at height m for some �xed m � 1. We pro
eed

to show that

G

m

(x) =

1

1� xG

m�1

(x)

for m � 2:

This 
an be illustrated by a path starting with a North-East step followed by a segment whi
h

represents any Dy
k path of length 2k, 0 � k � n � 1, with no peaks at height m � 1. This

segment is followed, after a South-East step, by a se
ond segment whi
h represents any Dy
k path

of length 2n� 2� 2k with no peaks at height m. Therefore

g(m; 0) = 1

and

g(m;n) =

n�1

X

k=0

g(m� 1; k)g(m;n � 1� k) = [x

n�1

℄

�

G

m�1

(x)G

m

(x)

�

:

Thus,

G

m

(x) = 1 + xG

m�1

(x)G

m

(x);

or equivalently,

G

m

(x) =

1

1� xG

m�1

(x)

:

This way, the number of Dy
k paths of length 2n with no peaks at height 1 is the Fine number f

n

for n � 0. Obviously, g(1; 0) = 1 and g(1; 1) = 0. For n � 2, a Dy
k path of length 2n with no

peaks at height 1 has a segment representing any Dy
k path of length 2k; 1 � k � n � 1, and a

se
ond segment representing a Dy
k path of length 2n�2k�2 with no peaks at height 1. Therefore,

for n � 2, we have

g(w;n) =

n�1

X

k=1




k

g(w;n� k � 1)

= [x

n�1

℄

�

C(x)G

1

(x)

�

� g(1; n � 1)

= [x

n

℄

�

xC(x)G

1

(x)

�

� g(1; n � 1):

Therefore,

G

1

(x) = 1 +

X

n�2

g(1; n)x

n

= 1 + xC(x)G

1

(x)� x� xG

1

(x) + x

= 1 + xG

1

(x)

�

C(x)� 1

�

= 1 + xG

1

(x)xC

2

(x):

That is,

G

1

(x) =

1

1� x

2

C

2

(x)

:
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2.3.2. No peaks at height 2. Another extension establishes that the number of Dy
k paths of

length 2n with no peaks at height 2 is the Catalan number 


n�1

, for n � 1. This 
an be shown [10℄

using the �rst extension, so that

G

2

(x) =

1

1� xG

1

(x)

=

1

1� x

C(x)

1+xC(x)

= 1 + xC(x):

2.4. Bilateral paths or bridges. A bridge is a path whose end point P

n

lies on the x-axis. Given

a 
lass C of paths, we let C

n

denote the sub
lass of paths that have size n, and C

n;k

� C those that

have �nal altitude equal to k. We introdu
e the 
orresponding ordinary generating fun
tions:

C(z) =

X

n

C

n

z

n

; uC(z; u) =

X

n;k

C

n;k

u

k

z

n

:

By 
hara
terising these generating fun
tions, that are algebrai
 in the 
ase of bridges, a strong

algebrai
 de
omposition prevails, whi
h renders the 
al
ulation of the generating fun
tion's e�e
tive.

The de
omposability of generating fun
tion's makes it possible to extra
t their singular stru
ture,

and to solve the 
orresponding asymptoti
 enumeration problems.

The equation 
orresponding to su
h a latti
e path is:

B(t) = 1 + t

2

D(t)B(t) + t

2

B(t)D(t) =

1

1� 2t

2

D(t)

:

For D(t) =

1�

p

1�4t

2

2t

2

,

B(t) =

1

1� 1�

p

1� 4t

2

=

1

p

1� 4t

2

=

X

n�0

t

2n

�

2n

n

�

:

Alternatively, sin
e

p

1� 4t

2

= 1� 2t

2

� 2t

4

+O(t

6

), we 
an �nd for Dy
k paths:

D(t) =

1 + 1� 2t

2

� 2t

4

+O(t

6

)

2t

2

=

1

t

2

+ 1� t

2

+O(t

4

)

or

D(t) =

1�

p

1� 4t

2

2t

2

;

whi
h is the result we found before.

3. Lagrange Inversion Formula

Inherently to the symboli
 method, the extra
tion of 
oeÆ
ients of generating fun
tions de�ned

by fun
tional equations is a frequently o

urring problem. For this purpose, the Lagrange Inversion

Theorem provides a tool that is 
ommonly used and espe
ially dedi
ated to the enumeration of trees.

This theorem states that given the generating fun
tion A(z) =

P

n�0

a

n

z

n

for whi
h z = f(A(z)),

if f(z) veri�es the 
ondition f(0) = 0 and f

0

(0) 6= 0, then

a

n

� [z

n

℄A(z) =

1

n

[u

n�1

℄

�

u

f(u)

�

n

:

Additionally,

[z

n

℄

�

A(z)

�

m

=

m

n

[u

n�m

℄

�

u

f(u)

�

n

and

[z

n

℄g

�

A(z)

�

=

1

n

[u

n�1

℄g

0

(u)

�

u

f(u)

�

n

:
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By appli
ation of the re
ipro
al fun
tion to both sides of the equation z = f

�

A(z)

�

, it 
an be

noti
ed that the fun
tion A(z) is the re
ipro
al of f(z). The surprising e�e
t of the inversion

theorem resides in the relation it establishes between the powers of a fun
tion and the 
oeÆ
ients

of the re
ipro
al fun
tion.

3.1. Example: Catalan numbers. The language of Dy
k words,

D = f�; x�x; xx�x�x; x�xx�x; : : : g;

satis�es the de�ning re
urren
e D = �+xD�xD. This translates to the algebrai
 (non-
ommutative)

equation

D(x; �x) = 1 + xD(x; �x)�xD(x; �x):

Sin
e we have an algebrai
 and non-ambiguous grammar, we 
an rewrite the system with 
ommu-

tative variables:

D(x; �x) = 1 + x�xD(x; �x)

2

:

As we know that the length of the words is always even, we will have n for a total length of 2n,

when we only 
ount x (or �x). Thus, we 
an substitute �x for �, and x for t.

D(t) = 1 + t (D(t))

2

() tD(t)

2

�D(t) + 1 = 0

By simply solving this se
ond-order equation, we get D(t) =

1�

p

1�4t

2t

(the other root is negative,

hen
e not appli
able). This solution is to 
onverted into the form D(t) =

P

n�0

a

n

t

n

, for whi
h

a

n

gives us the number of Dy
k words having n letters t (x), hen
e the number of Dy
k words of

length 2n. Using Taylor series expansion and applying the Lagrange Inversion Formula, we get C

n

1�

p

1� 4t

2t

=

X

n�0

1

n+ 1

�

2n

n

�

t

n

[z

n

℄C(t) = [z

n

℄

1

n

z

n�1

(1 + z)

2n

=

1

n

�

2n

n� 1

�

:

4. Algebrai
 Stru
tures and the Kernel Method

4.1. Algebrai
 equations. The equation des
ribing sub-diagonal North-East paths,

F (t; u) = 1 + t(u + 1=u)F (t; u) � t=uF (t; 0);

belongs to a 
lass of equations that share two properties [3℄:

1. The equation uniquely de�nes F (t; u) as a power series in t with polynomial 
oeÆ
ients in u.

There exist other, non-power-series solutions, for instan
e the rational fun
tion

F (t; u) =

2tu� 1

2t

�

u� t(u

2

+ 1)

�

:

Hen
e, any method for solving the re
urren
e relation above must use the fa
t that F (t; u)

is a power series.

2. When trying to derive an equation in F (t; 0) only from the re
urren
e relation, we end up

with a tautologi
 expression. In other words, if we �rst multiply F (t; u) by u and dire
tly

set u = 0, this would give us 0 = tF (t; 0) � tF (t; 0).
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It 
an be noti
ed that the re
urren
e relation is linear in F (t; u) and F (t; 0), and we 
an strongly

expe
t its solution to be algebrai
 and to satisfy

F (t; 0) =

1�

p

1� 4t

2

2t

2

=

X

n�0

1

n+ 1

�

2n

n

�

;

sin
e sub-diagonal walks ending on the main diagonal are well-known to be 
ounted by Catalan

numbers.

The generi
 form of equations that share the above properties, is

P

�

F (t; u); F

1

(t); F

2

(t); : : : ; F

k

(t); t; u

�

= 0;

where P is a polynomial in k+3 variables with real 
oeÆ
ients. We assume that this equation de�nes

uniquely all its unknowns as power series in t: the series F

i

(t) have real 
oeÆ
ients, while F (t; u)

has its 
oeÆ
ients in R[u℄. Rewriting our equation a

ording to this generi
 form of equations

yields:

F (t; u)

�

u� t(u

2

+ 1)

�

� u + tF

1

(t) = 0;

with F

1

(t) = F (t; 0), by setting u = 0.

In solving this instan
e, we propose to determine f

n

, the number of ex
ursions of length n and

type 
, the set of jumps whi
h is a �nite subset of Z, via the 
orresponding bivariate generating

fun
tion

F (z; u) =

X

n;k

f

n;k

u

k

z

n

;

where f

n;k

is the number of walks of length n and �nal altitude k. In parti
ular, F (z) = F (z; 0).

Let �
 denote the smallest (negative) value of a jump, and d denote the largest (positive) jump.

A fun
tional role is played by the \
hara
teristi
 polynomial" of the walk [1, 2, 11℄,

S(y) =

X

!2


y

!

=

d

X

j=�


S

j

y

j

;

whi
h is a Laurent polynomial. The bivariate generating fun
tion of generalised walks where

intermediate values are allowed to be negative is rational:

G(z; u) =

1

1� zS(u)

:

The main result to be proven is the following: for ea
h �nite set 
 � Z, the generating fun
tion

of ex
ursions is an algebrai
 fun
tion that is expli
itly 
omputable from 
. This problem is solved

by an appli
ation of the kernel method [2℄.

4.2. Kernel method. [2℄. Let f

n

(u) = [z

n

℄F (z; u) be the generating fun
tion of walks of length n

with u re
ording the �nal altitude. There is a simple re
urren
e relating f

n+1

(u) to f

n

(u), namely,

f

n+1

(u) = S(u)f

n

(u)� r

n

(u)

where r

n

(u) is a Laurent polynomial 
onsisting of the sum of all the monomials of S(u)f

n

(u) that

involve negative powers of u:

r

n

(u) =

�1

X

j=�


�

[u

j

℄S(u)f

n

(u)

�

u

j

= fu

<0

gS(u)f

n

(u);
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where fu

<0

g denotes the singular part of a Laurent expansion:

fu

<0

gf(z) :=

X

j<0

�

[u

j

℄f(u)

�

u

j

:

The idea behind the formula is to subtra
t the e�e
t of those steps that would take the walk

below the horizontal axis. Thus the generating fun
tion F (z; u) satis�es the fundamental fun
tional

equation

F (z; u) = 1 + zS(u)F (z; u) � zfu

<0

g

�

S(u)F (z; u)

�

:

Expli
itly, we have

F (z; u) = 1 + zS(u)F (z; u) � z


�1

X

j=0

�

j

(u)

�

Æ

j

Æu

j

F (z; u)

�

u=0

;

for Laurent polynomials �

j

(u) that depend on S(u) in an e�e
tive way by �

j

(u) =

1

j!

fu

<0

gu

j

S(u) [2℄.

Both equations involve an unknown bivariate generating fun
tion F (z; u) and 
 univariate gener-

ating fun
tions, the partial derivatives of F spe
ialized at u = 0. In parti
ular, the latter fun
tional

equation determines fully the 
 + 1 unknowns. The basi
 te
hnique is known as \
an
elling the

kernel" and relies on strong analyti
ity properties.

The equation to be used by the basi
 kernel te
hnique starts by grouping on one side the terms

involving F (z; u). The main prin
iple of the kernel method 
onsists in 
oupling the values of z

and u in su
h a way that 1 � zS(u) = 0, so that F (z; u) disappears. Consequently, the \kernel

equation" 1�zS(u) = 0, is rewritten as u




= z

�

u




S(u)

�

. This kernel equation de�nes 
+d bran
hes

of an algebrai
 fun
tion. Coupling z and u by u = u

l

(z) gives that (z; u) is 
lose to (0; 0) where F

is bivariate analyti
, so that substitution gives

1� z


�1

X

j=0

�

j

�

u

l

(z)

�

�

Æ

j

Æu

j

F (z; u)

�

u=0

; l = 0; : : : ; 
� 1;

whi
h is a linear system of 
 equations in 
 unknowns with algebrai
 
oeÆ
ients that deter-

mines F (z; 0). Therefore, the generating fun
tion of ex
ursions is expressible as

F (z) =

(�1)


�1

zS

�



�1

Y

l=0

u

l

(z); where S

�


= [u

�


℄S(u)

is the multipli
ity of the smallest element �
 2 
.

More generally the bivariate generating fun
tion of nonnegative walks is bivariate algebrai
 and

given by

F (z; u) =

1

u




� z

�

u




S(u)

�


�1

Y

l=0

�

u� u

l

(z)

�

:

In other words, to make expli
it the solution F

s

of the re
urren
e of the sub-diagonal North-East

paths, written as F (t; u)(u�t(u

2

+1))�u+tF

1

(t) = 0, we rewrite it as Q(x)F (x) = K(x)�U(x) [4℄,

where K stands for the unknown initial 
onditions, and Q is the kernel:

F (t; u)

�

u� t(u

2

+ 1)

�

= u� U(t);

F

s

(t)Q(t) = K(t)� U(t):
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Again, the kernel method 
onsists in 
an
elling the kernel Q(x), by handling a 
hoi
e of algebrai


values a of t, whi
h yields a system of equations K(a) � U(a) = 0. Solving this system generally

allows to make U expli
it. This provides F

s

for generi
 t:

F

s

(t) =

K(t)� U(t)

Q(t)

:

The fun
tion U(t) is a sum of m unknown multivariate fun
tions F

i

(t

1

; : : : ; t

d�1

). Can
elling the

kernel with m di�erent values for t

d

(whi
h then be
ome fun
tions of (t

1

; : : : ; t

d�1

)) yields a system

whi
h allows to make expli
it the F

i

's.

Regrouping the terms in F (t; u) by the kernel method yields:

F

s

(t; u) =

u�

1�

p

1�4t

2

2t

u� t� tu

2

:

4.3. The Quadrati
 Method. An analogous approa
h is referred to as the \quadrati
 method,"

used to solve equations of the form

z(x; y)

2

+ P

1

�

x; y; z(x; 0)

�

z(x; y) + P

2

�

x; y; z(x; 0)

�

= 0

with P

i

2 F [[x℄℄[y; u℄, where F is an algebrai
ally 
losed �eld of 
hara
teristi
 zero.

Rewrite the equation as

�

z +

1

2

P

1

�

2

=

1

4

P

2

1

� P

2

=: � 2 F [[x℄℄[y; u℄:

If some y = y

0

2 F [[x℄℄ is known to kill z +

1

2

P

1

, then this y

0

is a double root of �(x; y; u),

viewed as a polynomial in

�

F [[x℄℄[u℄

�

[y℄. The resultant R(x; u) of � and

��

�y

with respe
t to y

has to be zero. When we know by an external argument that the quadrati
 equation admits a

series solutions z(x; y) 2 F [[x; y℄℄, for example when it has a 
ombinatorial interpretation, and

therefore that z(x; 0) is a series in F [[x℄℄, the polynomial equation R

�

x; z(x; 0)

�

= 0 delivers this

value in F [[x℄℄ for z(x; 0).

After substitution, there only remains to solve an equation of the form z

2

+ P

1

z + P

2

= 0 with

P

i

2 F [[x℄℄[y℄. In [5℄, ne
essary and suÆ
ient 
onditions are derived in order that su
h an equation

has a solution z in either of the rings F [[x℄℄[y℄ or F [[x; y℄℄. In view of obtaining them, resume

from the relation

�

z +

1

2

P

1

�

2

= �. Sin
e P

1

2 F [[x℄℄[y℄ � F [[x; y℄℄, we get that there is a solution

in F [[x℄℄[y℄ or F [[x; y℄℄, respe
tively, if and only if � has a square root in the same ring. Again

in [5℄, it is proved that U 2 F [[x℄℄[y℄ has a square root if and only if it fa
tors under the form

U = P

2

R for a polynomial P 2 F [x; y℄ and a series R 2 1 + yF [[x℄℄[y℄. Therefore, the equation has

a solution in F [[x℄℄[y℄ or F [[x; y℄℄, respe
tively, if and only if � rewrites under the form P

2

R for

some polynomial P and some series R of the form

R = 1 + yF [[x℄℄[y℄ or R = 1 + xyF [[x℄℄[y℄; respe
tively.
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Abstra
t

Complex analysis is a fruitful sour
e of asymptoti
 estimates in enumerative 
ombinatori
s.

This le
ture starts with a symboli
 method to en
ode 
ounting sequen
es of 
ombinatorial

stru
tures by 
omplex fun
tions. The residue theorem is then applied to extra
t from these

fun
tions the asymptoti
 behavior of the 
orresponding sequen
es.

1

A 
lass of 
ombinatorial stru
tures (often simply 
alled a 
lass) is a �nite or 
ountable set on

whi
h a size fun
tion is de�ned, the size of an element being a nonnegative integer. If A is a 
lass,

the size of an element � 2 A is denoted by j�j, or j�j

A

in the few 
ases where the underlying 
lass

needs to be made expli
it. Given a 
lass A we 
onsistently let A

n

be the set of elements in A that

have size n and use the same group of letters for the 
ounts A

n

= CardA

n

. We further assume

that the A

n

are all �nite. The 
ounting sequen
e of A is the sequen
e of integers fA

n

g

n�0

. For

instan
e, binary sequen
es are 
ombinatorial stru
tures that form a 
lass S when the size of a word

is de�ned to be its length. The 
orresponding 
ounting sequen
e is then given by S

n

= 2

n

.

Average-
ase analysis of algorithms typi
ally redu
es to 
ounting problems for 
ombinatorial

stru
tures. Statisti
al physi
s is another �eld of appli
ation of 
ounting sequen
es where the free

energy of a system may be expressed as the logarithm of the number of a

essible states whi
h 
an

be des
ribed by a 
ombinatorial stru
ture.

There are two main approa
hes to estimate the asymptoti
 behavior of the 
ounting sequen
e

of a 
lass. The �rst one is to embed the 
ombinatorial stru
ture in a sto
hasti
 model where the

randomly 
hosen element is representative of the elements of the 
lass. This allows to eliminate rare

pathologi
al elements. Then the asymptoti
 behavior of the 
ounting sequen
e is dedu
ed from the

behavior of the sto
hasti
 model. The se
ond approa
h, whi
h will be des
ribed here, is based on the

de
omposition of elements of the 
lass into 
ombination of elements of simpler 
lasses and lower size.

Counting sequen
es are en
oded by formal generating fun
tions that 
an have tra
table 
ompa
t

representations as 
omplex fun
tions. A restri
tion to 
ertain 
ombinations, 
alled admissible


onstru
tions, preserves these tra
table representations sin
e they dire
tly translate into simple

operators on the 
omplex fun
tions of the sub
lasses. The extra
tion of the 
ounting sequen
e

en
oded by a 
omplex fun
tion is sometimes diÆ
ult, but 
omplex analysis 
an often be used to

obtain the asymptoti
 behavior.

This summary presents in the �rst se
tion a symboli
 method to 
ompute a fun
tion en
oding

the 
ounting sequen
e of a 
lass. The se
ond se
tion is dedi
ated to 
omplex analysis. The aim is

y

Le
ture notes for a 
ourse given during the workshop AL

�

EA'01 in Luminy (Fran
e).

1

This summary is inspired by the book in preparation of Flajolet and Sedgewi
k [2, 3℄.
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to give a method to extra
t the asymptoti
 behavior of a 
ounting sequen
e en
oded by a 
omplex

fun
tion. The �nal se
tion illustrates these methods throughout two examples: 
louds and 
-trees.

1. A Symboli
 Method for Enumerative Combinatori
s

A 
ounting sequen
e fA

n

g

n�0


an be en
oded by di�erent types of formal power series: an ordi-

nary generating fun
tion

P

n�0

A

n

z

n

, an exponential generating fun
tion

P

n�0

A

n

n!

z

n

, a Diri
hlet

series

P

n�0

A

n

n

z

, . . . The aim of these representations is to lead in some 
ases to a des
ription of

a 
ounting sequen
e shorter than the sequen
e itself. For instan
e the 
lass N of natural integers,

where the size of n is n, is su
h that N

n

= 1. Its ordinary generating fun
tion is

P

n�0

z

n

=

1

1�z

,

its exponential generating fun
tion is

P

n�0

1

n!

z

n

= e

z

, its Diri
hlet series

P

n�0

1

n

z

= �(z).

Assume that � is a binary 
onstru
tion that asso
iates to two 
lasses B and C a new 
lass

A = �fB; Cg;

in a �nite way (ea
h A

n

depends on �nitely many of the B

n

and C

n

). Then � is an admissible


onstru
tion if and only if the 
ounting sequen
e fA

n

g of A is a fun
tion of the 
ounting sequen
es

fB

n

g and fC

n

g of B and C only. In that 
ase, this fun
tion may be translated into a simple operator

relating formal power series representing fA

n

g

n�0

, fB

n

g

n�0

, and fC

n

g

n�0

. This se
tion is devoted

to some parti
ular admissible 
onstru
tions in the 
ase of unlabeled and labeled 
ombinatorial

stru
tures. The goal is to de�ne a language of elementary 
ombinatorial 
onstru
tions su
h that any

expression of a 
lass in this language 
an be translated straightforwardly into a fun
tion en
oding

the 
ounting sequen
e of the 
lass.

1.1. Unlabeled stru
tures. The prin
iple of this representation is that an element of size n is

en
oded by the monomial z

n

. Thus the 
lass A is mapped to the ordinary generating fun
tion

A(z) = ogf(A)(z) =

X

�2A

z

j�j

=

X

n�0

A

n

z

n

:

An additional assumption on the sizes is made: if an element � 
an be de
omposed into a 
ombi-

nation of elements �

1

, �

2

, . . . , �

k

, then the size of � is the sum of the sizes of the �

i

. Its translation

as regards monomials is the usual produ
t law:

z

j�j

A

= z

j�

1

j

B

1

z

j�

2

j

B

2

: : : z

j�

k

j

B

k

:

Let us 
onsider the 
lass A de�ned as the Cartesian produ
t of two given 
lasses B and C.

Following the additional assumption, the size of the element � = (�; 
) is j�j

B

+ j
j

C

. Thus we have

A(z) =

X

(�;
)2B�C

z

j(�;
)j

A

=

X

�2B; 
2C

z

j�j

B

+j
j

C

=

X

�2B

z

j�j

B

�

X


2C

z

j
j

C

= B(z)C(z):

Here is the �rst example of an admissible 
onstru
tion whi
h has a simple translation in terms of

ordinary generating fun
tions:

ogf(B � C)(z) = ogf(B)(z) � ogf(C)(z):

The union of two 
lasses B and C is translated into the sum of the two ordinary generating

fun
tions in the 
ase of a disjoint union. More generally,

ogf(B [ C)(z) =

X

�2B[C

z

j�j

A

=

X

�2B

z

j�j

B

+

X


2C

z

j
j

C

�

X

�2B\C

z

j�j

B[C

= ogf(B) + ogf(C)� ogf(B \ C):

The additional assumption on the sizes implies that the size of an element � of B\C is well de�ned

sin
e j�j

B

= j�j

B[C

= j�j

C

.
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The 
lass A of �nite sequen
es of elements of the 
lass B is denoted Seq(B). It is well de�ned

if and only if the 
lass B has no element of size zero, a restri
tion whi
h prevents from getting an

in�nite number of sequen
es of size zero. Grouping sequen
es of the same length yields the relation

Seq(B) = f�g [ B [ (B � B) [ (B � B � B) [ � � � ;

where � is an element of size zero whi
h has essentially the same meaning as the empty word in the


ontext of languages. Thus, using both previous 
onstru
tions,

ogf

�

Seq(B)

�

= 1 + ogf(B) + ogf(B)

2

+ ogf(B)

3

+ � � � =

X

k�0

ogf(B)

k

=

1

1� ogf(B)

:

The 
lass A of subsets of the 
lass B is denoted Set(B). The 
lass of dire
ted 
y
les of the


lass B is denoted Cy
le(B). Dire
ted 
y
les are sequen
es de�ned up to 
y
li
 permutations: two

sequen
es (�

1

; : : : ; �

k

) and (�

1

; : : : ; �

k

) represent the same dire
ted 
y
le if and only if there exists

an integer l su
h that for all i, �

i

= �

i+l mod k

. These two 
onstru
tions admit almost reasonable

translations mentioned at the end of this se
tion.

1.2. Labeled stru
tures. Many obje
ts of 
lassi
al 
ombinatori
s present themselves naturally as

labeled stru
tures whose \atom" (typi
ally nodes in a graph or a tree) bear distin
tive integer labels.

For instan
e the 
y
le de
omposition of a permutation represents the permutation as an unordered


olle
tion of 
y
li
 graphs whose nodes are labeled by integers. More pre
isely, an element of size n

of a labeled stru
ture 
an be de
omposed in n \atomi
" elements of size 1 and these atoms are

labeled by distin
t elements of f1; : : : ; ng.

Operation on labeled stru
tures are based on a spe
ial produ
t, the labeled (or partionnal) produ
t

that distributes labels between 
omponents. This operation is a natural analogue of the Cartesian

produ
t for plain unlabeled stru
tures. The labeled produ
t in turn leads to labeled analogues of

the sequen
e, set, and 
y
le 
onstru
tions.

Let us de�ne the labeled produ
t A = B ./ C of two 
lasses B and C. The ordered pair (�; 
),

for � 2 B and 
 2 C, is not a labeled stru
ture sin
e atoms of �, respe
tively 
, have labels in

�

1; : : : ; j�j

	

, respe
tively

�

1; : : : ; j
j

	

, leading to atoms with 
ommon labels. A natural lift of these

two labelings, is a labeling with labels in

�

1; : : : ; j�j + j
j

	

su
h that the order relation between

labels of �, respe
tively 
, are preserved. These labeled stru
tures are the elements of the labeled

produ
t. For instan
e, 
onsider the 
lass of 
hains whi
h are total orderings of the elements of

f1; : : : ; kg for all integers k. The pair 
onsisting of the two 
hains (2; 1) and (1) is not a labeled

stru
ture:

�

(2; 1); (1)

�

has two atoms labeled 1. On the other hand, three natural expansions lead

to labeled stru
tures:

�

(2; 1); (3)

�

,

�

(3; 1); (2)

�

, and

�

(3; 2); (1)

�

.

Any element of A has a unique de
omposition into elements of B�C. But 
onversely, the pair of

an element of B of size k and an element of C of size l, is the de
omposition of as many elements as

there are possibilities to label (�; 
) by f1; : : : ; l + kg in a way that preserves the labeling indu
ed

on � and 
. So there are

(k+l)!

k! l!

su
h de
ompositions. As regards the 
ounting sequen
e, an element

of size n of A de
omposes into a pair of elements of size k and l su
h that k + l = n, so that

A

n

=

X

k+l=n

n!

k! l!

B

k

C

l

:

This equation 
an be rewritten as

A

n

n!

=

X

k+l=n

B

k

k!

C

l

l!

:
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Constru
tion Unlabeled stru
tures Labeled stru
tures

Produ
t ogf(B) � ogf(C) egf(B) � egf(C)

Union ogf(B) + ogf(C) egf(B) + egf(C)

Sequen
e

1

1� ogf(B)(z)

1

1� egf(B)(z)

Set exp

 

1

X

k=1

(�1)

k+1

k

ogf(B)(z

k

)

!

exp

�

egf(B)(z)

�

Cy
le

1

X

k=1

�(k)

k

log

�

1

1� ogf(B)(z

k

)

�

log

1

1� egf(B)(z)

Table 1. Admissible 
onstru
tions and generating fun
tions interpretations.

The use of exponential generating fun
tions to en
ode the 
ounting sequen
es is then natural

be
ause the previous equation 
hara
terizes the produ
t of two su
h fun
tions. So the 
ounting

sequen
e fA

n

g

n�0

is represented by A(z) = egf(A)(z) =

P

n�0

A

n

n!

, whi
h was 
hosen su
h that

egf(B ./ C) = egf(B) � egf(C):

The same work as for unlabeled stru
tures leads to the results summarized in Table 1.

2. Complex Asymptoti
 Analysis

On
e a fun
tion en
oding the 
ounting sequen
e has been determined, it remains to extra
t the

sequen
e from the fun
tion. The expli
it expansion of the fun
tion is often too diÆ
ult. To avoid

it, the 
ru
ial observation is that most of the generating fun
tions that o

ur in 
ombinatorial

enumerations are also analyti
 fun
tions: their expansions 
onverge in a neighborhood of the origin

and Cau
hy's integral formula expresses Taylor 
oeÆ
ients of su
h analyti
 fun
tions as 
ontour

integrals.

This se
tion is dedi
ated to a short presentation of analyti
 fun
tions, then to the determination

of the exponential growth of the 
ounting sequen
e, and �nally to the subexponential fa
tors.

2.1. Residue theorem. A fun
tion f(z) of the 
omplex variable z is analyti
 at a point z = a if

it is de�ned in a neighborhood of z = a and is given there by a 
onvergent power series expansion

f(z) =

X

n�0

f

n

(z � a)

n

:

The quotient of two analyti
 fun
tions f(z)=g(z) gives the intuition of what is a meromorphi


fun
tion. More pre
isely, h(z) is meromorphi
 at z = a if and only if in a neighborhood of z = a

it is given by an expansion of the form

h(z) =

X

n��M

h

n

(z � a)

n

for z 6= a:

If M � 1 and h

�M

6= 0 then h(z) is said to have a pole of order M at z = a. When h(z) has a pole

of order M � 1 at z = a, then the 
oeÆ
ient h

�1

is 
alled the residue of h(z) at z = a and it is

designated by

Res

�

h(z); z = a

�

:

The important residue theorem relates global properties of a meromorphi
 fun
tion (its integral

along 
urves) to its lo
al properties at designated points, the poles.
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Theorem 1 (Cau
hy's residue theorem). Let � be a simple 
losed 
urve oriented positively and

situated inside a simply 
onne
ted region D (like a disk), and assume g(z) to be meromorphi
 in D

and analyti
 on �. Then

1

2i�

Z

�

g(z) dz =

X

s

Res

�

g(z); z = s

�

;

where the sum is extended to all poles of g(z) en
losed in �.

A dire
t appli
ation of the residue theorem 
on
erns 
oeÆ
ients of analyti
 fun
tions.

Theorem 2 (Cau
hy's 
oeÆ
ient formula). Let f(z) be analyti
 in a simply 
onne
ted region D

and let � be a 
losed 
urve oriented positively and lo
ated inside D that simply en
ir
les the origin.

Then the 
oeÆ
ient [z

n

℄ f(z) admits the integral representation

f

n

� [z

n

℄ f(z) =

1

2i�

Z

�

f(z)

dz

z

n+1

:

2.2. Singularities and exponential rate. Most of the 
ounting sequen
es en
oded by fun
tions

have an asymptoti
 behavior that 
an be des
ribed by A

n

� G

n

�(n) where �(n) is a subexponential

fun
tion: the real number G = lim sup

n!+1

jf

n

j

1=n

is 
alled the exponential rate of growth of the


ounting sequen
e.

This parameter has a straightforward interpretation as regards the fun
tion whi
h en
odes the


ounting sequen
e. A singularity of su
h a fun
tion 
an be informally de�ned as a point where the

fun
tion 
eases to be analyti
. Singularities of smallest modulus of a fun
tion analyti
 at 0 are


alled dominant singularities. The exponential rate of growth is linked to the modulus of dominant

singularities by the following theorem.

Theorem 3 (Exponential growth formula). If f(z) is analyti
 at 0 and R is the modulus of a

singularity of f(z) nearest to the origin, then the exponential rate of growth of the 
oeÆ
ients

[z

n

℄ f(z) is 1=R.

Proof. Cau
hy's formula applied to a 
ir
le � of 
enter 0 and radius R

0

< R gives

jf

n

j =

�

�

�

�

1

2i�

Z

�

f(z)

dz

z

n+1

�

�

�

�

�

j2�R

0

j

j2i�j

sup

�

f(z)

�

�

jzj = R

0

	

R

0

�(n+1)

= O

�

R

0

�n

�

;

so that G = lim sup

n

jf

n

j

1=n

�

1

R

0

, and G �

1

R

by letting R

0

approa
h R.

We now assume G <

1

R

and pro
eed to get a 
ontra
tion, proving G =

1

R

in this way. Fix R

0

su
h that G <

1

R

0

<

1

R

. For some 
onstant K and all suÆ
iently large n, we have jf

n

j �

K

R

0

n

. The

series

P

n�0

f

n

z

n

therefore 
onverges normally on the set of all z of modulus R, sin
e 0 <

R

R

0

< 1.

This 
ontradi
ts the existen
e of a singularity of modulus R. �

An additional property of fun
tions de�ned by 
ounting sequen
es is that their 
oeÆ
ients are

non-negative. This situation allows to lo
ate one dominant singularity more pre
isely.

Theorem 4 (Pringsheim's theorem). If a fun
tion has Taylor 
oeÆ
ients that are real non-negative,

then one of its dominant singularities, if there is a singularity, is real positive.

2.3. Subexponential approximation. If the lo
ation of the singularities of a fun
tion determines

the exponential rate of growth of its 
oeÆ
ients, the nature of the singularities determines the way

the dominant exponential term in 
oeÆ
ients is modulated by a subexponential fa
tor.

For sake of simpli
ity, we assume that the singularities are isolated. By 
hange of the variable,

we 
an assume that all the dominant singularities are of modulus 1. Moreover we assume that there

is a unique dominant singularity whi
h is 1.
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The notion of �-analyti
 fun
tion is de�ned to des
ribe the s
ope of the following transfer

theorem whi
h maps the lo
al behavior of the fun
tion around its dominant singularity to the

asymptoti
 form of its 
oeÆ
ients. Given two numbers �, R, with R > 1 and 0 < � <

�

2

, the open

domain �(�;R) is de�ned as

�(�;R) =

n

z

�

�

�

jzj < R; z 6= 1;

�

�

Arg(z � 1)

�

�

> �

o

:

A domain is a �-domain if it is a �(�;R) for some R and some �. A fun
tion is �-analyti
 if it

is analyti
 in some �-domain.

Theorem 5 (Big-oh transfer [1℄). Let � be a number not in f0;�1;�2; : : : g. Assume that f(z) is

�-analyti
 and that it satis�es in the interse
tion of a neighbourhood of 1 and of its �-domain the


ondition

f(z) = O

 

(1� z)

��

�

log

1

1� z

�

�

!

:

Then

[z

n

℄ f(z) = O

�

n

��1

(log n)

�

�

:

Proof. The starting point is Cau
hy's 
oeÆ
ient formula. We apply it to a parti
ular loop around

the origin whi
h is internal to the �-domain of f : we 
hoose the positively oriented 
ontour




n

� 
 = 


1

+ 


2

+ 


3

+ 


4

, with

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:




1

=

n

z

�

�

�

jz � 1j =

1

n

�

�

Arg(z � 1)

�

�

� �

o




2

=

n

z

�

�

�

1

n

� jz � 1j; jzj � r; Arg(z � 1) = �

o




3

=

n

z

�

�

�

jz � 1j = r;

�

�

Arg(z � 1)

�

�

� �

o




4

=

n

z

�

�

�

1

n

� jz � 1j; jzj � r; Arg(z � 1) = ��

o

If the �-domain of f is �(�;R), we assume that 1 < r < R, and � < � <

�

2

, so that the 
ontour 


lies entirely inside the domain of analy
ity of f .

For j = 1, 2, 3, 4, let

f

(j)

n

=

1

2i�

Z




j

f(z)

dz

z

n+1

:

The analysis pro
eeds by bounding the absolute value of the integral along ea
h of the four parts.

In order to keep notations simple, we detail the proof in the 
ase where � = 0.

Inner 
ir
le. From trivial bounds, the 
ontribution there is

�

�

�

f

(1)

n

�

�

�

= O

 

�

1

n

�

1��

!

;

as the fun
tion f is O

�

�

1

n

�

��

�

, the 
ontour has length O(

1

n

), and z

�n�1

is O(1) there.

Re
tilinear parts. Setting ! = e

i�

and performing the 
hange of variable z = 1 +

!t

n

, we �nd

�

�

�

f

(2)

n

�

�

�

<

1

2�

Z

1

1

K

�

t

n

�

��

�

�

�

�

1 +

!t

n

�

�

�

�

�n�1

dt;

for some 
onstant K > 0 su
h that

�

�

f(z)

�

�

< K(1 � z)

��

\over the �-domain." In fa
t we have a


onstant for a small neighborhood V of 1 due to the asymptoti
 assumption and an other 
onstant
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Fun
tion f(z) Asymptoti
 expansion of the 
oeÆ
ients f

n

1 0

(1� z)

�1

1

(1� z)

�2

n+ 1

(1� z)

�3

1

2

n

2

+

3

2

n+ 1

(1� z)

1=2

�

1

p

�n

3

�

1

2

+

3

16n

+

25

256n

2

+O

�

1

n

3

�

�

(1� z)

�1=2

1

p

�n

�

1�

1

8n

+

1

128n

2

+

5

1024n

3

+O

�

1

n

4

�

�

log(1� z)

�1

1

n

(1� z)

�3=2

log(1� z)

�1

p

n

�

�

2 log n+ 2
 + 4 log 2� 2 +

3 log n

4n

+O

�

1

n

�

�

Table 2. Examples of appli
ations of the transfer theorem.

that 
omes from the 
ompa
ity of a 
losed set C in
luded in � su
h that all the used loops are

in C [ V . From the relation

�

�

�

�

1 +

!t

n

�

�

�

�

� 1 +

t

n


os �;

there results

�

�

�

f

(2)

n

�

�

�

<

K

2�

J

n

n

��1

where

J

n

=

Z

1

1

t

��

�

1 +

t 
os �

n

�

�n

dt:

For a given �, the integrals J

n

are all bounded above by some 
onstant sin
e they admit a limit

as n tends to in�nity:

J

n

!

Z

1

1

t

��

e

�t 
os �

dt:

(The 
ondition on � that 0 < � <

�

2

pre
isely ensures 
onvergen
e of the integral.) Thus, globally,

on this part of the 
ontour, we have

�

�

�

f

(2)

n

�

�

�

= O

�

n

��1

�

;

and the same bound holds for f

(4)

n

by symmetry.

Outer 
ir
le. There, f(z) is bounded while z

�n

is of the order r

�n

. Thus, f

(3)

n

is exponen-

tially small.

In summary, ea
h of the four integrals of the split 
ontour 
ontributes O(n

��1

). The statement

of the theorem thus follows. �

This theorem 
an be extended to equivalents giving a fairly me
hani
al pro
ess to translate

aymptoti
 information on a fun
tion into information on its 
oeÆ
ients. These are simple fun
tions

that are used as a s
ale sin
e any fun
tion equivalent to it around its dominant singularity as the

same asymptoti
 expansion. See Table 2.
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3. Examples

3.1. Clouds. Let us 
onsider n lines in general position in the plane. A 
loud is a subset of the

set of the interse
tion points of the lines su
h that:

1. any three points of the 
loud are not aligned;

2. any line has at least one of its points in the 
loud;

3. the set is maximal for in
lusion among the sets that satis�es points 1 and 2.

The size of a 
loud is the number of points it 
ontains.

There is a more 
ombinatorial des
ription of a 
loud sin
e they are in bije
tion with labeled

2-regular graphs (any vertex has degree 2, no loops, no multiple edges). In the bije
tion, the line

labeled i is the vertex labeled i of the graph and the interse
tion between the line i and j is mapped

to an edge between i and j. Indeed, point 1 in the de�nition exa
tly means that any vertex of the

graph has degree at most 2 be
ause three aligned interse
tions are ne
essarily on a 
ommon line

sin
e the pi
ture is as general as possible. Point 2 translates the fa
t that any vertex has degree at

least 1. Assume there are at least two verti
es i, j of degree 1 in the 
loud S. Then S [ f(ij)g is a


loud and that is in 
ontradi
tion with point 3. Finally, there 
annot be only one vertex of degree 1

sin
e the sum of the degree of verti
es of a graph is even (ea
h edge appears twi
e). As regards the

size, sin
e there are two interse
tions per line in a 
loud and that an interse
tion is shared by two

lines, the size of the 
loud is the number of verti
es. Thus instead of 
louds we 
ould equivalently


onsider the 
lass of labeled 2-regular graphs where the size of an element is its number of verti
es.

A labeled 2-regular graph is a set of non-oriented 
y
les of size at least 3 and we are interested

in the exponential generating fun
tion of this stru
ture. Oriented 
y
les of size at least 3 are the

oriented 
y
les that do not 
ontain 1 or 2 elements only so their generating fun
tion is

C

>2

+

(z) = log

1

1� z

�

�

1

1!

z +

1

2!

z

2

�

:

A non-oriented 
y
le of at least 3 verti
es admits exa
tly 2 distin
t orientations, so that the gener-

ating fun
tion of non-oriented 
y
le of at least 3 verti
es is

C

>2

(z) =

1

2

C

>2

+

(z):

Then the series of the sets of non-oriented 
y
les on at least 3 verti
es and equivalently of the


louds is

Clouds(z) = expC

>2

(z) =

exp

�

�

1

2

z �

1

4

z

2

�

p

1� z

:

Thus, Clouds(z) is the produ
t of 1=

p

1� z whi
h admits 1 as singularity of minimal modulus and

is analyti
 in C n [ 1;+1), and exp

�

�

1

2

z �

1

4

z

2

�

that is entire. The behavior of Clouds(z) around 1

is the produ
t of 1=

p

1� z and exp(�3=4)

�

1 + (1 � z) +

1

4

(1 � z)

2

�

1

12

(1 � z)

3

+ O

�

(1 � z)

4

)

�

�

,

the standard Taylor expansion at 1 of exp(�

1

2

z �

1

4

z

2

).

Clouds(z) =

e

�3=4

p

1� z

+ e

�3=4

p

1� z +

e

�3=4

(1� z)

3=2

4

�

e

�3=4

(1� z)

5=2

12

+ � � �

This expansion is valid in a �-domain so that by the prin
iple of singularity analysis, the as-

ymptoti
 determination of the 
oeÆ
ients 


n

= [z

n

℄ Clouds(z) results from a dire
t translation of

the expansion

Clouds(z) = e

�3=4

1

p

1� z

+ e

3=4

p

1� z +O

�

(1� z)

3=2

�
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into




n

= e

�3=4

�

n� 1=2

�1=2

�

+ e

�3=4

�

n� 3=2

�3=2

�

+O

�

1

n

5=2

�

=

e

�3=4

p

�n

�

1�

1

8n

+

1

128n

2

+ � � �

�

�

e

�3=4

2

p

�n

3

�

1 +

3

8n

+ � � �

�

+O

�

1

n

5=2

�

:

We �nally have the asymptoti
 behavior of the 
ounting sequen
e fC

n

g

n�0

of 
louds,

C

n

n!

= 


n

=

e

�3=4

p

�n

+

3e

�3=4

8

p

�n

3

+O

�

1

n

5=2

�

as n! +1:

3.2. 
-trees. A subset 
 of N is aperiodi
 if the greatest 
ommon divisor of its elements is 1.

Given an aperiodi
 �nite set 
, the 
lass T




of 
-trees is the set of rooted trees with a total order

on the 
hildren of ea
h node su
h that the degree of ea
h node is in 
. For instan
e binary trees

are f0; 1; 2g-trees. The size of an 
-tree is its number of nodes. This 
lass is well de�ned if 0 2 


otherwise there are no �nite 
-trees.

Sin
e a 
-tree is made of a root and a sequen
e of length i 2 
 of 
-trees, its ordinary generating

fun
tion T satis�es

T (z) = z �

X

!2


�

T (z)

�

!

:

Let P (X) be the polynomial

P

!2


X

!

. The equation be
omes T (z) = zP

�

T (z)

�

. To 
he
k if the

fun
tion T is analyti
 at z we rephrase the above equation as

z = T (z)=P

�

T (z)

�

=  

�

T (z)

�

so that it is a generi
 instan
e of the inversion problem for analyti
 fun
tions ( (u) =

u

P (u)

).

An important statement of the inversion theorem is that if  is analyti
 at t = t

0

, then T (z)

is analyti
 at z =  (t

0

) if and only if  

0

(t

0

) 6= 0. To have an intuition of this result, 
onsider the

analyti
 expansion of  near t

0

:

 (t) =  (t

0

) + (t� t

0

) 

0

(t

0

) +

1

2

(t� t

0

)

2

 

00

(t

0

) + � � � :

If  

0

(t

0

) 6= 0, solving formally for t suggests that t� t

0

�

1

 

0

(t

0

)

�

z �  (t

0

)

�

and a full expansion is

obtained by repeated substitutions. If on the 
ontrary  

0

(t

0

) = 0 and  

00

(t

0

) 6= 0, solving formally

now suggest that (t � t

0

)

2

�

2

 

00

(t

0

)

�

z �  (t

0

)

�

so that the inversion problem should admit two

solutions satisfying

t� t

0

� �

s

2

� 

00

(t

0

)

�

 (t

0

)� z

�

1=2

:

In this 
ase the point  (t

0

) is a bran
h point, so that T (z) 
annot be analyti
 at this point. If the

�rst nonzero derivative of  at t

0

is of order r � 2, the same remark holds with a lo
al behavior

for t then of the form

�

 (t

0

)� z

�

1=r

.

Be
ause of Pringsheim's theorem, if T has a �nite radius, then there is a dominant singularity in

[ 0;+1). Thus �nding a dominant singularity of T results in sear
hing the smallest positive zero

of  

0

. Let � be this minimal zero of  

0

(x) =

P (x)�xP

0

(x)

P (x)

2

. This number satis�es

P (�)� �P

0

(�) = 0:

Now we have to 
he
k the number of distin
t dominant singularities. By de�nition a dominant

singularity 
an be written as � = �e

i�

and satis�es  

0

(�) = 0. Assume there is an integer k � 2
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su
h that all ! 2 
 is divided by k. In this 
ase P (x)�xP

0

(x) =

P

!2


(1�!)x

!


an be rewritten

in

P

!2


(1 � !)(x

k

)

!=k

. Thus if �

k

= �

k

then � is an other dominant singularity so all 
omplexes

(�e

2i�l=k

)

0�l�k�1

are distin
ts dominant singularities. To apply the tranfert theorems presented in

the previous se
tion safely we have to ensure that there is a unique dominant singularity,

2

therefore

we made the assumption that the set 
 is aperiodi
. We admit that this 
ondition is suÆ
ient to

have a unique dominant singularity � (there is a proof using the 
ase of equality in the triangular

inequality).

Sin
e � satis�es P (�) � �P

0

(�) = 0, we have  

00

(�) =

��

2

P

00

(�)

P (�)

3

. Thus if 
 
ontains an element

greater than 1, 	

00

(�) > 0 and

T (z) = T (�)�

s

2P (�)

3

�

2

P

00

(�)

p

�

r

1�

z

�

+O

�

(1�

z

�

)

3=2

�

:

This expansion is valid on a �-domain; thus using a transfer theorem, we obtain the asymptoti


equivalent

[z

n

℄T (z) �

s

2

�

2

	

00

(�)

p

�

1

2

p

�n

3

�

�n

= C

�

�

�n

n

�3=2

:
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Summary by Philippe Chassaing

Les liens entre le mouvement brownien et ses pro
essus d�eriv�es (m�eandre, pont, ex
ursion)

d'une part et d'autre part des objets 
ombinatoires 
omme les mots de Dy
k, les permutations

bi-ordonn�ees, le tri Shell's sort, les arbres simples, les fa
teurs gau
hes, le ha
hage ou parking, les

animaux dirig�es, le graphe al�eatoire, la mar
he al�eatoire dans le plan fendu, . . . , rendent opportune

une revue (for
�ement partielle) des innombrables propri�et�es du mouvement brownien.

En 
ombinatoire et analyse d'algorithmes, beau
oup d'asymptotiques de statistiques int�eressantes

sont famili�eres aux sp�e
ialistes du mouvement brownien : la hauteur ou la largeur des arbres sim-

ples normalis�ees 
onvergent en loi vers une loi li�ee �a la fon
tion � de Ja
obi, 
onnue pour être la loi

du maximum de l'ex
ursion brownienne. Dans l'asymptotique des nombres de Wright, d�enombrant

les graphes 
onnexes �a n sommets et k ar�etes en ex
�es [19℄, apparaissent les moments de la surfa
e

sous l'ex
ursion brownienne, dont la distribution s'exprime �a l'aide de la fon
tion d'Airy

1

. Le pro�l

moyen d'un arbre simple suit asymptotiquement la loi de Rayleigh, qui est la loi du maximum du

pont brownien. Le d�epla
ement total dans une table de ha
hage pleine, est �egalement asympto-

tiquement distribu�ee selon une loi d'Airy. Il est tentant de voir 
es faits 
omme les fragments d'un

même tableau : la 
onvergen
e des 
hemins de Bernoulli (resp. de Dy
k) et d'objets analogues vers

le mouvement brownien (resp. l'ex
ursion brownienne). Une version arbre en est donn�ee par Aldous

ave
 sa 
onvergen
e des arbres simples vers le 
ontinuum random tree.

�

A 
ette premiere expli
ation de l'omnipr�esen
e de 
ertaines lois vient s'ajouter le prin
ipe

d'invarian
e [7℄

2

selon lequel la loi limite de di��erentes fon
tionelles d'une mar
he al�eatoire ne

d�epend que tr�es peu (�a un fa
teur multipli
atif pr�es) de la loi d'un pas �el�ementaire : 
e dernier

prin
ipe se traduit, par exemple, en informatique fondamentale, par l'apparition de la même loi

limite pour la hauteur de di��erents arbres simples [8, 16℄, ou en
ore de la meme loi limite pour le


heminement total d'un arbre binaire ou pour le d�epla
ement total d'une table de ha
hage pleine.

Pour beau
oup d'autres situations 
ombinatoires (tailles de 
omposantes 
onnexes du graphes

al�eatoires, minimum spanning tree, random mappings, 
artes planaires, et
.), l'existen
e d'un objet

al�eatoire limite est soup�
onn�ee ou av�er�ee, expliquant ainsi les lois limites d�ej�a observ�ees, fournissant

�eventuellement de nouveaux r�esultats asymptotiques en 
ombinatoire et en analyse d'algorithmes,

et posant de nouvelles questions sur l'omnipr�esent mouvement brownien. Il est sage pour un

mini-
ours de se limiter �a la 
onvergen
e d'objets 
ombinatoires tr�es basiques : 
hemins de Dy
k

(bilat�eres ou non) et fa
teurs gau
hes, tous �etant plus g�en�eralement des 
hemins de Bernoulli, vers

le mouvement brownien et ses avatars, ex
ursion brownienne, m�eandre et pont. Le mouvement

y

Notes de 
ours pour le 
ours donn�e pendant le groupe de travail AL

�

EA'01 �a Luminy (Fran
e).

1

Pour un aper�
u agr�eable du lien entre mouvement brownien et fon
tions sp�e
iales, voir [1℄.

2


f. [5℄, lire l'introdu
tion.
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brownien, ses propri�et�es, et le th�eor�eme de Donsker requi�erent une trentaine d'heures de 
ours

pour un traitement rigoureux ; j'�eviterai don
 les d�emonstrations, et renverrai largement �a la

bibliographie abondante sur le sujet, en parti
ulier �a [17, 2, 12℄.

Plan.

1. Di��erents types de 
hemins al�eatoires

2. Changement d'�e
helle brownien (Brownian s
aling) et 
onvergen
e faible

3. Convergen
e faible : d�e�nition et premi�eres 
ons�equen
es

4. Convergen
e faible : 
rit�eres et autres 
ara
t�erisations

5. Propri�et�es du mouvement brownien

6. D�e
ompositions remarquables des traje
toires du mouvement brownien

7. Diverses propri�et�es de l'ex
ursion brownienne normalis�ee, du pont et du m�eandre brownien

8. Con
lusion

Les se
tions 6 �a 8 seront r�edig�ees dans un do
ument ult�erieur.

1. Di��erents types de 
hemins al�eatoires

D�e�nition (Chemins de Bernoulli). Un 
hemin de Bernoulli est un 
hemin sur le r�eseau engendr�e

par NE = (1; 1) et SE = (1;�1), partant de (0; 0), admettant 
omme pas �el�ementaires pr�e
is�ement

les pas NE et SE. Il y a 2

n


hemins de Bernoulli de longueur n.

D�e�nition (Chemins de Dy
k). Un 
hemin de Dy
k de longueur 2n est un 
hemin de Bernoulli

de longueur 2n qui se termine au point (2n,0) et reste positif ou nul sur toute sa longueur. Il y a

C

n

=

�

2n+1

n

�

2n+ 1


hemins de Dy
k de longueur 2n. Un mot de Dy
k est la des
ription d'un 
hemin de Dy
k par

la suite de ses pas, i. e. un mot form�e d'autant de 
ara
t�eres `M' (pour < mont�ees >) que de


ara
t�eres `D' (pour < des
entes >), et dont n'importe quel pr�e�xe 
ontient au moins autant de `M'

que de `D'. Il y a une bije
tion privil�egi�ee (entre mots et 
hemins), alors notons indi��eremment

B

�

2n

l'ensemble des C

n


hemins de Dy
k de longueur 2n ou l'ensemble des C

n

mots de Dy
k de

longueur 2n.

D�e�nition (Chemins de Dy
k bilat�eres). Un 
hemin de Dy
k bilat�ere de longueur 2n est un 
hemin

de Bernoulli de longueur 2n qui se termine au point (2n; 0). Il y a

�

2n

n

�


hemins de Dy
k bilat�eres

de longueur 2n.

D�e�nition (Fa
teurs gau
hes). Un fa
teur gau
he de longueur n est un 
hemin de Bernoulli de

longueur n qui reste positif ou nul tout au long de sa traje
toire. Il y a

�

n

bn=2


�

fa
teurs gau
hes de

longueur n.

Variables al�eatoires 
orrespondantes. Quitte �a identi�er une fon
tion et son graphe, on peut

voir l'ensemble B

n

des 
hemins de Bernoulli de longueur n et ses sous ensembles B

�

n

(ensemble

des 
hemins de Dy
k

3

), B

o

n

(ensemble des 
hemins de Dy
k bilat�eres) et B

+

n

(ensemble des fa
teurs

gau
hes) 
omme des parties �nies de l'espa
e C[ 0; n ℄ des fon
tions 
ontinues. On notera �

n

(resp.

�

�

n

, �

o

n

, �

+

n

) la mesure de probabilit�e sur C[ 0; n ℄ uniforme sur B

n

(resp. B

�

n

, B

o

n

, B

+

n

).

3

Dans la suite, 
haque fois que 
'est n�e
essaire, pour les 
hemins de Dy
k p. e., on sous entendra que n est pair,

et dans 
e 
as on notera n = 2n

0

.
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( ) Un 
hemin de Bernoulli

de longueur n = 60 ;

(+) Un fa
teur gau
he de longueur

n = 20 ;

(o) Un 
hemin de Dy
k bilat�ere

de longueur 2n = 20 ;

(�) Le 
hemin de Dy
k de longueur

2n = 20 asso
i�e au mot de Dy
k

MMMMDDMDMDMMDDMDDMDD.

Figure 1. Di��erents types de 
hemins.

D�e�nition. Dans la suite, une variable al�eatoire de loi �

n

(resp. �

�

n

, �

o

n

, �

+

n

) sera appel�ee mar
he

al�eatoire simple sym�etrique (resp. ex
ursion de Bernoulli, pont de Bernoulli, m�eandre de Bernoulli)

de longueur n.

Une variable al�eatoire X �a valeur dans un espa
e de fon
tions, p. e. dans C[ 0; 1 ℄, C[ 0; n ℄ ou

en
ore C[ 0;+1), est souvent appel�ee pro
essus sto
hastique.

Seule l'appellation < mar
he al�eatoire simple sym�etrique > est bien �etablie, les 3 autres �etant in-

spir�ees d'un vo
abulaire bien �etabli dans le 
adre du mouvement brownien, o�u l'on parle d'ex
ursion

brownienne, de pont brownien, et de m�eandre brownien. Dans la suite, par un abus de langage sur

lequel on ne s'attardera pas, on identi�era 
ouramment une suite u = (u

k

)

0�k�n

�a son prolonge-

ment en une fon
tion f 
ontinue lin�eaire par mor
eaux sur [ 0; n ℄, ou en
ore au graphe de 
ette

derni�ere fon
tion. En parti
ulier, les fon
tions de B

n

sont bien d�e�nies par leurs �evaluations en 0,

1, 2, . . . , n. La 
onstru
tion usuelle d'une mar
he al�eatoire simple sym�etrique est plutôt 
elle de

la suite des n+ 1 �evaluations :

D�e�nition (Mar
he al�eatoire simple sym�etrique, d�e�nition �equivalente). Notons (Y

i

)

i�1

une suite

de variables al�eatoires ind�ependantes et de même loi (on abr�egera < ind�ependantes et de même

loi > en i. i. d. dans la suite), ave


P(Y

k

= 1) = P(Y

k

= �1) = 1=2;

et posons

S

0

= 0; S

k

= Y

1

+ Y

2

+ � � �+ Y

k

;

on dit que S = (S

k

)

0�k�n

est la mar
he al�eatoire simple sym�etrique de longueur n.
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Remarques.

1. On verra dans la suite que 
ette 
onstru
tion r�ev�ele 
ertaines propri�et�es 
ru
iales des 
hemins

de Bernoulli, dont le mouvement brownien va h�eriter par passage �a la limite.

2. Il est naturel, dans 
e 
ontexte, de d�e�nir la mar
he simple sym�etrique pour tout entier non

n�egatif, i. e. de d�e�nir un 
hemin de Bernoulli al�eatoire de longueur in�nie.

3. Plus g�en�eralement, une mar
he al�eatoire S = (S

k

)

k�0

est d�e�nie sur un groupe (G;�), p. e.

i
i (R;+), par

S

k

= Y

1

� Y

2

� � � � � Y

k

;

les Y

i

�etant i. i. d., la loi de probabilit�e 
ommune aux Y

i

�etant appel�ee < pas > de la mar
he.

On peut par exemple asso
ier aux arbres unaires-binaires al�eatoires, ou aux arbres �etiquet�es

al�eatoires, une mar
he al�eatoire dont le pas est di��erent du pas de la mar
he al�eatoire simple

sym�etrique, i. e. di��erent de

1

2

Æ

�1

+

1

2

Æ

1

.

Une fois la mar
he al�eatoire simple sym�etrique ainsi d�e�nie, on peut voir �

�

n

(resp. �

0

n

, �

+

n

)


omme des lois 
onditionelles de 
ette mar
he de longueur n, 
'est-�a-dire que, pour A � C[ 0; n ℄,

�

n

(A) =

#(A \ B

n

)

2

n

= P(S 2 A);

�

�

n

(A) =

#(A \ B

�

n

)

C

n

0

= P(S 2 A j S

k

� 0; 0 � k � n et S

n

= 0);

�

0

n

(A) =

#(A \ B

0

n

)

�

n

n

0

�

= P(S 2 A j S

n

= 0);

�

+

n

(A) =

#(A \ B

+

n

)

�

n

bn=2


�

= P(S 2 A j S

k

� 0; 0 � k � n):

Ces d�e�nitions de �

n

(resp. �

�

n

, �

0

n

, �

+

n

) fournissent un algorithme eÆ
a
e pour la g�en�eration

d'un 
hemin de Bernoulli al�eatoire, et des algorithmes de rejet parfaitement ineÆ
a
es pour la

g�en�eration des 
hemins de Dy
k (bilat�eres ou non) ou en
ore des fa
teurs gau
hes.

2. Changement d'�e
helle brownien (Brownian s
aling) et 
onvergen
e faible

D�e�nition (Changement d'�e
helle brownien (Brownian s
aling)).

�

Etant donn�e une fon
tion f

d�e�nie sur un intervalle [ a; b ℄ born�e, on note f

[a;b ℄

la fon
tion d�e�nie sur [ 0; 1 ℄ par

f

[a;b ℄

(t) =

1

p

b� a

f

�

a+ t(b� a)

�

:

En parti
ulier 
ette op�eration envoie bije
tivement C[ a; b ℄ sur C[ 0; 1 ℄.

Le graphe de f

[a;b ℄

est ainsi obtenu, �a partir de 
elui de f , en multipliant la largeur par un

fa
teur

1

b�a

et la hauteur par un fa
teur

1

p

b�a

. Ba
helier en 1900, ou Einstein en 1905 (dans leur

�etude respe
tivement du 
ours des a
tions en bourse, et du mouvement, observ�e par Brown en 1826,

de 
ertaines parti
ules en suspension dans un liquide) utilisent expli
itement ou impli
itement, une

propri�et�e remarquable : le 
hangement d'�e
helle brownien d'un 
hemin de Bernoulli de longueur n


onverge vers un objet limite, quand n tend vers +1.

Notons �

n

(resp. �

�

n

, �

o

n

, �

+

n

) l'image de �

n

(resp. �

�

n

, �

o

n

, �

+

n

) par le 
hangement d'�e
helle

brownien. Le r�esultat 
l�e de 
e mini-
ours est le

Th�eor�eme. La suite de mesures de probabilit�es �

n

(resp. �

�

n

, �

o

n

, �

+

n

) sur l'espa
e C[ 0; 1 ℄ poss�ede,

au sens de la 
onvergen
e faible, une mesure de probabilit�e limite, � (resp. �

�

, �

o

, �

+

).
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La notion de 
onvergen
e faible est d�evelopp�ee Se
tions 3 et 4. Fixons le vo
abulaire.

( ) Un 
hemin de Bernoulli

de longueur n = 2500 ;

(+) Un m�eandre de Bernoulli au hasard

de longueur n = 2500 ;

(o) Un 
hemin de Dy
k bilat�ere au

hasard de longueur n = 1000 ;

(�) Un 
hemin de Dy
k au hasard de

longueur n = 2500.

Figure 2. Chemins de Bernoulli au hasard de longueur 1000 �a 2500 : ils poss�edent

en g�en�eral des 
u
tuations d'ordre de grandeur quelques dizaines.

D�e�nition (Mouvement brownien). La mesure de probabilit�e �, d�e�nie sur C[ 0; 1 ℄ muni de sa

tribu de bor�eliens, est appel�ee mesure de Wiener. Une variable al�eatoire B �a valeur dans C[ 0; 1 ℄,

ayant pour loi la mesure de Wiener, est appel�ee mouvement brownien (lin�eaire) (standard).

D�e�nition (Ex
ursion, pont et m�eandre browniens). Une variable al�eatoire e (resp. b, m) �a valeur

dans C[ 0; 1 ℄, ayant pour loi la mesure �

�

(resp. �

o

, �

+

), est appel�ee ex
ursion brownienne (nor-

malis�ee) (resp. pont brownien, m�eandre brownien).

Les 
hemins de Bernoulli de la Figure 2 donnent une id�ee de l'allure typique du mouvement

brownien ( ), resp. du m�eandre (+), du pont (o), de l'ex
ursion brownienne (�). On peut

r�esumer les d�e�nitions pr�e
�edentes en un tableau 2�2, suivant la pr�esen
e ou l'absen
e des deux


ontraintes (de positivit�e et de retour en 0 �a la �n) :

Remarques.

{ Le th�eor�eme 
i-dessus rassemble en fait quatre th�eor�emes et poss�ede quatre auteurs : la 
on-

vergen
e des mar
hes al�eatoires vers la mesure de Wiener �, ou vers le mouvement brownien,

a �et�e d�emontr�ee par Donsker [6℄, la 
onvergen
e vers l'ex
ursion brownienne par Kaigh [11℄,

la 
onvergen
e vers le m�eandre brownien par Iglehart [9℄, et 
elle vers le pont brownien par

Liggett [13℄.

{ Les r�esultats de Donsker, Iglehart et autres portent en fait sur la 
onvergen
e de mar
hes

al�eatoires, 
onditionn�ees ou non, de pas plus g�en�eraux que 
eux de la mar
he al�eatoire simple

sym�etrique : les pas Y

i

sont toujours i. i. d., mais de loi 
ommune quasiment quel
onque
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Figure 3. Les di��erents types de 
hemins et leurs analogues browniens.

(parfois Y

i

doit être �a valeurs enti�eres, il doit toujours être 
entr�e (E[Y

i

℄ = 0) et �a varian
e �nie

(0 < E[Y

2

i

℄ < +1)). Cette g�en�eralit�e est bien sûr int�eressante, mais plus parti
uli�erement

en 
ombinatoire, ou en analyse d'algorithme. Par exemple, il est expliqu�e dans Aldous ou

dans [19℄ que le mot de  Lukasiewi
z asso
i�e �a un arbre g�en�eral (resp. �etiquet�e) de taille n est

aussi asso
i�e �a une mar
he al�eatoire de longueur n, 
onditionn�ee

L

, de pas p = (p

k

)

k��1

g�eom�etrique (donn�e par p

k

= 2

�k�2

) (resp. de pas Poisson, donn�e par p

k

=

1

k+1! e

). Ainsi

le r�esultat de Kaigh permet d'expliquer un fais
eau de 
omportements asymptotiques de

statistiques li�ees aux arbres < g�en�eraux > (resp. aux arbres �etiquet�es, graphes 
onnexes et,

par exemple, 
onstantes de Wright, ha
hage lin�eaire, et
.).

{ Une multitude de 
ara
t�erisations et 
onstru
tions di��erentes du mouvement brownien, du

pont, de l'ex
ursion et du m�eandre brownien, souvent d�e
oulant de propri�et�es 
ombinatoires

des 
hemins de Dy
k ou de Bernoulli, seront donn�ees aux Se
tions 5 et 7.

3. Convergen
e faible : d�e�nition et premi�eres 
ons�equen
es

J'abr�ege en
ore i
i 
e qui est expliqu�e de mani�ere tr�es 
laire et assez �e
onomique dans le livre

fondamental de Billingsley. On se pla
era dans un espa
e m�etrique (S;S), qui, pour nous, sera

ex
lusivement R

d

ou C[ 0; 1 ℄, muni de la distan
e usuelle dans le premier 
as, de la distan
e de

la 
onvergen
e uniforme dans le se
ond 
as ; S d�esignera la tribu engendr�ee par (la plus petite

tribu 
ontenant les) ouverts de la topologie induite. Les mesures 
onsid�er�ees seront des mesures

de probabilit�e sur S. Les r�esultats 
i-dessous s'appliquent �a des espa
es m�etriques plus g�en�eraux,

dont on exige parfois qu'il soient 
omplets et s�eparables (voir [2, 14℄).

D�e�nition (Convergen
e faible). On dit que la suite de mesures de probabilit�e (�

n

)

n�0


onverge

faiblement vers la mesure de probabilit�e �, si et seulement si, pour toute fon
tion 
ontinue born�ee f
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de S dans R,

lim

n

Z

f d�

n

=

Z

f d�:

On dit qu'une suite de variables al�eatoires X

n

�a valeurs dans S 
onverge faiblement vers la

variable al�eatoire X si et seulement si la suite (�

n

)

n�0

des lois des v. a. X

n


onverge faiblement

vers la loi � de X. La CNS de la d�e�nition se traduit alors ainsi : pour toute fon
tion 
ontinue

born�ee f de S dans R,

lim

n

E

�

f(X

n

)

�

= E

�

f(X)

�

:

Il en d�e
oule imm�ediatement que

Propri�et�e (Corollaire fondamental). Si X

n


onverge faiblement vers X, et si � est une fon
tion


ontinue de S dans T (deux espa
es m�etriques), alors �(X

n

) 
onverge faiblement vers �(X).

D�emonstration. Pour toute fon
tion f 
ontinue born�ee de T dans R, fo� est 
ontinue born�ee de S

dans R, don


lim

n

E

h

f

�

�(X

n

)

�

i

= E

h

f

�

�(X)

�

i

:

�

Quelques exemples de fon
tions 
ontinues sur S = C[ 0; 1 ℄.

1. Pour T = R ou R

d

, et pour des nombres r�eels t, t

1

, . . . , t

d

�x�es dans [ 0; 1 ℄, les appli
ations

f 7�! �

t

(f) = f(t) et f 7�! �

~

t

(f) =

�

f(t

1

); : : : ; f(t

d

)

�

sont 
ontinues, don
 X

n

(t)

faiblement

�!

X(t) et

�

X

n

(t

1

); : : : ;X

n

(t

d

)

�

faiblement

�!

�

X(t

1

); : : : ;X(t

d

)

�

:

Cette 
ons�equen
e de la 
onvergen
e faible est appel�ee 
onvergen
e des distributions �ni-

dimensionelles de X

n

vers 
elles de X. La 
onvergen
e des distributions �ni-dimensionelles

ne suÆt pas �a assurer la 
onvergen
e faible, elle implique seulement que s'il y a 
onvergen
e,

alors X est la limite. Pour un exemple simple o�u il n'y a pas 
onvergen
e faible, alors qu'il

y a 
onvergen
e des distributions �ni-dimensionelles, voir la se
tion suivante.

2. f 7�!

�

max f;minf;

R

1

0

f(t) dt

�

est 
ontinue. Dans le 
as du maximum, la 
onvergen
e en loi

de la hauteur des arbres g�en�eraux apparâ�t alors 
omme une 
ons�equen
e du th�eor�eme 
l�e,

version Kaigh. Dans le même goût, la 
onvergen
e en loi de la largeur des arbres simples est

une 
ons�equen
e de la 
onvergen
e du pro�l, d�emontr�ee par Drmota et Gittenberger.

3. f 7�! argmax f n'est pas 
ontinue sur C[ 0; 1 ℄, non plus que la suite des longueurs des

intervalles s�eparant les z�eros de f (on parle de longueurs des < ex
ursions > de f).

En parti
ulier, la 
onvergen
e jointe de deux statistiques int�eressantes ne 
oûte pas plus 
her que

la 
onvergen
e d'une seule. Les derniers 
ontre-exemples frustrants appellent un th�eor�eme relaxant

l'hypoth�ese de 
ontinuit�e sur �. Notons D

�

l'ensemble des dis
ontinuit�es de �.

Th�eor�eme (Voir [2, Th. 5.1, p. 30℄). Si X

n

faiblement

�! X, et si P(X 2 D

�

) = 0, alors �(X

n

)


onverge faiblement vers �(X).

La d�emonstration utilise le th�eor�eme < porte-manteau >, qu'on verra un peu plus tard. Donnons

deux exemples d'appli
ation :

{ posons �(f) = sup

�

x 2 [ 0; 1 ℄

�

�

f(x) = max

[ 0;1 ℄

f

	

. Alors � n'est pas 
ontinue sur C[ 0; 1 ℄,

D

�

�etant l'ensemble des fon
tions 
ontinues qui atteignent leur maximum en plus d'un point.
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Il se trouve que le mouvement brownien standard B, ave
 probabilit�e 1, atteint son maximum

en un seul point de [ 0; 1 ℄, don


(1) P(B 2 D

�

) = 0:

{ posons T

a

(f) = inf

�

x � 0

�

�

f(x) � a

	

, l'in�mum de l'ensemble vide �etant par 
onven-

tion pris �egal �a +1 ; D

T

a

est l'ensemble des fon
tions f satisfaisant f � a sur un inter-

valle

�

T

a

(f); T

a

(f) + h

�

, h > 0. Il se trouve qu'ave
 probabilit�e 1, T

a

(B) est un point

d'a

umulation de f t j B

t

> a g, entrainant que

(2) P(B 2 D

T

a

) = 0:

Les propri�et�es 3. et 4. du mouvement brownien sont des 
ons�equen
es plus ou moins dire
tes de

la propri�et�e de Markov forte

4

. De nombreux pro
essus sto
hastiques h�eritent

5

des propri�et�es (1)

et (2) du mouvement brownien.

Les th�eor�emes de 
ette se
tion permettent d'exploiter les r�esultats de Donsker et al., mais

r�e
iproquement, joints ave
 des 
onsid�erations 
ombinatoires, ils permettent de trouver ou de

retrouver les lois de fon
tionelles int�eressantes du mouvement brownien et de ses avatars.

Exer
i
es.

1. Posons M

n

= max

0�k�n

S

k

. Montrer que pour k � 0

P(M

n

� k) = P(S

n

� k + 1) +P(S

n

� k):

Utiliser le Th�eor�eme 
entral limite (version de Moivre

6

) pour en d�eduire que

max fB

s

j 0 � s � 1 g

loi

= jB

1

j:

Une �etape possible est de 
al
uler

P(M

n

� k et S

n

� `);


e qui permet en prime d'obtenir la densit�e jointe de

�

B

1

;max fB

s

j 0 � s � 1 g

�

.

2. Notons � le lieu o�u le mouvement brownien atteint son maximum. Montrer que � suit la loi

de l'ar
sinus, i. e. pour 0 � a � b � 1,

P

�

� 2 [ a; b ℄

�

=

Z

b

a

dx

�

p

x(1� x)

=

1

�

�

ar
sin(2b� 1)� ar
sin(2a� 1)

�

:

Pour 
ela, on pourra montrer que le lieu �

n

du premier maximum d'un 
hemin de Bernoulli

de longueur n satisfait, pour 1 � k � n� 1,

P(�

n

= k) =

�

k � 1

�

k�1

2

�

��

n� k

�

n�k

2

�

�

2

�n

;

et �etablir une 
onvergen
e lo
ale �a l'aide de bornes sur le deuxi�eme terme dans la formule de

Stirling (si on veut être 
ompl�etement rigoureux). On voit que le maximum est atteint ave


une forte probabilit�e hors des intervalles [ a; 1 � a ℄, la densit�e de probabilit�e de � ayant des

pôles en 0 et 1.

4

Pour (1), voir [12, preuve du Th. 2.9.12 p. 107℄. Pour (2), voir la Se
tion 5 de 
e mini-
ours.

5

en vertu du th�eor�eme de Cameron{Martin{Girsanov, 
f. [17, Ch. 8℄.

6

Voir Se
tion 5.
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3. Montrer que la valeur terminale du m�eandre brownien, m(1), suit la loi de Rayleigh, �a savoir,

pour 0 � a � b,

P

�

m(1) 2 [ a; b ℄

�

=

Z

b

a

x exp

�

�

x

2

2

�

dx = exp

�

�

a

2

2

�

� exp

�

�

b

2

2

�

:

4. Montrer que le lieu du maximum du pont brownien est uniform�ement distribu�e sur [ 0; 1 ℄

7

.

Y a-t-il une d�emonstration 
ombinatoire du fait que la valeur maximale du pont brownien

suit la loi de Rayleigh

8

?

5. D�emontrer la formule (11.5) page 78 de [2℄. En d�eduire la loi du maximum de l'ex
ursion

brownienne

9

.

4. Convergen
e faible : 
rit�eres et autres 
ara
t�erisations

Th�eor�eme (Th�eor�eme < porte-manteau >, voir [2, Th. 2.1, p. 11℄). X

n


onverge faiblement vers X

si et seulement si une des 
onditions suivantes est remplie :

1. lim

n

E

�

f(X

n

)

�

= E

�

f(X)

�

pour toute fon
tion f 
ontinue born�ee de S dans R ;

2. lim

n

E

�

f(X

n

)

�

= E

�

f(X)

�

pour toute fon
tion f born�ee, uniform�ement 
ontinue, de S

dans R ;

3. lim sup

n

P(X

n

2 F ) � P(X 2 F ) pour tout ferm�e F de S ;

4. lim inf

n

P(X

n

2 G) � P(X 2 G) pour tout ouvert G de S ;

5. lim

n

P(X

n

2 A) = P(X 2 A) pour tout A de S qui v�eri�e P(X 2 �A) = 0.

I
i en
ore on pourra se reporter �a [2℄ pour les d�eveloppements. Une 
lasse A de fon
tions de S


ara
t�erise une loi de probabilit�e si pour tout 
hoix de deux variables X et Y �a valeurs dans S,

on a

8f 2 A; E

�

f(X)

�

= E

�

f(Y )

�

) X

loi

= Y:

Exemples.

1. Pour S = R, la fon
tion de r�epartition 
ara
t�erise une loi de probabilit�e, 
e qui revient �a dire

que la 
lasse A =

�

1

(�1;x℄

�

�

x 2 R

	

est 
ara
t�erisante.

2. Pour S = R

d

, la 
lasse A =

�

�

~

t

�

�

~

t 2 R

d

	

, o�u �

~

t

est d�e�ni par

�

~

t

(~x) = e

i

~

t:~x

est 
ara
t�erisante,

~

t 7�! E

�

e

i

~

t�X

�

�etant appel�ee fon
tion 
ara
t�eristique de X.

3. Pour S = C[ 0; 1 ℄, C[ a; b ℄ ou C[ 0;+1) la 
lasse A =

�

�

~

t

�

�

d � 1;

~

t 2 R

d

	

, o�u �

~

t

est d�e�ni

par

�

~

t

(f) =

�

f(t

1

); : : : ; f(t

d

)

�

est 
ara
t�erisante.

4. La 
lasse A des fon
tions born�ees et uniform�ement 
ontinues de S dans R est 
ara
t�erisante.

La 
onvergen
e de E

�

�(X

n

)

�

vers E

�

�(X)

�

pour toutes les fon
tions � d'une 
lasse 
ara
t�erisante

A suÆt-elle �a assurer la 
onvergen
e faible de X

n

vers X ? La r�eponse est di��erente pour 
ha
un

des exemples 
i-dessus : pour 2. 
'est oui, en vertu du Th�eor�eme de 
ontinuit�e de Paul L�evy [2,

Th�eor�eme 7.6, p. 46℄, et il s'agit d'une CNS. Pour 1. 
'est aussi oui, mais la 
ondition est largement

trop restri
tive : il s'agit d'une 
ondition n�e
essaire seulement si la loi limite est di�use (i. e.

7

Utiliser le lemme 
y
lique attribu�e parfois �a Raney, parfois �a Dvoretski ou �a Motzkin.

8


f. [2, Se
tion 11℄, mais on peut sûrement trouver un ra

our
i (je n'ai pas eu le temps de m'en assurer).

9

C'est, en parti
ulier, la loi limite pour la hauteur ou la largeur des arbres simples [8, 16℄.
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P(X = a) = 0 pour tout a dans R), en vertu du 5. du Th�eor�eme < porte-manteau >, puisque

�(�1; a ℄ = fag ! En�n, la r�eponse est non pour l'exemple 3., 
omme le montre l'exemple suivant

tir�e de [2℄ : prenons X et X

n

non al�eatoires �a valeur dans C[ 0; 1 ℄, X � 0 et X

n

� f

n

, f

n

ayant

le graphe 
i-dessous : les distributions �ni-dimensionelles de X

n


onvergent bien faiblement vers

Figure 4. f

n

est 
ontinue et aÆne par mor
eau, ave
 i
i pour n = 10,

�

f(0); f(1=2n); f(1=n); f(1)

�

= (0; 1; 0; 0).

les probabilit�es 
on
entr�ees sur 0 2 R

d

, i. e. vers les distributions �ni-dimensionelles de X, mais

�(X

n

) = maxX

n

� 1 ne 
onverge pas faiblement vers �(X) = maxX � 0.

Il faut don
 une 
ondition suppl�ementaire �a la 
onvergen
e des distributions �ni-dimensionelles

pour obtenir la 
onvergen
e faible des variables al�eatoires �a valeur dans C[ 0; 1 ℄ : 
'est la 
ondition

de tension.

D�e�nition. La suite de variables al�eatoires X

n

est tendue (ou �equitendue) si et seulement si pour

tout " > 0 il existe un 
ompa
t K

"

de S tel que

8n; P(X

n

=2 K

"

) � ":

Le Th�eor�eme de Prohorov [2, Se
tion 6℄ assure que la tension est une CS (et une CNS si S =

C[ 0; 1 ℄) pour la relative 
ompa
it�e d'une suite de mesures de probabilit�e (i
i les lois des v. a. X

n

).

Il suit que 
ette suite de variables (X

n

)

n�0

poss�ede au moins une valeur d'adh�eren
e pour la


onvergen
e faible. On 
onnait les distributions �ni-dimensionelles de 
ette valeur d'adh�eren
e,


e sont les limites des distributions �ni-dimensionelles de X

n

, don
 
e sont les distributions �ni-

dimensionelles de X, don
 X est la seule valeur d'adh�eren
e de X

n

, or une suite relativement


ompa
te ayant une seule valeur d'adh�eren
e est 
onvergente. Finalement :

Th�eor�eme. Si une suite de variables al�eatoires X

n

variables al�eatoires �a valeurs dans C[ 0; 1 ℄ est

tendue, et si ses distributions �ni-dimensionelles 
onvergent vers 
elles de X, alors X

n


onverge

faiblement vers X.

Le 
hapitre 2 de [2℄ donne une foule de 
rit�eres de tension dans C[ 0; 1 ℄, bas�ees sur la 
ar-

a
t�erisation d'Arzel�a{As
oli des 
ompa
ts de C[ 0; 1 ℄. Par exemple, les d�emonstrations de Donsker,

Iglehart et Kaigh sont bas�ees sur de tels 
rit�eres, ainsi que la d�emonstration par Drmota et Git-

tenberger de la 
onvergen
e du pro�l des arbres simples. Il existe des traitements plus modernes

[10, 14, 15℄, mais [2℄ est d�ej�a tr�es lisible et 
omplet.



Ph. Chassaing, summary by Ph. Chassaing 181

Il faut aussi parler du lien entre 
onvergen
e presque sûre, en probabilit�e, et dans L

p

d'une part,


onvergen
e faible d'autre part. Les premi�eres 
it�ees exigent que les variables X

n

et X, �a valeurs

dans le même espa
e S �a l'arriv�ee, soient aussi d�e�nie sur le même triplet probabiliste (
;A;P)

au d�epart, alors que la 
onvergen
e faible, �etant en fait uniquement la 
onvergen
e de la mesure

image par X

n

vers la mesure image par X des mesures de probabilit�e des espa
es de d�epart, exige

seulement que X

n

et X aient le même espa
e d'arriv�ee S. Notons d(�; �) la distan
e sur S.

D�e�nition. Une suite (X

n

)

n�0


onverge :

1. presque sûrement vers X si et seulement si

P

�

n

! 2 


�

�

�

lim

n

d

�

X

n

(!);X(!)

�

= 0

o

�

= 1 ;

2. en probabilit�e vers X si et seulement si

8" > 0; lim

n

P

�

n

! 2 


�

�

�

d

�

X

n

(!);X(!)

�

� "

o

�

= 0 ;

3. vers X dans L

p

si et seulement si

lim

n

E

�

d(X

n

;X)

p

�

= 0:

Th�eor�eme. Les trois 
onvergen
es 
i-dessus entrainent la 
onvergen
e faible.

D�emonstration. Seulement pour le 1., pour une fon
tion 
ontinue �, �(X

n

) 
onverge presque

sûrement vers �(X), et si de plus � est born�ee, le Th�eor�eme de 
onvergen
e domin�ee entraine

bien que lim

n

E

�

�(X

n

)

�

= E

�

�(X)

�

. Par ailleurs, 3. entraine 2. en vertu de l'in�egalit�e de Markov.

Pour montrer que 2. entraine la 
onvergen
e faible, il faut utiliser la 
ara
t�erisation 2. du Th�eor�eme

< porte-manteau > et travailler �a peine un peu plus. �

Finalement il y a une quasi-r�e
iproque utile au th�eor�eme pr�e
�edent, 
'est le

Th�eor�eme (Th�eor�eme de repr�esentation de Skorohod, voir [18, II.86.1, p. 215℄). Si S est un espa
e

de Lusin (en parti
ulier pour S = C[ 0; 1 ℄) et si la suite de variables al�eatoires (X

n

)

n�0

, �a valeurs

dans S, 
onverge faiblement vers X, alors il existe un triplet probabiliste (
;A;P), et, d�e�nies

sur 
e triplet, des 
opies (

^

X

n

)

n�0

et

^

X de (X

n

)

n�0

et de X, telles que (

^

X

n

)

n�0


onverge presque

sûrement vers

^

X.

Par < 
opie >, on entend que X

n

et

^

X

n

, ou en
ore X et

^

X , ont même loi. Par exemple, il n'est

pas toujours naturel de 
onstruire des arbres simples al�eatoires, ou des graphes al�eatoires, de tailles

di��erentes, sur le même espa
e de probabilit�e : il est beau
oup plus fr�equent de 
onsid�erer, par

exemple, l'ensemble T

n

des arbres �etiquet�es de taille n 
omme un espa
e de probabilit�e �a lui tout

seul, muni de la probabilit�e uniforme. Plonger tous les T

n

dans un même triplet probabiliste �evite

pourtant parfois 
ertains 
al
uls de lois �ni-dimensionelles : ils sont rempla
�es par des estimations

plus fa
iles 
onduisant �a une 
onvergen
e presque sûre

10

. Par ailleurs, le Th�eor�eme de repr�esentation

de Skorohod est un outil tr�es 
ommode pour les d�emonstrations de la Se
tion 6.

5. Propri�et�es du mouvement brownien

Le but i
i n'est 
ertainement pas de donner de d�emonstration, mais, �a titre mn�emote
hnique, de

montrer 
omment le mouvement brownien imite les (ou h�erite des) propri�et�es de la mar
he al�eatoire

simple sym�etrique.

10

Voir par exemple [4℄.
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A

roissements ind�ependants et stationnaires. La mar
he al�eatoire simple sym�etrique pos-

s�ede des a

roissements ind�ependants : sous �

n

, pour 1 � k

1

� k

2

� � � � � k

i

� n,

(Y

1

+ � � � + Y

k

1

) ? (Y

k

1

+1

+ � � � + Y

k

2

) ? � � � ? (Y

k

i�1

+1

+ � � �+ Y

k

i

)

i. e.

S

k

1

? (S

k

2

� S

k

1

) ? � � � ? (S

k

i

� S

k

i�1

)

et stationnaires

(Y

k+1

+ � � �+ Y

k+`

)

loi

= (Y

1

+ � � �+ Y

`

)

i. e.

S

k+`

� S

k

loi

= S

`

:

Le mouvement brownien aussi ! C'est-�a-dire sous �, pour 0 � t

1

� t

2

� � � � � t

i

� 1,

B

t

1

? (B

t

2

�B

t

1

) ? � � � ? (B

t

i

�B

t

i�1

)

et pour t � 0, s � 0,

B

t+s

�B

t

loi

= B

s

:

Cela entraine la propri�et�e de Markov faible.

Propri�et�e (Propri�et�e de Markov faible). Le nouveau pro
essus W = (W

s

)

0�s�h

, d�e�ni par

W

s

= B

t+s

�B

t

est ind�ependant de (B

s

)

0�s�t

. De plus W a même loi que (B

s

)

0�s�h

.

La d�emonstration requiert seulement de v�eri�er que pour 
haque k, `, et pour 
haque suite de

nombres r�eels 0 < t

1

< t

2

< � � � < t

k

� t et 0 < s

1

< s

2

< � � � < s

`

� h,

(B

t

i

)

1�i�k

? (W

s

i

)

1�i�`

et (W

s

i

)

1�i�`

loi

= (B

s

i

)

1�i�`

:

Pour l'ind�ependan
e, il suÆt de remarquer que (B

t

i

)

1�i�k

? (W

s

i

)

1�i�`

est �equivalent �a

(B

t

1

; B

t

2

�B

t

1

; : : : ; B

t

k

�B

t

k�1

) ? (W

s

1

;W

s

2

�W

s

1

; : : : ;W

s

`

�W

s

`�1

)

et de remarquer que

(W

s

1

;W

s

2

�W

s

1

; : : : ;W

s

`

�W

s

`�1

) = (B

t+s

1

�B

t

; B

t+s

2

�B

t+s

1

; : : : ; B

t+s

`

�B

t+s

`�1

):

Cette derni�ere �egalit�e plus la stationnarit�e des a

roissements donne aussi l'�egalit�e en loi.

Remarque. On a bien sûr t > 0, h > 0, et on doit pour le moment imposer t + h � 1, mais


ette derni�ere in�egalit�e est en fait super
ue 
ar il est naturel de d�e�nir le mouvement brownien

sur [ 0;+1) (
omme de d�e�nir la mar
he al�eatoire simple sym�etrique (S

k

)

k�0

pour 
haque entier

positif).
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Une 
onstru
tion possible du mouvement brownien sur la demi-droite des entiers

positifs. Consid�erons par exemple une suite (B

(n)

)

n�0

, B

(n)

= (B

(n)

s

)

0�s�1

de mouvements brow-

niens mutuellement ind�ependants

11

. D�e�nissons alors B = (B

t

)

t�0


omme un �el�ement al�eatoire de

C[ 0;+1), tel que pour n � s � t � n+ 1,

B

t

�B

s

= B

(n)

t

�B

(n)

s

;


'est �a dire qu'on re
olle les graphes (traje
toires) des B

(n)

pour former le graphe de B. Il est alors

fa
ile de voir que B h�erite des B

(n)

l'ind�ependan
e des a

roissements. Il en h�erite aussi la statio-

narit�e des a

roissements, mais, pour le voir, il faut parler un peu de la loi de 
es a

roissements.

Lois des a

roissements du mouvement brownien. La formule de Stirling, fondamentale en


ombinatoire, est n�ee des travaux de de Moivre qui sont en quelque sorte un premier pas vers le

mouvement brownien

12

. Posons

S

k+`

� S

k

= �`+ 2Z:

Alors Z suit la loi binomiale (`;

1

2

), i. e. pour 0 � i � `,

P(Z = i) =

�

`

i

�

1

2

i

:

On sait, depuis que de Moivre

13

a d�emontr�e la formule de Stirling

14

, et l'approximation < gaussien-

ne > de la loi binomiale

15

, que l'on peut �e
rire, pour ` = 2bsn=2
 � ns,

P(S

k+`

� S

k

= 2bx

p

n =2
) = P

�

S

k+`

� S

k

p

n

2

�

2bx

p

n=2
 � 1

p

n

;

2bx

p

n=2
+ 1

p

n

��

�

2

p

n

1

p

2�s

e

�x

2

=2s

� P

�

N

p

s 2

�

x�

1

p

n

; x +

1

p

n

��

;

o�u N est une variable al�eatoire suivant la loi normale (ou gaussienne) 
entr�ee r�eduite, souvent not�ee

N (0; 1), �a savoir

P

�

N 2 [ a; b ℄

�

=

Z

b

a

1

p

2�

e

�x

2

=2

dx:

En d'autres termes,

S

k+`

�S

k

p

n

a approximativement la même loi que

p

sN , �a savoir, la loi normale

(ou gaussienne) 
entr�ee de varian
e s, not�ee traditionellement N (0; s). D'autre part,

S

k+`

�S

k

p

n

est

l'a

roissement, entre les points

k

n

et, approximativement,

k

n

+ s, de la fon
tion obtenue, �a partir

de la mar
he al�eatoire simple sym�etrique, par 
hangement d'�e
helle brownien. Par passage �a la

limite, on en d�eduit que

Propri�et�e (A

roissements gaussiens). Ind�ependemment de t,

B

t+s

�B

t

loi

=

p

sN:

11

On peut par exemple d�e�nir une telle suite 
omme un �el�ement au hasard de C[ 0; 1 ℄

N

muni du produit in�ni de

mesures de Wiener �


N

.

12

un peu for
�e, le rappro
hement, non ?

13

Voir http://www-groups.d
s.st-andrews.a
.uk/~history/Mathemati
ians/De_Moivre.html.

14

dans Mis
ellanea Analyti
a, 1730.

15

dans Approximatio ad Summam Terminorum Binomii a+ bj

n

in Seriem expansi, 1733.
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Notons

p

s

(x; y) =

1

p

2�s

e

�

(y�x)

2

2s

:

On peut voir p

s

(x; y) 
omme la densit�e de probabilit�e de x +

p

sN , i. e., en vertu de la propri�et�e

d'a

roissements gaussiens ind�ependants, 
omme la densit�e 
onditionelle de B

t+s

, sa
hant que

B

t

= x. On en d�eduit que

Propri�et�e (Distributions �ni-dimensionelles du mouvement brownien). La densit�e de probabilit�e f

de (B

t

1

; B

t

2

; : : : ; B

t

d

) est donn�ee par la formule

f(x

1

; x

2

; : : : ; x

d

) = p

t

1

(0; x

1

) p

t

2

�t

1

(x

1

; x

2

) : : : p

t

d

�t

d�1

(x

d�1

; x

d

):

Une autre mani�ere de 
ara
t�eriser les distributions �ni-dimensionelles du mouvement brownien est

de remarquer que (B

t

1

; B

t

2

; : : : ; B

t

d

) est un ve
teur gaussien 
entr�e, dont la loi est don
 
ara
t�eris�ee

par sa matri
e de 
ovarian
e. On 
al
ule fa
ilement le terme g�en�eral :

Cov(B

t

i

; B

t

j

) = min(t

i

; t

j

):

En e�et, pour s � t,

Cov(B

s

; B

t

) = Cov(B

s

; B

s

) +Cov(B

s

; B

t

�B

s

) = Var(B

s

) = Var

�

p

sN

�

= sVar(N) = s;

la deuxi�eme �egalit�e d�e
oulant de B

s

? B

t

�B

s

.

Rappelons qu'une variable al�eatoire X = (X

1

;X

2

; : : : ;X

d

) �a valeurs dans R

d

est un ve
teur

gaussien si et seulement si toutes les 
ombinaisons lin�eaires de ses 
omposantes sont gaussiennes

(ont même loi que m+�N , pour un 
hoix appropri�e de m et �), ou en
ore, si et seulement si X est

image par une transformation aÆne (disons, X = ~m+A

~

N) d'un ve
teur

~

N = (N

1

; N

2

; : : : ; N

k

) dont

les 
omposantes N

i

sont i. i. d. et de loi N (0; 1). Dans le 
as des distributions �ni-dimensionelles

du mouvement brownien, on a ~m = 0, et on peut exhiber A et

~

N , en posant

N

1

=

B

t

1

p

t

1

; N

i

=

B

t

i

�B

t

i�1

p

t

i

� t

i�1

:

La loi d'un ve
teur gaussien est 
ara
t�eris�ee par l'esp�eran
e de 
ha
une de ses 
omposantes et par

sa matri
e de 
ovarian
e. Dans la repr�esentation aÆne 
i-dessus, ~m est le ve
teur des esp�eran
es

des 
omposantes, et la matri
e de 
ovarian
e est � =

t

AA.

D�e�nition. Un pro
essus X dont les distributions �ni-dimensionelles sont gaussiennes est appel�e

pro
essus gaussien. La loi du pro
essus est alors 
ara
t�eris�ee par sa fon
tion moyenne m(t) = E[X

t

℄

et sa fon
tion 
ovarian
e �(s; t) = Cov(X

s

;X

t

).

Le mouvement brownien et, 
omme on le verra en Se
tion 7, le pont brownien, sont deux exemples

de pro
essus gaussiens 
entr�es (m(t) � 0). La fon
tion 
ovarian
e du mouvement brownien est

�(s; t) = min(s; t):

Th�eor�eme (Transformations des traje
toires du mouvement brownien). Le mouvement brownien

est pr�eserv�e par les transformations suivantes :

{ Sym�etrie : W

(1)

= (�B

t

)

t�0

est un mouvement brownien.

{ D�e
alage : Pour t

0

� 0, W

(2)

= (B

t

0

+t

�B

t

0

)

t�0

est un mouvement brownien.

{ Changement d'�e
helle : Pour 
 > 0, W

(3)

=

�

1

p




B


t

�

t�0

est un mouvement brownien.

{ Inversion du temps : W

(4)

=

�

W

(4)

t

�

t�0

d�e�ni par W

(4)

t

= tB

1=t

, pour t > 0, et par W

(4)

0

= 0,

est un mouvement brownien.
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D�emonstration. Cha
un de 
es pro
essus est gaussien 
entr�e : il suÆt de 
al
uler sa fon
tion


ovarian
e. Dans les quatre 
as, on trouve �

(i)

(s; t) = min(s; t). Reste un petit probl�eme : la


ontinuit�e de W

(4)

en 0, qui n'est pas automatique. La loi forte des grands nombres

16

pour le

mouvement brownien, stipule que

P

�

lim

+1

B

t

t

= 0

�

= 1:

En 
ons�equen
e

P

�

�

! 2 


�

�

t!W

(4)

t

(!) est 
ontinue en 0

	

�

= 1:

Le pro
essus W

(4)

est don
 presque sûrement 
ontinu en 0, alors que le mouvement brownien,

tel qu'on l'a d�e�ni, est �a valeurs dans C[ 0; 1 ℄, 
'est-�a-dire que t ! B

t

(!) est 
ontinu en 0 pour

tout !. R�egler 
e genre de probl�eme rigoureusement est justement 
e que je veux �eviter dans une

introdu
tion au mouvement brownien pr�evue pour être su

in
te

17

. �

Temps d'atteinte. Le temps d'atteinte de la hauteur a > 0, not�e T

a

, est d�e�ni par

T

a

=

(

inf f t � 0 j B

t

� a g si l'ensemble n'est pas vide,

+1 si l'ensemble est vide.

Th�eor�eme. T

a

a même loi que

a

2

N

2

, en parti
ulier P(T

a

= +1) = 0.

D�emonstration. On a

P(T

a

> t) = P

�

max fB

s

j 0 � s � t g < a

�

= P

�

max

�

1

p

t

B

ts

�

�

�

0 � s � 1

�

<

a

p

t

�

= P

�

max fB

s

j 0 � s � 1g <

a

p

t

�

= P

�

jB

1

j <

a

p

t

�

= P

�

a

2

B

2

1

> t

�

;

la troisi�eme �egalit�e par 
hangement d'�e
helle, la quatri�eme 
omme 
ons�equen
e de l'exer
i
e 1,

Se
tion 3. �

D�e�nition. Une v. a. T �a valeurs dans [ 0;+1℄ est un temps d'arrêt du mouvement brownien si

et seulement si

�

!

�

�

T (!) � t

	

est dans la tribu engendr�ee par (B

s

)

0�s�t

, en d'autre termes, si on

peut d�e
ider de la v�era
it�e de l'aÆrmation < T (!) � t > en observant la traje
toire du mouvement

brownien seulement jusqu'�a l'instant t (in
lus).

En parti
ulier, les temps d'atteinte T

a

sont des temps d'arrêts.

Propri�et�e (Propri�et�e de Markov forte, 
f. [12, Se
tion 2.5℄). T �etant un temps d'arrêt, le nouveau

pro
essus W

T

= (W

T

s

)

0�s

, d�e�ni par

W

T

s

= B

T+s

�B

T

est ind�ependant de (B

s

)

0�s�T

. De plus W

T

a même loi que le mouvement brownien.

16

Pour une d�emonstration simple, voir [12, Probl�eme 9.3, p. 104 et Remarque 3.10, p. 15℄. On peut être plus

pr�e
is sur le 
omportement du mouvement brownien en +1 : voir, [12, p. 112℄, la loi du logarithme it�er�ee due �a

Khint
hine, 1933.

17

Il se trouve que W

(4)

est indistinguable d'un pro
essus �a valeurs dans C[ 0; 1 ℄, voir [12, Se
tion 1.1℄.
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Quelques 
ons�equen
es.

{ T

a+b

� T

a

est le temps d'atteinte de b par le pro
essus W

T

a

, il est don
 ind�ependant de

T

a

et a la même loi que T

b

. En d'autres termes, le pro
essus (T

a

)

a�0

est �a a

roissements

ind�ependants et stationnaires

18

.

{ Presque sûrement, +1 est un point d'a

umulation de l'ensemble des z�eros du mouvement

brownien : posons T le premier z�ero du mouvement brownien apr�es l'instant 1 (i. e. T =

inf f t � 1 j B

t

= 0 g). La loi 
onditionelle de T sa
hant que B

1

= a est la loi de T

a

, don


T est presque sûrement �ni ; T est un temps d'arrêt don
 W

T

est lui-même un mouvement

brownien et poss�ede lui aussi un z�ero apr�es son instant 1 (don
 B poss�ede un z�ero apr�es

l'instant 2, et
.).

{ De la même mani�ere on voit que, presque sûrement, +1 est un point d'a

umulation de

l'ensemble f t � 0 j B

t

> 0 g, ou de l'ensemble f t � 0 j B

t

< 0 g. Ainsi, par inversion du

temps, 0 est est un point d'a

umulation des ensembles f t > 0 j B

t

= 0 g, f t > 0 j B

t

> 0 g

et f t > 0 j B

t

< 0 g.

{ Ainsi T

a

est est un point d'a

umulation des ensembles f t > T

a

j B

t

= a g, f t > T

a

j B

t

< a g

et f t > T

a

j B

t

> a g. Cette toute derni�ere assertion implique la relation (2).

Ce ne sont que quelques exemples d'appli
ation de la propri�et�e de Markov forte, mais en fait on

l'applique 
omme on respire, sans s'en rendre 
ompte. On a 
ommen
�e �a aborder la stru
ture de

l'ensemble des z�eros du mouvement brownien, alors mentionnons que

Th�eor�eme (Stru
ture de l'ensemble des z�eros du mouvement brownien). Presque sûrement, l'en-

semble des z�eros du mouvement brownien est ferm�e, non born�e, sans point isol�e, de mesure de

Lebesgue nulle, et poss�ede 0 
omme point d'a

umulation

19

.

Finalement, mentionnons

Quelques propri�et�es lo
ales du mouvement brownien. Pour un 
hemin de Bernoulli f quel-


onque dans C[ 0; n ℄, on a

b�1

X

k=a

�

�

f(k + 1)� f(k)

�

�

2

= b� a;

pour a et b entiers, 0 � a < b � n. Par s
aling brownien, on obtient que presque sûrement pour la

mesure de probabilit�e �

n

,

n(b�a)�1

X

k=0

�

�

�

�

f

�

a+

k + 1

n

�

� f

�

a+

k

n

�

�

�

�

�

2

= b� a;

si a et b sont dans [ 0; 1 ℄ et de la forme

`

n

, ` entier. Cela se traduit par le fait que le mouve-

ment brownien poss�ede une variation quadratique �egale �a t (toute fon
tion 
ontinument d�erivable,

p. e., poss�ede une variation quadratique nulle). Plus pr�e
is�ement, pour une subdivision � =

ft

0

; t

1

; : : : ; t

m

g de [ 0; t ℄ (i. e. 0 = t

0

� t

1

� � � � � t

m

= t), notons

V

(2)

t

(�) =

m

X

k=1

�

�

B

t

k

�B

t

k�1

�

�

2

la variation quadratique du mouvement brownien sur la subdivision �, et notons

k�k = max

1�k�m

jt

k

� t

k�1

j

18

mais ses traje
toires ne sont pas 
ontinues, 
f. [12, Se
tion 6.2.A℄.

19


f. [12, Th. 2.9.6℄.
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le pas de la subdivision �. On a alors

Propri�et�e (Variation quadratique, 
f. [12, Th. 1.5.8 et Probl�eme 2.5.5℄). En probabilit�e, V

(2)

t

(�)


onverge vers t quand k�k tend vers 0, i. e. pour 
haque "; � > 0, on peut trouver Æ > 0 tel que

k�k < Æ entraine

P

 

�

�

�

V

(2)

t

(�)� t

�

�

�

> "

!

< �:

Ce
i, ave
 le fait que presque sûrement sous �

n

une fon
tion poss�ede une d�eriv�ee dont la valeur

absolue en tout point (sauf en

k

n

) est

p

n, laisse �a penser que le mouvement brownien a peu de


han
es d'être d�erivable en un point donn�e. En fait on a un r�esultat beau
oup plus pr�e
is :

Th�eor�eme (Paley, Wiener & Zygmund, 1933, 
f. [12, Th. 2.9.18℄).

P

�

�

! 2 


�

�

la fon
tion t! B

t

(!) n'est d�erivable nulle part

	

�

= 1:

Une autre propri�et�e, que l'on peut aussi pressentir en g�en�erant des 
hemins de Bernoulli al�eatoires,

illustre bien le 
omportement erratique du mouvement brownien :

Th�eor�eme (Dvoretzky, Erd}os & Kakutani, 1961, 
f. [12, Th. 2.9.13℄).

P

�

�

! 2 


�

�

la fon
tion t! B

t

(!) n'a au
un point de 
roissan
e

	

�

= 1:

Un point t est un point de 
roissan
e de f si on peut trouver Æ > 0 tel que pour tout y 2 [t� Æ; t℄

et tout z 2 [t; t + Æ℄, f(y) � f(t) � f(z).

Cet aper�
u des propri�et�es du mouvement brownien est �a la fois tr�es in
omplet et assez d�esordonn�e.

Heureusement la litt�erature sur le sujet est ri
he, et on pourra s'y reporter.
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