
Frédéric Chyzak
frederic.chyzak@inria.fr

October 19, 2020

Chapters “Euclidean division, etc.” and “Linear recurrences with polynomial coefficients”
Organizational point

- homework given October 19,
 → due October 25, 23:59 (scan or pdflatex)
- agenda change: no lecture on November 9, lecture on November 16
- added: exercise sheet for reviewing session given on November 9,
 → your pairing and choices by 23:59
- November 16: students present their solutions (scan or pdflatex)
 → prepare like 15 minutes per pair (slides)
 No mark but feedback given, exercises similar to exam, so prepare seriously!
- exam date: November 30 (is November 23 preferable?)
Part I

Last time’s exercises
Exercise 1

Let \(K \) denote a field of characteristic zero. Let \(f \) and \(g \) be two polynomials in \(K[X, Y] \) of degrees at most \(d_X \) in \(X \) and at most \(d_Y \) in \(Y \).

(a) Show that it is possible to compute the product \(h = fg \) using \(O(M(d_X d_Y)) \) arithmetic operations in \(K \). (Hint: Use the substitution \(X \leftarrow Y^{2d_Y+1} \) to reduce the problem to the product of univariate polynomials.)

(b) Improve this result by proposing an evaluation-interpolation scheme which allows the computation of \(h \) in \(O(d_X M(d_Y) + d_Y M(d_X)) \) arithmetic operations in \(K \).
Exercise 1(a)

Let \mathbb{K} denote a field of characteristic zero. Let f and g be two polynomials in $\mathbb{K}[X, Y]$ of degrees at most d_X in X and at most d_Y in Y.

(a) Show that it is possible to compute the product $h = fg$ using $O(M(d_X d_Y))$ arithmetic operations in \mathbb{K}. (Hint: Use the substitution $X \leftarrow Y^{2d_Y+1}$ to reduce the problem to the product of univariate polynomials.)

Write $h(X, Y) = h_0(Y) + X h_1(Y) + \cdots + X^{2d_X} h_{2d_X}(Y)$ with $\deg_Y h_i \leq 2d_Y$ for $0 \leq i \leq 2d_X$ and observe that in the specialization $h(Y^{2d_Y+1}, Y)$, the terms $Y^{(2d_Y+1)i} h_i(Y)$ have distinct supports. So one gets $h(X, Y)$ from $h(Y^{2d_Y+1}, Y)$ in no arithmetic operation.

Similarly, $f(Y^{2d_Y+1}, Y)$ is obtained from $f(X, Y)$ with no calculation, and it is the same for g.

The only needed calculation is to perform the product $h(Y^{2d_Y+1}, Y) = f(Y^{2d_Y+1}, Y) \times g(Y^{2d_Y+1}, Y)$, which requires $O(M(d_X d_Y))$ arithmetic operations.
Exercise 1(b)

Let \(\mathbb{K} \) denote a field of characteristic zero. Let \(f \) and \(g \) be two polynomials in \(\mathbb{K}[X, Y] \) of degrees at most \(d_X \) in \(X \) and at most \(d_Y \) in \(Y \).

(b) Improve this result by proposing an evaluation-interpolation scheme which allows the computation of \(h \) in \(O(d_X M(d_Y) + d_Y M(d_X)) \) arithmetic operations in \(\mathbb{K} \).

Each polynomial \(h_i(Y) \) has degree \(\leq 2d_Y \) and so can be obtained by interpolation from values at \(2d_Y + 1 \) points. To minimize costs, use a geometric progression \((1, 2, 2^2, \ldots, 2^{2d_Y}) \) and evaluate all \(h_i(Y) \) simultaneously. So first write \(f(X, Y) = f_0(Y) + X f_1(Y) + \cdots + X^{2d_X} f_{2d_X}(Y) \) with \(\deg_Y f_i \leq d_Y \) for \(0 \leq i \leq d_X \) and similarly for \(g(X, Y) \).

- For \(0 \leq i \leq d_X \), evaluate \(f_i(Y) \) and \(g_i(Y) \) at \((2^j)_{0 \leq j \leq 2d_Y} \). \(O(d_X M(d_Y)) \)
- For \(0 \leq j \leq 2d_Y \), do:
 - compute \(f(X, 2^j) = \sum_{i=0}^{d_X} X^i f_i(2^j) \); \(O(d_Y M(d_X)) \)
 - compute \(g(X, 2^j) = \sum_{i=0}^{d_X} X^i g_i(2^j) \); \(O(d_Y M(d_X)) \)
 - compute \(h(X, 2^j) = f(X, 2^j) \times g(X, 2^j) \).
- For \(0 \leq i \leq 2d_X \), interpolate \((h_i(2^j))_{0 \leq j \leq 2d_Y} \) to get \(h_i(Y) \). \(O(d_X M(d_Y)) \)
- Return \(h(X, Y) = \sum_{i=0}^{2d_X} X^i h_i(Y) \).
Let K denote a field of characteristic zero. Let P and Q be two polynomials from $K[X]$.

(a) Let $N \in \mathbb{N} \setminus \{0\}$. Show that the unique monic polynomial in $K[X]$ whose roots are the Nth powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number α, show that one can determine an annihilating polynomial of $Q(\alpha)$ using a resultant.
Exercise 2(a)

Let \mathbb{K} denote a field of characteristic zero. Let P and Q be two polynomials from $\mathbb{K}[X]$.

(a) Let $N \in \mathbb{N} \setminus \{0\}$. Show that the unique monic polynomial in $\mathbb{K}[X]$ whose roots are the Nth powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number α, show that one can determine an annihilating polynomial of $Q(\alpha)$ using a resultant.

(a) By Poisson formula, $\text{res}_Y(P(Y), X - Y^N) = 1^{\deg P} \prod_{P(\alpha) = 0} (X - \alpha^N)$. The wanted polynomial is this resultant because it has the wanted degree.
Exercise 2(b)

Let K denote a field of characteristic zero. Let P and Q be two polynomials from $K[X]$.

(a) Let $N \in \mathbb{N} \setminus \{0\}$. Show that the unique monic polynomial in $K[X]$ whose roots are the Nth powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number α, show that one can determine an annihilating polynomial of $Q(\alpha)$ using a resultant.

(b) By Poisson formula, $\text{res}_Y (P(Y), X - Q(Y)) = 1^{\deg P} \prod_{P(\beta) = 0} (X - Q(\beta))$. The wanted polynomial is this resultant because it is zero at $X = Q(\alpha)$ since $P(\alpha) = 0$.
The aim of this exercise is to prove algorithmically the following identity:

\[\sqrt[3]{\sqrt[3]{2} - 1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}. \]

Let \(a = \sqrt[3]{2} \) and \(b = \sqrt[3]{1/9} \).

(a) Determine a polynomial in \(\mathbb{Q}[X] \) annihilating \(c = 1 - a + a^2 \), by using a resultant computation.

(b) Deduce a polynomial in \(\mathbb{Q}[X] \) annihilating the right-hand side of the identity, by another resultant computation.

(c) Show that the polynomial computed in (b) also annihilates the left-hand side of the identity.

(d) Conclude.
Exercise 3(a)

The aim of this exercise is to prove algorithmically the following identity:

\[
\sqrt[3]{\sqrt[3]{2} - 1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}.
\]

Let \(a = \sqrt[3]{2}\) and \(b = \sqrt[3]{\frac{1}{9}}\).

(a) Determine a polynomial in \(\mathbb{Q}[X]\) annihilating \(c = 1 - a + a^2\), by using a resultant computation.

Maple solution (those resultant computations can be done by hand):

\[
\begin{align*}
> & \quad (\star \text{ (a)}: \ a = 2^{(1/3)}, \ b = (1/9)^{1/3}, \ c = 1 - 2^{(1/3)} + 4^{(1/3)} \quad \star) \\
> & \quad \text{Pa} := A^3 - 2; \\
> & \quad \text{Pa} := A - 2 \\
> & \quad \text{Pb} := 9*B^3 - 1; \\
> & \quad \text{Pb} := 9*B - 1 \\
> & \quad \text{Pc} := \text{resultant}(\text{Pa}, C - (1-A+A^2), A); \\
> & \quad \text{Pc} := C - 3*C + 9*C - 9
\end{align*}
\]
Exercise 3(b)

The aim of this exercise is to prove algorithmically the following identity:

\[\sqrt[3]{\sqrt[3]{2} - 1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}. \]

Let \(a = \sqrt[3]{2} \) and \(b = \sqrt[3]{1/9} \).

(b) Deduce a polynomial in \(\mathbb{Q}[X] \) annihilating the right-hand side of the identity, by another resultant computation.

Maple solution (those resultant computations can be done by hand):

\[
\begin{align*}
> & \quad (* \ (b) : \ \text{rhs} = b*c \ \text{and} \ c \ <> \ 0 \ *) \\
> & \quad \text{evalb(subs(c = 0, Pc) = 0)}; \quad \text{false} \\
> & \quad \text{numer(subs(B = rhs/C, Pb))}; \quad \frac{3}{c} - c + 9 \ \text{rhs} \\
> & \quad \text{resultant(Pc, %, C)}; \quad \frac{9}{729} \ \text{rhs} + \frac{6}{2187} \ \text{rhs} + \frac{3}{2187} \ \text{rhs} - 729 \\
> & \quad \text{primpart(%)}; \quad \frac{9}{3} \ \text{rhs} + 3 \ \text{rhs} + 3 \ \text{rhs} - 1
\end{align*}
\]
The aim of this exercise is to prove algorithmically the following identity:

\[\sqrt[3]{\sqrt[3]{2} - 1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}. \]

Let \(a = \sqrt[3]{2} \) and \(b = \sqrt[3]{\frac{1}{9}} \).

(c) Show that the polynomial computed in (b) also annihilates the left-hand side of the identity.

Maple solution (those resultant computations can be done by hand):

\[
\begin{align*}
&\text{(* (c): lhs = (a-1)^((1/3)) *)} \\
&\text{Plhs := expand(subs(A = lhs^3+1, Pa));} \\
&\quad 9 \quad 6 \quad 3 \\
&\quad \text{Plhs := lhs + 3 lhs + 3 lhs - 1} \\
&\text{evalb(subs(lhs = X, Plhs) = subs(rhs = X, Prhs));} \\
&\quad \text{true}
\end{align*}
\]
Exercise 3(d)

The aim of this exercise is to prove algorithmically the following identity:

\[
\sqrt[3]{\sqrt[3]{2} - 1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}.
\]

Let \(a = \sqrt[3]{2} \) and \(b = \sqrt[3]{1/9} \).

(d) Conclude.

Maple solution (those resultant computations can be done by hand):

\[
> (* (d): Some way to separate solutions is needed. *)
> P := subs(lhs = X, Plhs);
\]

\[
P := X + 3 X + 3 X - 1
\]

\[
> Q := subs(X = X^(1/3), P);
\]

\[
Q := X + 3 X + 3 X - 1
\]

\[
> fsolve(Q, complex);
\]

\[
-1.62996052494744 - 1.09112363597172 I,
-1.62996052494744 + 1.09112363597172 I, 0.259921049894873
\]

\[
> abs~([%]);
\]

\[
[1.96145917670062, 1.96145917670062, 0.259921049894873]
\]

\[
> evalf(\((2^{(1/3)}-1)^{(1/3)} \)^3);
\]

\[
0.2599210499
\]

\[
> (* So P has a single real root, proving the identity. *)
\]
Part II

Linear recurrences with constant coefficients
For a commutative ring \mathbb{A}:

Euclidean division

$$\frac{F}{G} = Q + \frac{R}{G}$$

Can be computed in $O(M(n))$ ops by interpreting Q as asymptotic expansion at ∞, when n bounds the degrees of F and G.

Polynomial modular calculations

Given a univariate $P \in \mathbb{A}[X]$ of degree n, define $\mathbb{B} = \mathbb{A}[X]/(P)$. Then:

- addition ($\mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$) can be done in $O(n)$ ops,
- multiplication by a scalar ($\mathbb{A} \times \mathbb{B} \rightarrow \mathbb{B}$) can be done in $O(n)$ ops,
- multiplication ($\mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$) can be done in $O(M(n))$ ops.
Linear recurrence sequences (LRS)

Definitions

A sequence \((a_n)_{n \in \mathbb{N}}\) with elements in some (general) ring \(\mathbb{A}\) is a linear recurrence sequence of order \(d\) if it satisfies a recurrence of the form

\[
\forall n \geq 0, \ a_{n+d} = p_{d-1}a_{n+d-1} + \cdots + p_0a_n,
\]

where the \(p_i\) are fixed elements of \(\mathbb{A}\).

\(P = X^d - p_{d-1}X^{n+d-1} - \cdots - p_0\) is the characteristic polynomial of \((a_n)_{n \in \mathbb{N}}\). The right gcd of all characteristic polynomials is the minimal polynomial.

Examples

- the Fibonacci sequence (order 2): 1, 1, 2, 3, 5, 8, 13, 21, 34, ...,
- any sequence \((uM^n v)_{n \in \mathbb{N}}\) for fixed row \(u\), matrix \(M\), and column \(v\),
- any sequence \((P(n))_{n \in \mathbb{N}}\) for a fixed polynomial \(P\),
- the sequence of lengths in the Look-and-Say sequence (order 72):

\[
|1| = 1, \ |11| = 2, \ |21| = 2, \ |1211| = 4, \ |111221| = 6, \\
|312211| = 6, \ |13112211| = 8, \ |1113213211| = 10, \ldots
\]
Computing the nth term in a LRS (general \mathbb{A})

(Arithmetic complexity.)

Unrolling the recurrence \(O(dn) \)

Thus implicitly computing all first n terms.

Binary powering \(O(MM(d) \ln n) \)

\[
\begin{pmatrix}
 a_{n+1} \\
 \vdots \\
 a_{n+d}
\end{pmatrix} = C
\begin{pmatrix}
 a_n \\
 \vdots \\
 a_{n+d-1}
\end{pmatrix} = C^{n+1}
\begin{pmatrix}
 a_0 \\
 \vdots \\
 a_{d-1}
\end{pmatrix} \quad \text{for} \quad C =
\begin{pmatrix}
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1 \\
 p_0 & p_1 & \cdots & p_{d-1}
\end{pmatrix}.
\]

Use $C^n = (C^{n/2})^2$ for even n and $C^n = C \cdot (C^{(n-1)/2})^2$ for odd n.

Can we do better w.r.t. d for the nth term? for the first n terms?
Properties of companion matrices (commutative \mathbb{A})

Lemma

Given $(a_n)_{n \in \mathbb{N}}$ with characteristic polynomial P, define $B = \mathbb{A}[X]/(P)$, $x = X + (P) \in B$, and the companion matrix $\tilde{C} := C^T$ of P. Then:

1. \tilde{C} satisfies $\forall n \geq 0$, $(a_{n+1}, \ldots, a_{n+d}) = (a_n, \ldots, a_{n+d-1}) \cdot \tilde{C}$,
2. \tilde{C} is the matrix of the \mathbb{A}-linear multiplication by x in B with respect to the basis $B := (1, x, \ldots, x^{d-1})$.

Proof: First point: by definition of P. Second point: the jth column of the wanted matrix contains the coordinates of $x \cdot x^j$. For $j < d$, use $x \cdot x^j = x^{j+1}$. For $j = d$, use $P(x) = 0$ in the form $x^d = p_0 + \cdots + p_{d-1}x^{d-1}$.

Corollary

For any $k \in \mathbb{N}$, let V_k denote the column vector of the coefficients of $x^k = X^k + (P)$ with respect to the basis B. Then,

$$\forall n \geq 0, \ a_{k+n} = (a_n, \ldots, a_{n+d-1}) \cdot V_k.$$

Proof: Iterate the lemma and observe $x^k = x^k \cdot 1$, so V_k is first column of \tilde{C}^k.
Computing the nth term in a LRS (commutative \mathbb{A})

Input The coefficients (p_0, \ldots, p_{d-1}) of a linear recurrence; initial conditions (a_0, \ldots, a_{d-1}); an integer n.

Output The term a_n of the sequence defined by $a_{i+d} = p_{d-1}a_{i+d-1} + \cdots + p_0a_i$.

1. Set $P = X^d - p_{d-1}X^{d-1} - \cdots - p_0$ and $x = X + (P)$.
2. Recursively compute $x^n = q_0 + q_1x + \cdots + q_{d-1}x^{d-1}$ by the formulas $x^k = (x^{k/2})^2$ for even k and $x^k = x \cdot (x^{k/2-1})^2$ for odd k.
3. Return $q_0a_0 + \cdots + q_{d-1}a_{d-1}$.

Modular exponentiation $O(M(d) \ln n)$

Over a commutative ring \mathbb{A}, the nth term of a LRS can be computed using modular exponentiation in $O(M(d) \ln n)$ ops.

Proof: Modular multiplication in \mathbb{B} is done in $O(M(d))$ ops.
Reciprocal polynomials

Definition

Given \(P = p_d X^d + \cdots + p_0 \in \mathbb{A}[X] \) of degree \(d \), define the *reciprocal polynomial* of \(P \) as

\[
\text{rec } P = X^{\deg P} P(1/X) = p_0 X^d + \cdots + p_d.
\]

Properties

- \(\text{rec}(PQ) = \text{rec}(P) \text{ rec}(Q) \)
- \(\text{rec}(X^v P) = \text{rec } P \)
- \(\text{rec rec } P = P \iff P(0) \neq 0 \iff \deg \text{ rec } P = \deg P \)
- \(P = X^{val_P} \text{ rec rec } P \)
- \((\text{rec } P)(0) \neq 0 \)
Given $A = \sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{A}[[X]]$, we define the notation $[X^n]A = a_n$.

From now on, \mathbb{A} is a field \mathbb{K}, thus commutative.
Generating series of LRS and rational functions

Theorem

Given a monic polynomial P of degree d, a sequence $(a_n)_{n \in \mathbb{N}}$, and the series $A = \sum_{n \in \mathbb{N}} a_nX^n$, both following assertions are equivalent:

1. $(a_n)_{n \in \mathbb{N}}$ is an LRS with characteristic polynomial P;
2. there exists $N \in \mathbb{K}[X]$ of degree $< d$ such that $A = N/\text{rec } P$ in $\mathbb{K}[[X]]$.

When these assertions hold, if moreover P is the minimal polynomial of $(a_n)_{n \in \mathbb{N}}$, then

$$d = \max\{1 + \deg N, \deg \text{rec } P\} := m \quad \text{and} \quad \gcd(N, \text{rec } P) = 1.$$

Proof: Write $P = g_dX^d + \cdots + g_0$ with $g_d = 1$. For $n \in \mathbb{N}$, compute

$$[X^{d+n}](A \text{ rec } P) = [X^{d+n}] \sum_{j=0}^{d} g_jX^{d-j}A = \sum_{j=0}^{d} g_j[X^{n+j}]A = \sum_{j=0}^{d} g_ja_{n+j}.$$

Then:

$$(1) \iff \forall n \in \mathbb{N}, \sum_{j=0}^{d} g_ja_{n+j} = 0 \iff \deg(A \text{ rec } P) < d \iff (2).$$

By construction, $d \geq m$. If $d > m$, $\deg P = d > \deg \text{rec } P$, so $g_0 = 0$, and $\text{rec}(P/X) = \text{rec } P$. Since $\deg N < d - 1 = \deg(P/X)$, by (2) \Rightarrow (1), P cannot be minimal. So P minimal implies $d = m$.

Frédéric Chyzak
AECF, MPRI C-2-22
Generating series of LRS and rational functions

Theorem

Given a monic polynomial P of degree d, a sequence $(a_n)_{n \in \mathbb{N}}$, and the series $A = \sum_{n \in \mathbb{N}} a_n X^n$, both following assertions are equivalent:

1. $(a_n)_{n \in \mathbb{N}}$ is an LRS with characteristic polynomial P;
2. there exists $N \in \mathbb{K}[X]$ of degree $< d$ such that $A = N / \text{rec } P$ in $\mathbb{K}[[X]]$.

When these assertions hold, if moreover P is the minimal polynomial of $(a_n)_{n \in \mathbb{N}}$, then

$$d = \max\{1 + \deg N, \deg \text{rec } P\} := m \quad \text{and} \quad \gcd(N, \text{rec } P) = 1.$$

Proof: Write $U := \gcd(N, \text{rec } P)$, $F := \text{rec } P / U$. Then, $F(0) \neq 0 \neq U(0)$. For some $v \in \mathbb{N}$,

$$P = X^v \text{rec } \text{rec } P = X^v \text{rec } F \text{rec } U.$$

Set $\tilde{P} := P / \text{rec } U$ and $\tilde{N} := N / U$, so that:

$$\begin{cases} A \text{rec } P = N \\ \deg N < \deg P \end{cases} \Rightarrow \begin{cases} AU \text{rec } \tilde{P} = U\tilde{N} \\ \deg \tilde{N} = \deg N - \deg U < \deg P - \deg U = \deg \tilde{P}. \end{cases}$$

So, \tilde{P} is characteristic, and P minimal implies $\deg P \leq \deg \tilde{P}$ and $U = 1$.
Computing the nth coefficient of a rational series

Modular exponentiation $\mathcal{O}(M(d) \ln n)$

Given polynomials F and G of degree at most d, with coefficients in a field \mathbb{K}, with $G(0) \neq 0$, the nth coefficient in the formal power series expansion of F/G can be computed using $\mathcal{O}(M(d) \ln n)$ ops in \mathbb{K}.

Proof: Combine the observation that the coefficient sequence is a LRS with characteristic polynomial of degree $\deg G$ and the algorithm by modular exponentiation.
A recent algorithm by sections gains a factor of $3/2$ (Bostan, Mori, 2020), very recently accepted.

Idea: compute recurrence for odd/even subsequence.

Input Polynomials F and G of degree at most d with $G(0) \neq 0$; an integer n.

Output The nth coefficient of the expansion of F/G.

1. While $n > 0$, do:
 - Compute $U(X) := F(X)G(-X)$ and write it $U(X) = S_0(X^2) + XS_1(X^2)$.
 - Compute $V(X) := G(X)G(-X)$ and write it $V(X) = T(X^2)$.
 - Set
 \[
 (F, G, n) := \begin{cases}
 (S_0, T, n/2) & \text{if } n \text{ is even}, \\
 (S_1, T, (n - 1)/2) & \text{if } n \text{ is odd}.
 \end{cases}
 \]

2. Return $F(0)/G(0)$.

Variations and generalizations also allow to compute a slice, and to perform modular exponentiation faster.
Computing the first n coefficients of a rational series

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton’s method</td>
<td>$O(M(n))$</td>
</tr>
<tr>
<td>When $d \leq n$.</td>
<td></td>
</tr>
<tr>
<td>Unrolling the recurrence</td>
<td>$O(dn)$</td>
</tr>
<tr>
<td>Better than Newton for fixed d.</td>
<td></td>
</tr>
<tr>
<td>By an interpretation as LRS</td>
<td>$O(nM(d)/d)$</td>
</tr>
<tr>
<td>By computing successive slices of length d.</td>
<td></td>
</tr>
<tr>
<td>(An algorithm will be given soon.)</td>
<td></td>
</tr>
</tbody>
</table>
Applications

First \(n \) coefficients of a LRS

Given a LRS \((a_n)_{n \in \mathbb{N}}\), its characteristic polynomial of degree \(d \), initial conditions \(a_0, \ldots, a_{d-1} \), and an integer \(n \geq d \), then \(a_0, \ldots, a_n \) can be computed in \(O(nM(d)/d) \) ops.

Proof: By immediate translation.

Multipoint evaluation of a polynomial at an arithmetic progression

Let \(a \in \mathbb{K}, \ b \in \mathbb{K}, \ P \in \mathbb{K}[X] \) with \(\deg P = d < n \). The multipoint evaluation \((P(b), P(a+b), P(2a+b), \ldots, P(na+b))\) can be computed in \(O(nM(d)/d) \) ops.

Proof: The operator \(\Delta_a : H \mapsto H(X + a) - H(X) \) decreases the degree,

\[
0 = \Delta_a^{d+1}(P) = \sum_{i=0}^{d+1} (-1)^{d+1+i} \binom{d+1}{i} P(X + ia).
\]

Setting \(X = na + b \) makes \((P(na+b))_{n \in \mathbb{N}}\) be a LRS with characteristic polynomial \((X - 1)^{d+1}\).
Idea: generalize the formula \(a_{k+n} = (a_n, \ldots, a_{n+d-1}) \cdot V_k \).

Lemma

Assume \(F \in \mathbb{K}[X], \ G \in \mathbb{K}[X], \ d = \deg G > \deg F, \ G(0) = 1, \ k \in \mathbb{N} \). Then,

\[
0 \leq i < d \implies a_{k+i} = [X^{k+i}] \frac{F}{G} = [X^{2d-2-i}] \left((a_{2d-2} + \cdots + a_0 X^{2d-2}) \text{ rem}(X^k, \text{ rec } G) \right).
\]

Proof: \(F/G = N/\text{ rec } P \) for \(N := F \) and \(P := \text{ rec } G \). So \(P \) is a characteristic polynomial of \((a_n)_{n \in \mathbb{N}}\). Recall the notation

\[
\mathbb{B} = \mathbb{A}[X]/(P), \ x = X + (P), \ \tilde{C} = C^T, \ V_k = \tilde{C}^k e_1.
\]

Then, \(\text{ rem}(X^k, \text{ rec } G) = (1, X, \ldots, X^{d-1}) \cdot V_k \). Compute:

\[
[X^{2d-2-i}] \sum_{j=0}^{2d-2} a_j X^{2d-2-j} \sum_{\ell=0}^{d-1} (V_k)_\ell X^{\ell} = \sum_{\ell=0}^{d-1} (V_k)_\ell \sum_{j=0}^{2d-2} [X^{-i}] a_j X^{\ell-j} = \sum_{\ell=0}^{d-1} a_{i+\ell} (V_k)_\ell.
\]

This is the product of \(A_i = (a_i, \ldots, a_{d+i-1}) \) by \(V_k \), which is \(A_i \cdot V_k = a_{k+i} \).
Rational series expansion by modular multiplications

Input Polynomials F and G with $\deg F < \deg G = d$, $G(0) \neq 0$, $n > d$.

Output Coefficients a_0, \ldots, a_n in the expansion $F/G = \sum_{i \geq 0} a_i X^i$.

1. Compute (a_0, \ldots, a_{2d-2}) by Newton’s iteration.
2. Compute $Y_1 = \text{rem}(X^{d-1}, \text{rec } G)$ and $Y^* = \text{rem}(X^d \text{ rec } G)$.
3. For $i = 2, \ldots, \lceil n/d \rceil$:
 1. Compute $Y_i = \text{rem}(Y^* Y_{i-1}, \text{rec } G)$.
 2. Compute $P = (a_{2d-2} + \cdots + a_0 X^{2d-2}) Y_i$.
 3. For $0 \leq j < d$, extract $a_{id-1+j} = [X^{2d-2-j}] P$.
4. Return (a_0, \ldots, a_n).

Theorem

The algorithm is correct. It computes in $O(nM(d)/d)$ ops.

Proof: Correctness follows from the lemma and a tedious verification of indices/exponents. Complexity: Newton in $O(M(d))$; Y^* for free; each Y_i involves a product in \mathbb{B}, in $O(M(d))$; each P involves a product in degrees $2d - 2$ and $d - 1$, in $O(M(d))$.

Frédéric Chyzak
AECF, MPRI C-2-22
Part III

Linear recurrences with polynomial coefficients
Regular vs. singular linear recurrences

Reminder: P-recursive sequences

Def: A sequence \((a_n)_{n \geq 0} \in K^\mathbb{N}\) is polynomially recursive if it satisfies a linear difference equation with coefficients \(p_j\) in \(K[X]\):

\[
\forall n \in \mathbb{N}, \ p_r(n)a_{n+r} + \cdots + p_0(n)a_n = 0.
\]

\(r = \text{order} \quad d = \max_i \deg p_i = \text{degree}\)

\[
\forall n \geq r, \ a_n = -p_r(n - r)^{-1}\left(p_{r-1}(n - r)a_{n-1} + \cdots + p_0(n - r)a_{n-r}\right)
\]

Def: Regular and singular recurrences

A recurrence is regular if \(\forall n \geq r, \ p_r(n - r) \neq 0\), and singular otherwise.

Motivation

A regular recurrence of order \(r\) uniquely determines a P-recursive solution from initial conditions \((a_0, \ldots, a_{r-1})\).

In what follows, we consider regular recurrences only.
Different complexity models require different approaches

Reminder: LRS with coefficients and initial conditions in some field \mathbb{K}

<table>
<thead>
<tr>
<th>problem</th>
<th>nth term</th>
<th>first n terms</th>
<th>(naive unrolling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic</td>
<td>$O(M(n) \ln n)$</td>
<td>$O(nM(n)/r)$</td>
<td>$O(rn)$</td>
</tr>
</tbody>
</table>

$M(n)$: multiplication function for polynomials of degree $< n$

$M_\mathbb{Z}(n)$: multiplication function for integers of $< n$ bits

$MM(r)$: complexity of multiplying $r \times r$ matrices

To be obtained: P-rec. seq. with coeffs in $\mathbb{Z}[X]$ and initial conditions in \mathbb{Z}

<table>
<thead>
<tr>
<th>problem</th>
<th>nth term</th>
<th>first n terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unrolling rec.</td>
<td>$O(rdn)$</td>
<td></td>
</tr>
<tr>
<td>binary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unrolling rec.</td>
<td>$O(MM(r)M(\sqrt{dn}) \ln(dn))$</td>
<td></td>
</tr>
<tr>
<td>binary splitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$O(rn^2M_\mathbb{Z}(d \ln n))$</td>
<td></td>
</tr>
</tbody>
</table>

More complex formulas take input bit size into account.
The prototype $n!$ and Stirling’s formula

Computing $(1!, 2!, \ldots, n!)$ by the naive recurrence $a_n = n \times a_{n-1}$

- $O(n)$ arithmetic ops, which is optimal.
- $O(n^2 M_Z(\ln n))$ bit ops, which is quasi-optimal.

Proof:

Stirling’s formula: $\ln n! = n \ln n - n + \frac{1}{2} \ln n + O(1)$, when $n \to \infty$.

And even: $\ln n! \leq n \ln n$ when $n \geq 1$. The multiplication $k \times (k - 1)!$ is in sizes $\lceil \ln k \rceil$ and $k \ln k$. This unbalanced product has cost $ckM_Z(\ln k)$ for some fixed c. Total cost:

$$\sum_{k=1}^{n} ckM_Z(\ln k) \leq \left(\sum_{k=1}^{n} ck \right) M_Z(\ln n) = O(n^2 M_Z(\ln n)).$$

Total size is $O(n^2 \ln n)$ by Stirling’s formula again.
Unrolling a general recurrence: arithmetic complexity

\[a_{n+r} = -\frac{1}{p_r(n)}(p_{r-1}(n)a_{n+r-1} + \cdots + p_0(n)a_n) \]

Evaluating a polynomial of degree \(d\) takes \(O(d)\) ops, hence a total \(O(rdn)\).
Unrolling a general recurrence: matrix formulation

- Introduce $A_n = (a_n, \ldots, a_{n+r-1})^T$ to observe $A_{n+1} = \frac{1}{p_r(n)} M(n) A_n$ where

 $M(n) = \begin{pmatrix} 0 & p_r(n) \\ 0 & p_r(n) & \ddots \\ -p_0(n) & \cdots & 0 & p_r(n) \\ \cdots & \ddots \\ -p_{r-1}(n) \end{pmatrix}$.

- Define $(b_n)_{n \in \mathbb{N}}$ by $b_0 = 1$ and $b_{n+1} = p_r(n) b_n$ and get a “matrix factorial”

 $A_n = \frac{1}{b_n} F_n$ where $F_n = (M(n-1) \cdots M(0)) A_0$.

- In particular,

 $a_n = \frac{e_1 \cdot F_n}{b_n}$.

Frédéric Chyzak

AECF, MPRI C-2-22
Unrolling a general recurrence: size bounds

Norm of a vector V, subordinate norm of a matrice M

$$
\|V\| = \sum_{j=1}^{r} |v_j|, \quad \|M\| = \max_{1 \leq j \leq r} \sum_{i=1}^{r} |m_{i,j}|, \quad \|MV\| \leq \|M\| \|V\|.
$$

$h \geq$ bit size of coefficients of p_i \quad \quad $s \geq$ bit size of the a_j for $0 \leq j < r$

Hypothesis: $h = O(1)$ and $s = O(1)$ when $r, d, n \to \infty$.

$$
|p_i(k)| \leq 2^h (d + 1) \max\{1, k\}^d \leq 2^h (d + 1)(k + 1)^d
$$

$$
\|M(k)\| \leq 2^{h+1} (d + 1)(k + 1)^d \quad \|A_0\| \leq r 2^s
$$

$$
|e_1 \cdot F_n| \leq \|M(n - 1)\| \cdots \|M(0)\| \|A_0\| \leq r 2^{(h+1)n+s} (d + 1)^n (n!)^d
$$

$$
\ln |p_i(n)| = O(d \ln n), \quad \ln |e_1 \cdot F_n| = O(dn \ln n + \ln r), \quad \ln |b_n| = O(dn \ln n).
$$
Unrolling a general recurrence: bit complexity

Input A regular recurrence \(p_r(n)a_{n+r} + \cdots + p_0(n)a_n = 0 \) with coefficients \(p_i \in \mathbb{Z}[X] \); initial conditions \(a_0, \ldots, a_{r-1} \) in \(\mathbb{Z} \); some integer \(n \geq r \).

Output The rational numbers \((a_0, \ldots, a_n) \).

1. Set \(F_0 := (a_0, \ldots, a_{r-1})^T \) and \(b_0 := 1 \).
2. For \(k \) from 0 to \(n - r \):
 - Compute \(F_{k+1} := M(k)F_k \), \(b_{k+1} := p_r(k)b_k \), \(a_{k+r} := (e_r \cdot F_{k+1})/b_{k+1} \).
3. Return \((a_0, \ldots, a_n) \).

The dominant cost at step \(k \) is the matrix-vector product:

- **Sizes:** \(\ln |e_i \cdot M(k) \cdot e_j^T| \leq O(d \ln k) \) and \(\ln |e_i \cdot F_k| \leq O(dk \ln k + \ln r) \).
- **Cost:** \(O(rkM_\mathbb{Z}(d \ln k)) \).

Hence the announced \(O(rn^2M_\mathbb{Z}(d \ln n)) \) after summing over \(k \).

Output size: \(O(dn^2 \ln n) \).
Binary splitting for $n!$: an algorithm to balance products

By Stirling’s formula, observe:

$$\ln \left(\left(\frac{n}{2} \right)! \right) \sim \frac{1}{2} \ln(n!) \sim \ln \frac{n!}{(n/2)!}. $$

Algorithm

For $a \leq b$, define a recursive calculation of $P(a, b) := (a + 1)(a + 2) \cdots b$ by:

$$P(a, b) = P(a, m)P(m, b) \quad \text{where} \quad m = \left\lfloor \frac{a + b}{2} \right\rfloor.$$

$M_Z(s)$ increases with s, so $P(a, m)$ is computed faster than $P(m, b)$.

The binary cost $C(a, b)$ of computing $P(a, b)$ this way satisfies:

$$C(a, b) \leq C(a, m) + C(m, b) + M_Z \left(\max(\ln P(a, m), \ln P(m, b)) \right),$$

$$C(a, b) \leq 2C(m, b) + M_Z \left(\ln P(m, b) \right).$$
Binary splitting for $n!$: complexity analysis

For $n = 2^\ell$ and $1 \leq k \leq \ell$:

\[
C(0, n) \leq 2C(n/2, n) + M_Z\left(\ln P(n/2, n)\right) \leq 2C(n/2, n) + M_Z\left(\frac{n}{2} \ln n\right)
\]
\[
\leq 4C(3n/4, n) + 2M_Z\left(\frac{n}{4} \ln n\right) + M_Z\left(\frac{n}{2} \ln n\right) \leq 4C(3n/4, n) + 2M_Z\left(\frac{n}{2} \ln n\right)
\]
\[
\leq \cdots \leq 2^k C(n - 2^{-k} n, n) + kM_Z\left(\frac{n}{2} \ln n\right).
\]

Making $k = \ell$:

\[
C(0, n) \leq O(n) + M_Z\left(\frac{n}{2} \ln n\right) \ln n = O\left(M_Z(n \ln n) \ln n\right).
\]

Remark:

- With FFT, $C(0, n) = O(M_Z(n \ln n) \ln n) = O(n \ln^3 n)$.
- When $M_Z(n)$ is super-linear in $O(n^\alpha)$, the analysis replaces a $\ln n$ by a geometric series, resulting in $C(0, n) = O(M_Z(n \ln n)) = O(n^\alpha \ln^\alpha n)$.
Generalizations

General hypergeometric sequences: order 1, degree \(d \)

- Consider numerators and denominators of rational \(a_n \) separately.
- Size of integers is multiplied by \(d \).
- Complexity becomes \(O(M\mathbb{Z}(dn \ln n) \ln n) \).

General P-recursive sequences: order \(r \), degree \(d \)

- Perform binary splitting on matrix factorial \(M(n - 1) \cdots M(0) \) before multiplying by the vector \(A_0 \).
- Complexity becomes \(O(MM(r)M\mathbb{Z}(dn \ln n) \ln n) \).

Remark: the same discussion as for \(n! \) applies, by distinguishing multiplication by FFT and super-linear multiplication in \(O(n^\alpha) \).
Applications: high-precision computation of constants

\[e = \exp(1) \text{ to } 10^{-N} \]

Define \(e_n = 1 + \cdots + 1/n! \), so that \(0 < e - e_n < 1/(n n!) \).

From \(e_{n+1} - e_n = 1/(n + 1)! \) follows \((n + 2)e_{n+2} - (n + 3)e_{n+1} + e_n = 0\), then

\[
\begin{pmatrix}
e_{n+1} \\
e_{n+2}
\end{pmatrix} = \frac{1}{n + 2} \begin{pmatrix} 0 & n + 2 \\ -1 & n + 3 \end{pmatrix} \begin{pmatrix} e_n \\ e_{n+1} \end{pmatrix}.
\]

As \(n = O(N/\ln N) \) is enough, the complexity follows.

\[\pi = 4 \arctan(1), \text{ etc.} \]

Similarly.

Chudnovsky and Chudnovsky gave a faster formula for \(1/\pi \).

Much more involved: evaluation of (D-finite) functions at any point of the complex plane (requires controlled analytic continuation).
Baby-step giant-step approach to computing $n!$

Idea: $n = m^2 \Rightarrow n! = P(0, n) = P(0, m)P(m, 2m) \cdots P((m - 1)m, m^2)$.

Input An integer $n \in \mathbb{N}$.
Output The integer $n!$.

1. (Baby-step) Compute $Q := (X + 1)(X + 2) \cdots (X + m)$ from the binary tree of subproducts with $X + i$ at the leaves.
2. (Giant-step) Obtain $(Q(0), Q(m), \ldots, Q((m - 1)m))$ by multipoint evaluation.
3. Compute and return the product $Q(0) \times Q(m) \times \cdots \times Q((m - 1)m)$.

Theorem

The algorithm computes $n!$ in $O(M(\sqrt{n}) \ln n)$ ops.

Proof: Baby-step fits in $O(M(m) \ln m)$. Giant-step fits in $O(M(m) \ln m)$. Final step fits in $O(m)$.
Baby-step giant-step for a P-recursive sequence

Input A regular recurrence $p_r(n)a_{n+r} + \cdots + p_0(n)a_n = 0$ with coefficients $p_i \in \mathbb{Z}[X]$; initial conditions a_0, \ldots, a_{r-1} in \mathbb{Z}; some integer $n \geq r$.

Output The terms a_{n-r+1}, \ldots, a_n of the solution.

1. Compute $Q(X) := M(X + m - 1) \cdots M(X + 1)M(X)$ where $m = \lceil \sqrt{n/d} \rceil$.
2. Evaluate the matrices $Q(0), Q(m), \ldots, Q(m')$ for $m' = \lfloor \frac{n-r-m}{m} \rfloor$.
3. Evaluate $M(n - r), M(n - r - 1), \ldots, M(m''m)$ for $m'' = \lfloor \frac{n-r}{m} \rfloor$.
4. Compute the product $R = M(n - r) \cdots M(m''m)Q(m''m) \cdots Q(0)$.
5. If $p_r \neq 1$, compute $b := p_r(n - r) \cdots p_r(0)$ by the same algorithm; otherwise set $b := 1$.
6. Return $b^{-1} R \cdot (a_0, \ldots, a_{r-1})^T$.

Theorem

The algorithm computes in $O(MM(r)M(\sqrt{dn}) \ln(dn))$ ops.

Proof: Main steps: Q by a product tree in $O(MM(r, md) \ln m)$; all $Q(jm)$ by r^2 multipoint evaluations in $O(r^2 \frac{n}{m}M(md)/(md))$; R by matrix products in $O(MM(r)(m + n/m))$. Use $MM(r, \delta) = O(MM(r)M(\delta))$ to get the result.