
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 247–274

Asymptotic behaviour of a non-commutative
rational series with a nonnegative linear
representation

Philippe Dumas1 and Helger Lipmaa2 and Johan Wallén3

1Algorithms Project, INRIA Rocquencourt, 78153 Le Chesnay Cedex, France
Philippe.Dumas@inria.fr
2Cybernetica AS and University of Tartu, Estonia
3Laboratory for Theoretical Computer Science, Helsinki University of Technology,
P.O. Box 5400, FI-02015 TKK, Espoo, Finland

received May 10, 2005, revised September 10, 2007, accepted October 1st, 2007.

We analyse the asymptotic behaviour in the mean of a non-commutative rational series, which originates from dif-
ferential cryptanalysis, using elementary tools from analysis and linear algebra, and more sophisticated tools from
analytic number theory. We show that a probability distribution function describes the asymptotic behaviour of the
rational series according to the length of words. As a result, the non-classical rational sequence, obtained by interpret-
ing this rational series via the octal numeration system, admits an oscillating asymptotic behaviour for its first-order
summation function. The distribution function and the periodic function are differentiable almost everywhere and not
differentiable on an everywhere dense set. We compute the moments of the distribution function using a functional
equation, which brings to light a self-similarity phenomenon, and we derive a Fourier representation of the periodic
function using a Dirichlet series with vector coefficients. The method is applicable to a wide class of sequences ra-
tional with respect to a numeration system essentially under the condition that they admit a linear representation with
nonnegative coefficients.
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1 Introduction
Sequences that are rational with respect to a numeration system occur in essentially two domains. The first
concerns automatic sequences—that is, sequences generated by finite machines that result from interpret-
ing integers as words via a numeration system. While their definitions are frequently very simple, such as
a paper-folding sequence defined as the sequence of ridges and valleys obtained by unfolding a sheet of
paper that has been folded in half again and again, the behaviour of these sequences may be really difficult
to study and the answers, if they exist, use sophisticated or elementary but intricate arguments Allouche
and Shallit (2003).

The second domain where these sequences arise is the study of the complexity of algorithms that use
a divide-and-conquer strategy. In this context, the sequences have real or integer values, because they
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provide the cost of an algorithm for a given input size. For divide-and-conquer recurrences, sequences
that are rational with respect to a numeration system are as fundamental as classical rational sequences
for classical linear recurrences with constant coefficients. This class of non-classical rational sequences
extends the class of automatic sequences, since automatic sequences are non-classical rational sequences
that take only a finite number of values. Computer scientists often neglect their fine asymptotic behaviour
and content themselves with a rough estimation (Cormen et al., 1990, Master theorem). In fact these
sequences hide functions of a fractal nature, periodic in a logarithmic scale.

We are dealing with a particular problem that serves as a guide for developing the theory of the asymp-
totic behaviour of these non-classical rational sequences. Our motivation for developing this example in
detail is that the method should be applicable to a wide class of non-classical rational sequences. Indeed,
the use initiated by Philippe Flajolet of the Mellin-Perron formula, a tool from analytic number theory,
in the study of the complexity of divide-and-conquer algorithms, digital sums or sequences related to
binary numeration system has produced many papers, but no general result which allows to deduce sys-
tematically the asymptotic behaviour of the sequence under consideration from the recurrence it satisfies.
(See (Flajolet and Golin, 1994), (Flajolet et al., 1994) as seminal works, or even (Flajolet, 1985), (Flajolet
and Martin, 1985) for the idea of a periodic function as a consequence of a set of regularly spaced complex
poles.)

We are considering first a rational series from formal language theory and then a rational sequence.
A rational series associates a number to each word over a given alphabet. It can be defined by a linear
representation—that is, a set of matrices—and the size of the matrices is called the dimension of the
representation. The key condition for our study is the fact that the rational series admits a linear repre-
sentation whose coefficients are all nonnegative. An additional condition on the Jordan reduced form of a
certain matrix provides the behaviour of the first-order means. This last point provides a new argument.
In previous studies, the qualitative behaviour of the first-order means is always obtained by some ad hoc
argument, specific to each example.

As usual in the study of the fine behaviour of digital sums or sequences of this type, a periodic function
of a fractal nature arises. The word “fractal” is generally used in a vague meaning in this context, but we
show that a self-similar function occurs in the problem. The periodic function in our example is Hölder
of order 2/3, and 2/3 is the best possible exponent, even locally. Moreover, the subset of points where
this function is differentiable is an everywhere dense subset, and also the set where this function is non-
differentiable is an everywhere dense subset of the real line. It seems that this mixed property appears for
the first time in this domain.

The paper is organised as follows. Section 2 shows the cryptographic origin of the problem, and in-
troduces the rational series adp, which is the subject of our study. Section 3 provides an overview of the
method we follow to put light on the asymptotic behaviour of adp. We show in Section 4 how to obtain
the qualitative asymptotic behaviour of the first-order Cesàro means of adp. This gives rise to a proba-
bility distribution function whose regularity is discussed. It turns out to be Hölder but non-differentiable
on an everywhere dense set. Moreover in Section 5, we prove that the distribution function is the sum
of the components of a vector function which satisfies a self-similarity property. This property permits
us to compute exactly and efficiently values of the distribution function on an everywhere dense set and
to compute exactly its moments. In Section 6, we translate the result into the asymptotic behaviour of a
sequence sbs (for side-by-side) deduced from adp in a very simple manner. We obtain a periodic function
of bounded variation and the rest of the paper is devoted to the explicit computation of its Fourier series.
Section 7 is a preliminary one, where we provide the necessary tools of analytic number theory. Section 8
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first provides an explicit asymptotic expansion for the second-order Cesàro means of sbs, and next for the
first-order means of sbs.

Eventually the difference between our example and previous works (Flajolet and Golin, 1994), (Flajolet
et al., 1994) is the high dimension of the linear representation, namely 8 in the first part (Sections 2–5)
which is the most original, and 17 in the second part (Sections 6–8) which follows the same approach
as the cited papers. This feature prevents us to use the smart but tricky arguments usually employed in
the domain. Showing that rational series and rational sequences may be dealt in a systematic manner is
indeed of interest.

2 Origin of the problem and rational series adp
In this paper we aim to present a detailed asymptotic analysis of a rational series adp. Recall (Sakarovitch,
2003) that a non-commutative formal power series S over the monoid of words from an alphabet A with
real coefficients is a map which associates to each word w a real number S(w), called the coefficient of w
in S. Classically the series is written as a formal sum

S =
∑

w∈A∗

S(w) · w,

indexed by the words. It is said to be a formal series in the non-commutative indeterminates which are the
letters from A.

Definition 1 A non-commutative formal series is a rational series if and only if there is a square matrix
Ax of size d×d for each letter x in the alphabet, a row vector L and a column vector C such that for each
word w = w1 · · ·w`, the coefficient of w in the series is S(w) = LAw1 · · ·Aw`

C. The family L, (Ax)x,
C is called a linear representation of dimension d of the rational series S.

The series adp is motivated by differential cryptanalysis. Differential cryptanalysis (Biham and Shamir,
1991) is one of the most widely used methods for analysing symmetric ciphers. This method studies
how differences propagate through functions. Let G, H be finite Abelian groups, and let f : G → H
be a function. For each α ∈ G, let Dα denote the difference operator (Dαf)(x) = f(x + α) − f(x).
Differential cryptanalysis is especially concerned with the probability that (Dαf)(x) has a given value
β ∈ H . The mapping (α, β) 7→ Prx∈G[(Dαf)(x) = β] is called the differential probability of f .
We will consider the group GN = {0, 1, . . . , 2N − 1} with the usual addition modulo 2N as the group
operation. We identify GN and the set ZN

2 of N -tuples of bits using the natural correspondence that maps
xN−12N−1 + · · ·+x12+x0 ∈ GN onto (xN−1, . . . , x1, x0) ∈ ZN

2 . In this way the usual componentwise
addition ⊕ in ZN

2 (or bitwise exclusive-or) carries over to a function GN × GN → GN . We call the
differential probability of this mapping the additive differential probability of exclusive-or and denote it
by adp,

adp(α, β, γ) = Pr
x,y

[((x + α)⊕ (y + β))− (x⊕ y) = γ].

We will consider adp as a function of octal words by encoding the tuple (α, β, γ) as the octal word
w = wN−1 · · ·w0, where wi = αi4 + βi2 + γi. This defines adp as a function from the octal words of
length N to the interval [0, 1]. As N varies in the set of nonnegative integers, we obtain a map over the
octal words with values in [0, 1], that is a formal series

adp =
∑

w∈{0,1,...,7}∗
adp(w) · w.
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The key result which permits us to investigate the asymptotic behaviour of adp is the following (Lipmaa
et al., 2004, Theorem 1).

Lemma 1 The formal series adp is a rational series over the alphabet of the octal numeration. It admits
the 8-dimensional linear representation L, Ak, 0 ≤ k < 8, C, where

L =
(
1 1 1 1 1 1 1 1

)
, C =

(
1 0 0 0 0 0 0 0

)T
,

A0 =
1
4



4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


,

and Ak = TkA0Tk for 0 < k < 8, with Tk the permutation matrix associated to the translation i 7→ i⊕k.

3 Overview of the behaviour of adp in the mean
We will give a detailed asymptotic average-case analysis of the formal series adp. The analysis proceeds
as follows.

We first view the family (adp(w)/4N )|w|=N as a probability distribution µN on the real segment [0, 1]
by interpreting the word w as the real number whose octal expansion is (0.w)8. For each N , we have an
associated distribution function FN (x). Using the linear representation for adp, we prove a limit theorem
stating that the sequence of distribution functions converges uniformly to a distribution function F (x). It
turns out that it is Hölder of order 2/3, and that this exponent is the best possible. As a by-product, we
show that F (x) is differentiable on an everywhere dense subset, and also non-differentiable on an every-
where dense subset (Section 4). Moreover F (x) writes LF(x) where the vector function F(x) satisfies
a self-similarity property, which explains the fractal character of F (x). This permits us to compute the
moments of the distribution function F (x) (Section 5).

Second, we introduce the sequence sbs obtained by putting side-by-side the values of adp(w) according
to their length and rank in the lexicographic ordering of the octal words w. The limit theorem translates
to a formula ∑

n<ν

sbs(n) = ν2/3G2/3(log8 ν) + O(ν1/3), (1)

where G2/3 is a 1-periodic function, which inherits the properties of F . In particular, the function is of
bounded variation. As a consequence, its Fourier series converges uniformly towards G2/3 (Section 6).

Third, the linear representation of adp gives rise to a 17-dimensional linear representation of the 8-
rational sequence sbs. We consider the seventeen sequences associated with the linear representation for
sbs(n) by taking each canonical basis vector of Q17 as the column vector. Let Un be the row vector of
these sequences, and let U(s) be its Dirichlet series. Each sequence is bounded and the Dirichlet series
have abscissa of convergence that is not greater than 1. The function U(s) is analytic for σ > 1 and
satisfies the functional equation

U(s)(I17 − 8−sQ′) = ∇U(s), (2)
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where Q′ is the sum of the square matrices in the linear representation for sbs and the function ∇U(s) is
analytic for σ > 0. This formula provides a meromorphic extension of U(s) to σ > 0. The rightmost pos-
sible singularities have σ = 2/3. A change of coordinates using a Jordan form J = P−1Q′P transforms
Un and U(s) into the sequence Vn and its Dirichlet series V (s). This implies that 2/3 is indeed a sin-
gularity for the first component v1(s) of V (s). The singularities of the other components have σ ≤ 1/3.
Finally, the order of U(s), i.e. the exponent in the order of growth at ±i∞ as a function of σ, is at most
1− σ for 0 < σ < 1 and 0 for σ > 1 (Section 7).

Fourth, we apply a Mellin-Perron formula to get an integral expression for the sums of the second-order
of sbs. The integral is evaluated using the residue theorem by pushing the vertical line of integration to
the left. This gives the asymptotic expansion

∑
1≤n≤ν

n−1∑
k=1

sbs(k) =
ν→∞

ν5/3H5/3(log8 ν) + ν4/3H4/3(log8 ν) + O(ν1+ε),

where H5/3 and H4/3 are 1-periodic continuous functions and 0 < ε < 1/3. A pseudo-Tauberian
argument combined with (1) gives the Fourier series

G2/3(λ) =
1

ln 8

∑
k∈Z

∇v1(2/3 + kχ)
2/3 + kχ

e2πikλ,

where ∇v1(s) is an analytic function and χ = 2πi/ ln 8. The Fourier series converges uniformly to-
wards G2/3 (Section 8).

4 Limit theorem
Our point of departure is the following result. The section is devoted to its proof and immediate conse-
quences.

Theorem 1 There exists a distribution function F (x) such that the summation function of adp(w) for
words of length N satisfies ∑

|w|=N

(w)8<8N x

adp(w) =
N→∞

4N · F (x) + O(2N )

uniformly for x ∈ [0, 1). Moreover, the function F (x) is Hölder of order 2/3 and 2/3 is the best exponent
for F (x).

4.1 Convergence
Let L, A0, . . . , A7, and C be the linear representation of adp, and let Q = A0 + A1 + · · · + A7. The
matrix Q contains almost all the knowledge we need in order to study the asymptotic behaviour of adp.
It has a dominant eigenvalue 4, which is simple. More precisely, the matrix Q is diagonalizable with
eigenvalues 4 (simple), 2 (triple), 1 (quadruple). The vector V = (E1 + · · · + E8)/8, where (Ej) is
the canonical basis, is an eigenvector for the eigenvalue 4. With this choice, we have C = V + V2 +
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V1 where V2 and V1 are some eigenvectors associated to the eigenvalues 2 and 1 respectively. As a
consequence, QnC = 4nV + 2nV2 + V1 for each nonnegative integer n.

For each integer N > 0, we define a probability distribution µN on the real segment [0, 1] by its
distribution function

FN (x) = 4−N
∑
|w|=N

(w)8<8N x

adp(w) = 4−N
∑
|w|=N

(w)8<8N x

LAwC,

where (w)8 = w|w|−18|w|−1 + w|w|−28|w|−2 + · · ·+ w0 is the octal integer represented by w and Aw =
Aw|w|−1 · · ·Aw0 . This is indeed a probability distribution, since

µN ([0, 1]) =
1

4N

∑
|w|=N

adp(w) =
1

4N
LQNC = 1, (3)

as can be easily checked.
We need a result which is no more than a mere remark, but which is basic in our study. The rational

series adp admits the linear representation L, A0, . . ., A7, C. Varying the vector C, we obtain a vector
space of rational series which is nothing else than the vector space generated by adp under the action of
the monoid of octal words.

Lemma 2 Let V be a bounded set of column vectors. Then all rational series with a linear representation
which has the same matrices L, A0, . . ., A7 as adp but an arbitrary column vector from V admit a
common upper bound.

Proof: We observe that the maximum absolute column sum norm of each square matrix in the linear
representation of adp is 1. 2

We are now in position to prove the convergence of the sequence (FN ).

Lemma 3 The sequence of distribution functions (FN ) converges uniformly to a distribution function F
with a speed of convergence of order 2−N .

Proof: We will prove that (FN (x)) is a Cauchy sequence. Let M and N two integers with 0 ≤ M ≤ N .
For x ∈ [0, 1), let k be the integer part of 8Mx. The nonnegative character of adp provides us with the
inequalities

4−N
∑
|w|=N

(w)8≤8N−M k

adp(w) ≤ FN (x) ≤ 4−N
∑
|w|=N

(w)8≤8N−M (k+1)

adp(w).

Substituting w′w′′ for w with w′ a word of length M and w′′ a word of length N − M , the inequality
(w)8 ≤ 8N−Mk becomes (w′)88N−M + (w′′)8 ≤ 8N−Mk. This is certainly the case if (w′)8 ≤ k − 1.
Similarly the inequality (w)8 ≤ 8N−M (k+1) becomes (w′)88N−M +(w′′)8 ≤ 8N−M (k+1). It implies
(w′)8 ≤ k + 1. From this remark and anew the nonnegative character of adp follow the inequalities

4−N
∑

|w′|=M
|w′′|=N−M
(w′)8≤k−1

adp(w′w′′) ≤ FN (x) ≤ 4−N
∑

|w′|=M
|w′′|=N−M
(w′)8≤k+1

adp(w′w′′).
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By making adp(w′w′′) = LAw′Aw′′C explicit we obtain

4−N
∑

|w′|=M
(w′)8≤k−1

LAw′QN−MC ≤ FN (x) ≤ 4−N
∑

|w′|=M
(w′)8≤k+1

LAw′QN−MC.

Besides,
FM (x) = 4−M

∑
|w′|=M

(w′)8<8M x

LAw′C.

Then the difference FN (x)− FM (x) is bounded by the absolute value of

4−N
∑

|w′|=M
(w′)8≤k

LAw′QN−MC − 4−M
∑

|w′|=M
(w′)8≤k

LAw′C = 4−N
∑

|w′|=M
(w′)8≤k

LAw′(QN−MC − 4N−MC)

plus or minus a term 4−NLAw′QN−MC, corresponding to (w′)8 = ` with ` = k − 1 or k + 1, and a
term 4−MLAw′C, corresponding to (w′)8 = k, which are of order 4−M and negligeable in the problem,
as we will see. We will prove that we have a bound of order 2−M .

The difference QN−MC− 4N−MC writes 2N−M (1− 2N−M )V2 +(1− 4N−M )V1. We will deal with
the term associated to V2. The other associated to V1 may be dealt with in the same manner. (It turns out
to be of order 4−M .) We then come up with SM (x) = LSM (x) where SM (x) is defined by

SM (x) =
∑

|w′|=M

(w′)8<8M x

Aw′V2.

The sum SM (x) is similar to the sum which defines F (x). We anticipate on the idea of Theorem 3. Let x′

be the most significant figure of 8Mx. The above sum writes

SM (x) =
∑
r<x′

ArQ
M−1V2 +

∑
|w′′|=M−1

(w′′)8<8M−1(8x−x′)

Ax′Aw′′V2 = 2M−1
∑
r<x′

ArV2 + Ax′SM−1(8x− x′).

Using the 1-norm for vectors and its induced norm for matrices, that is the maximum absolute column sum
norm, we obtain immediately ‖SM (x)‖ ≤ 2M−1 ‖Q‖ ‖V2‖+ ‖SM−1(8x− x′)‖ (because the maximum
absolute column sum norm of each matrix Ar, 0 ≤ r ≤ 7 is 1) and for the supremum norm ‖SM‖∞ ≤
2M−1 ‖Q‖ ‖V2‖+ ‖SM−1‖∞. By induction, we conclude ‖SM (x)‖ = O(2M ) with a constant in the big
oh which is independant of x. The same result is valid for SM (x) and we get

4−N
∑

|w′|=M
(w′)8≤k

2N−M (1− 2N−M )LAw′V2 = 4−N2N−M (1− 2N−M )O(2M ) = O(2−M ).

Eventually we obtain
FN (x)− FM (x) = O(2−M )
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uniformly with respect to x. As a consequence (FN (x)) is a Cauchy sequence which converges uniformly
towards a function F (x). Taking the limit over N we obtain F (x)− FM (x) = O(2−M ) uniformly with
respect to x. The limit function F (x) is obviously a distribution function (because of LV = 1) and µ
stands for the associated measure. 2

4.2 Hölder condition
Recall that a function f is Hölder of order α ∈ (0, 1] if it satisfies |f(x) − f(y)| ≤ C|x − y|α for some
constant C, and all x, y.

Lemma 4 The limiting distribution function F is Hölder of order 2/3.

Proof: Let x, y be arbitrary such that 0 ≤ x < y ≤ 1. The numbers x and y satisfy 8−(ν+1) ≤ y − x <
8−ν for some well defined integer ν. We can find a semi-open interval [u, v) such that its ends are octal
numbers of the form u = (0.u1 · · ·uν)8, v = u+k8−ν , where k is 1 or 2, and the semi-open interval (x, y]
is included in [u, v). The interval [u, v) may overhang outside of the interval [0, 1], but we consider that
distribution functions are extended by 0 on the left of 0 and by 1 on the right of 1. The number u + k8−ν

has an octal expansion of the form u + k8−ν = (u′0.u
′
1 · · ·u′ν)8. For all N ≥ ν, the term µN [u, v)

is µN [u, u + 8−ν) or µN [u, u + 8−ν) + µN [u + 8−ν , u + 2.8−ν), depending on whether k = 1 or
k = 2. Numbers from an interval like [u, u + 8−ν) have octal expansions (0.u1 · · ·uνwν+1 · · · )8 with
figures wν+i arbitrary. As a consequence µN [u, v) admits an upper bound which is one term or the sum
of two terms of the form

4−N
∑
|w|=N

u≤(0.w1···wN )8<u+8−ν

adp(w) = 4−N
∑

wν+1,··· ,wN

LAu1 · · ·Auν Awν+1 · · ·AwN
C,

that is, with Q = A0 + A1 + · · ·+ A7,

4−N
∑
|w|=N

u≤(0.w1···wN )8<u+8−ν

adp(w) = 4−NLAu1 · · ·Auν QN−νC.

The matrix Q appears in Lemma 3 and the formula QN−νC = 4N−νV + 2N−νV2 + V1 shows that

4−NLAu1 · · ·Auν QN−νC = 4−νLAu1 · · ·Auν V +
1

2N+ν
LAu1 · · ·Auν

V2 +
1

4N
LAu1 · · ·Auν

V1

remains bounded when N goes through the integers. Therefore we obtain

∀N ≥ ν, µN [u, v) ≤ K4−ν ,

for some constant K independent of N , ν, u, v, x, and y. But the hypothesis 8−(ν+1) ≤ y − x < 8−ν

gives µN [u, v) ≤ 4K(y−x)2/3 and the fact that the positive limit measure µ is a non-decreasing function
of sets, we have

0 ≤ F (y)− F (x) = µ (x, y] ≤ µ [u, v) ≤ 4K(y − x)2/3.

We conclude that the distribution function F (x) is Hölder of order 2/3. 2

The Hölderian character of a function like F (x) has been studied in (Dumont and Thomas, 1989), but
in a slightly different context of unusual numeration system related to substitutions of words, and the
employed argument not seems to be the same.
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4.3 Best exponent
A natural question arises: is 2/3 the best (that is, the largest) exponent that can be used in the Hölder
condition for F (x)? We will show that there is no subinterval in which F (x) satisfies a Hölder condition
with an exponent larger than 2/3. Towards this end, we will exhibit an inequality of the form

lim inf
y→x+

F (y)− F (x)
(y − x)2/3

≥ K > 0.

Such an inequality cannot be valid for every x. We thus restrict ourselves to rational and even octal
numbers x, and this is sufficient for our purpose.

Let x be an octal number and y be a real number satisfying 0 ≤ x < y < 1. As in the previous
subsection, we consider octal expansions x = (0.x1 · · ·xM )8, y = (0.y1 · · · yMyM+1 · · · )8. Without
loss of generality, we may assume that 8−(ν+1) ≤ y − x < 8−ν and ν ≥ M + 1. Once again, the
nonnegative character of adp(w) gives for N > ν the inequality∑

|w|=N
x≤(0.w)8<y

adp(w) ≥
∑
|w|=N

x≤(0.w)8<x+8−(ν+1)

adp(w) = LAx1 · · ·AxM
Aν+1−M

0 QN−ν−1C,

where Q is still A0 + · · · + A7. For the same reason as above, we obtain QN−ν−1C = 4N−ν−1V +
2N−ν−1V2 +V1. The term LAx1 · · ·AxM

Aν+1−M
0 (2N−ν−1V2 +V1) is O(2N−ν) because all the rational

series in the vector space generated from adp(w) under the action of the monoid of octal words are
uniformly bounded for a column vector in a bounded set. Next the matrix A0 is diagonalizable with
a dominant eigenvalue 1 with eigenvector V 0 = 1/4 E1. The others eigenvalues are 1/4 and 0. As a
consequence V writes V = V 0 + V 0

1/4 + V 0
0 where V 0

1/4 and V 0
0 are eigenvectors for the eigenvalues 1/4

and 0 respectively. From these facts follows the equality

4N−ν−1LAx1 · · ·AxM
Aν+1−M

0 V = 4N−ν−1LAx1 · · ·AxM
V 0 + 4N−νO

(
4−ν+M

)
+ 4N−νO

(
2N−ν

)
.

Hence, dividing by 4N , we obtain

FN (y)− FN (x) ≥ 4−ν

(
1
4
LAx1 · · ·AxM

V 0 + O
(
4−ν+M

)
+ O(2−N−ν)

)
.

(The consideration of
[
x, x + 8−(ν+1)

)
in place of

(
x, x + 8−(ν+1)

]
inserts a small error, which is not

greater than 2/4N because adp(w) is bounded by 1, and this will cause no problem.) In the limit this
provides us with the formula

F (y)− F (x) ≥ K4−ν

for some absolute constant (depending only on x) and next with

lim inf
y→x+

F (y)− F (x)
(y − x)2/3

≥ K ≥ 1
4
LAx1 · · ·AxM

V 0. (4)

We are not far from the announced inequality.
The lower bound K is of interest only if it is positive. Hence we consider the rational sequence which

admits the linear representation L, A0, . . ., A7, and V 0, and we look for its support L—that is, the rational
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0 1

1, 2, 4, 7

3, 5, 6

0, 3, 5, 6 0, 1, 2, 4, 7

0 1

0, 3, 5, 6

1, 2, 4

1, 2, 4, 7 0, 3, 5, 6, 7

Fig. 1: The automaton on the left recognises the language L, which is the support of the series adp.

language of words which give a nonzero value by this series. We let S(w) denote the associated formal
series. A word w = w0w1 · · ·wN−1 gives a positive value for the series S if and only if there is a positive
term in the sum

S(w) =
∑

i0,i1,··· ,iN

Li0Aw0,i0,i1 · · ·AwN−1,iN−1,iN
V 0

iN
.

This means that we can construct the following nondeterministic automaton for recognising the words w
such that S(w) 6= 0. The states are the indices of the matrices in the representation, say the integers
from 1 to 8, augmented by an initial state init . The transitions are labelled by the figures 0, 1, . . ., 7 of the
octal numeration, and the empty word ε. There is a transition labelled ε from the initial state init to state
i if and only if the coefficient Li is positive. There is a transition labelled r from state i to state j if and
only if the coefficient Ar,i,j is positive. There are no other transitions. A state i is accepting if and only if
the coefficient V 0

i is positive. The initial state is not accepting.
This automaton has nine states. If we turn this automaton into a minimal deterministic automa-

ton (Sakarovitch, 2003), we obtain the automaton with only two states in Figure 1 on the left hand side.
If the word corresponding to the octal number x = (0.x1 · · ·xM ) is accepted by the automaton, the lower
bound (4) shows that the function F (x) cannot satisfy a Hölder condition with a larger exponent than 2/3
in a right neighbourhood of x. Moreover, these octal numbers are dense in [0, 1), since every word is a
prefix of a word accepted by the automaton (the graph is strongly connected).

Lemma 5 The subset of numbers for which 2/3 is locally the best exponent in the Hölder condition
for F (x) is everywhere dense.

Additionally, we can deal with the left limit of the quotient (F (x)−F (y))/(x− y)2/3 by reversing the
roles of x and y. The only differences compared to the right limit is that we have to replace the matrix
A0 by the matrix A7. The vector V 0 becomes V 77 = 1/4 E8, a fact which is not surprising in view of
the definition of matrices Ak. We arrive at the same conclusion, using the automaton in Figure 1 on the
right hand side. The notable point is that some octal numbers have a local Hölder exponent 2/3 and some
others have a greater local exponent.

4.4 Regularity result for the limit function
Because the limit function F (x) is nondecreasing, it is differentiable almost everywhere (Billingsley,
1995, Theorem 3.12). Nevertheless, the function F (x) cannot be differentiable in the everywhere dense
set where 2/3 is locally the best exponent in the Hölder condition.
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Theorem 2 The limit function F (x) is differentiable almost everywhere. The set of points where F (x) is
not differentiable is everywhere dense.

5 Self-similarity
5.1 Functional equation
For each vector Ei of the canonical basis we may consider the rational series which associates to an octal
word w the value fi(w) = ET

i AwC. Following exactly the same way as for adp we get

4−N
∑
|w|=N

(w)8≤8N x

fi(w) =
N→+∞

Fi(x) + o(1)

for some continuous function Fi(x). Because L = ET
1 + · · ·+ET

8 , we have F (x) = F1(x)+ · · ·+F8(x).
For 0 ≤ r < 8, r/8 ≤ x < (r + 1)/8 and 1 ≤ i ≤ 8, and considering the leftmost letter of each

word w, we may write (Ar,i,j is the component i, j of matrix Ar)

4N+1Fi(x) + o(4N ) =
∑

|w|=N+1

(w)8≤8N ·8x

ET
i AwC

=
∑

0≤k<r

∑
|w|=N

ET
i AkAwC +

∑
|w|=N

8N r+(w)8≤8N ·8x

ET
i ArAwC

=
∑

0≤k<r

8∑
j=1

ET
i AkQNC +

∑
|w|=N

(w)8≤8N (8x−r)

8∑
j=1

Ar,i,jE
T
j AwC

=
∑

0≤k<r

8∑
j=1

ET
i Ak(4NV + o(4N )) +

8∑
j=1

Ar,i,j(4NFj(8x− r) + o(4N )).

Dividing by 4N and taking the limit we obtain

4Fi(x) =
∑

0≤k<r

ET
i AkV +

8∑
j=1

Ar,i,jFj(8x− r).

Introducing the column vector F(x) whose components are F1(x), . . ., F8(x), this result writes

4F(x) =
∑

0≤k<r

AkV + ArF(8x− r).

This equation leads us to consider and solve the following problem.

Lemma 6 The problem

• Φ(x) is a continuous function from the interval [0, 1] into the space of 8-dimensional vectors.
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• Φ(0) = 0, Φ(1) = V .

• For every octal figure r and for x in [r/8, (r + 1)/8),

Φ(x) =
1
4

∑
0≤k<r

AkV +
1
4
ArΦ(8x− r),

where A0, . . ., A7 are the square matrices of the linear representation of adp, 4 is the dominant
eigenvalue of Q = A0 + · · ·+ A7, and V is an associated eigenvector,

has a unique solution.

Proof: The space of continuous functions from [0, 1] into the space R8 is equipped with the norm of the
maximum ‖Φ‖∞ = maxx

∑
i |Φi(x)|. It is known that this space is complete. The subspace of such

continuous functions Φ which satisfy Φ(0) = 0 and Φ(1) = V is closed and therefore complete. The
equation of the problem appears as a fixed point equation Φ = LΦ in this space, where the operator L is
defined by LΦ = Ψ with

Ψ(x) =
1
4

∑
0≤k<r

AkV +
1
4
ArΦ(8x− r)

for 0 ≤ r < 8 and r/8 ≤ x < (r + 1)/8. It is sufficient to see that the subspace under consideration is
left invariant by L and that L is a contraction in order to prove the lemma.

We have to show that Ψ is continuous as Φ is continuous and satisfies Ψ(0) = 0, Ψ(1) = V . Thanks to
the piecewise definition of Ψ this amounts to consider the left and right behaviour of Ψ at the points r/8
for 0 ≤ r ≤ 8. The definition of Ψ and the continuity of Φ give immediately

Ψ(0) =
1
4
A0Φ(0) = 0, Ψ(

r

8
+ 0) = Ψ(

r

8
) =

1
4

∑
0≤k<r

ArV,

Ψ(
r

8
− 0) =

1
4

∑
0≤k<r−1

ArV +
1
4
ArΦ(1) =

1
4

∑
0≤k<r

ArV,

Ψ(1− 0) =
1
4

∑
0≤k<7

ArV +
1
4
A7V =

1
4
QV = V, Ψ(1) = V,

and the constraints are satisfied.
Let us assume that we have two functions Φ1 and Φ2 in the subspace under consideration and let Ψ1

and Ψ2 be their images by L. From Ψ1(x) − Ψ2(x) = (1/4)Ar(Φ1(8x − r) − Φ2(8x − r)) follows
the inequality ‖Ψ1 −Ψ2‖ ≤ (1/4) ‖Φ1 − Φ2‖ because the maximum absolute column sum norm of each
matrix Ar is 1. As a consequence L is a contraction and this ends the proof. 2

Putting together the computation on the Fi’s and the previous lemma, we obtain the following repre-
sentation of the limiting distribution function F (x).

Theorem 3 The distribution function F (x) writes F (x) = LF(x) where F(x) is the unique continuous
function from [0, 1] into the space R8 which satisfies

• F(0) = 0, F(1) = V ,
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• for 0 ≤ r < 8 and x ∈ [r/8, (r + 1)/8), F(x) =
1
4

∑
0≤k<r

AkV +
1
4
ArF(8x− r),

where A0, . . ., A7 are the square matrices of the linear representation of adp, 4 is the dominant eigenvalue
of Q = A0 + · · ·+ A7, and V = (E1 + · · ·+ E8)/8 is the associated eigenvector.

Billingsley (1995, eq. (7.30), p. 104; eq. (31.17), p. 409) gives such examples of functional equation,
but for one dimensional problem. The theorem is reminiscent from the iterated function systems defined
by Hutchinson (and popularized by Barnsley). Indeed Hutchinson (1981, Section 3.5) introduces the idea
of a parametrized curve like F(x) defined by a system comparable to the one in Lemma 6.

5.2 Moments
It is possible to show that the distribution function F has a characteristic function φ(t) =

∫
eitxdF (x)

which writes φ(t) = LΦ(t)C where Φ(t) is a square matrix defined as a convergent infinite product,
namely Φ(t) = Σ(t/8)Σ(t/82) · · ·Σ(t/8N ) · · · with Σ(t) = (1/4)

∑
0≤r<8 eitrAr. The proof is the

same as for the functional equation of F , using the rightmost letter of each word (Grabner et al., 2005).
In principle the knowledge of φ(t) allows to compute all the moments of the distribution function F .

We will follows a clumsier though more effective way to compute these moments. Let us denote the
moments

µ` =
∫ 1

0

x` dF (x)

and

m` =
∫ 1

0

x`−1F (x) dx, M` =
∫ 1

0

x`−1F(x) dx, M`,r =
∫ (r+1)/8

r/8

x`−1F(x) dx

for ` ≥ 1 and 0 ≤ r < 8. The moment µ` is related to m` by the formula µ` = 1− `m`, and m` may be
computed from the vector M` by m` = LM`. Hence we are trying to determine the M`’s. Let us begin
with M1. Using the functional equation of F(x) and the change of variable y = 8x− r, we have

4M1,r =
∫ (r+1)/8

r/8

 ∑
0≤k<r

AkV + ArF(8x− r)

 dx

=
1
8

∑
0≤k<r

AkV + Ar

∫ 1

0

F(y)
dy

8
=

1
8

∑
0≤k<r

AkV +
1
8
ArM1,r.

Adding the equalities for r = 0, . . ., 7, we see that M1 satisfies

(32 I8−Q)M1 =
∑

0≤r<8

∑
0≤k<r

AkV =
∑

0≤r<7

(7− r)ArV.

The number 32 is not an eigenvalue of Q and the equation has a unique solution

M1 =
1

120
(

11 10 9 8 7 6 5 4
)T

.
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We obtain m1 = LM1 = 1/2 and µ1 = 1/2.
The same computation provides us with an equation for M`, namely

(8` × 4 I8−Q)M` =
1
`

∑
0≤r<8

(
(r + 1)` − r`

) ∑
0≤k<r

AkV +
`−1∑
j=1

(
`− 1
j − 1

) ∑
0≤r<8

r`−jArMj .

The previous equation has a unique solution because 8` × 4 is not an eigenvalue of Q and this equation is
a recursion which permits us to successively compute the vectors M`. Thus we get the exact values of the
moments

µ1 =
1
2
, µ2 =

1
3
, µ3 =

1
4
, µ4 =

1
5
, µ5 =

1
6
,

µ6 =
383289787
2683033605

, µ7 =
127762673
1022108040

, µ8 =
2768164301877847661255549
24913833701278413541832325

,

µ9 =
4982640478208391452758817
49827667402556827083664650

, µ10 =
646366113165090067727601246420676270270956577
7110310784656332672513849866851231905086977875

.

It is worth noting the difference δ` = µ`− 1/(` + 1) with the moments of the uniform distribution are the
following

δ1 = 0, δ2 = 0, δ3 = 0, δ4 = 0, δ5 = 0,

δ6 = −0.0000002713346559, δ7 = −0.0000008140039677, δ8 = −0.000001583164964,

δ9 = −0.000002533974675, δ10 = −0.000003625207098.

5.3 Numerical computation
A way to see how the function F (x) looks like is to choose a sufficiently large integer N and to compute
all the numbers adp(w) for w of length N . This approach needs to compute the 8N vectors LAw and
demands about 8N multiplications matrix by vector. With this method we obtain values of F (x) with an
error of the order of 2−N .

Another way is the use of the functional equation satisfied by F(x). We know the vectors F(0) and
F(1). We precompute all the vectors (1/4)AkV and their partial sums at a cost O(1). Assume we have
computed all the vectors F(k/8N−1) with 0 ≤ k ≤ 8N−1, then the functional equation gives the values
F((8k + r)/8N ) with 1 ≤ r < 8 for a cost of about 8N multiplications matrix by vector. Hence with a
global cost of about 8N we get all the 8N values F(k/8N ), 0 ≤ k < 8N . The difference with the previous
method is that the obtained values of F (x) are exact.

Lemma 6 and its proof shed another light on the second method. We start with the parametrized curve
xV , whose ends are 0 and V , and we iterate the operator L associated with the fixed point equation
satisfied by F(x). This produces a sequence of continuous piecewise linear function LFk(x) which
converges towards the function LF(x) = F (x).

Note that we are able to compute values not only for octal numbers but for rational numbers too because
their expansion is ultimately periodic. The basic case is the case where the expansion of x is purely
periodic with a period T and F(x) is the only solution of F(x) = LT F(x). In the general case, we have
F(x) = LP G(x) and G(x) = LT G(x) if T is the period of the expansion and P is the length of the non
periodic prefix part.
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Fig. 2: The difference F (x) − x for the limit function F (x) and its approximations of rank 3, 4, 5 computed from
the partial sums of adp. The vertical unit is 10−3.

For the problem under study the graph of F (x) is not interesting because F (x) is very close to the
identity. The cause is the origin of the problem: the cipher produces a distribution function which looks
like the uniform distribution. Hence it is more interesting to consider the difference F (x)−x. In Figure 2,
we have drawn the graphic (blue curve) of the function ∆(x) = F (x) − x by computing the 85 values
∆(k/85) for 0 ≤ k < 85. The three graphics in red correspond to the partial sums of adp for words of
length 3, 4, and 5 from left to right. The vertical unit is 10−3. The speed of convergence proves to be of
order 2−N as expected.

6 From rational series to rational sequences
6.1 Rational sequence sbs
Let sbs(n) (for side-by-side) be the sequence obtained by putting side-by-side the values of adp(w)
according to the length and rank in the lexicographic order of the octal words w (that is, according to the
radix order). In the correspondence between adp and sbs(n), the words of length N correspond to the
integer interval from (8N − 1)/7 to (8N+1 − 1)/7− 1, since

∑N−1
n=0 8n = (8N − 1)/7.

The sequence sbs(n) does not exist alone, but is part of a family of sequences linked by a linear
representation, like in the case of rational series. A sequence sn is called k-rational or rational with
respect to the radix k ≥ 1 (Allouche and Shallit, 2003) if and only if there exists a 1× d row matrix L, k
square matrices Ai, i = 0, . . . , k − 1 of size d× d, and a d× 1 column matrix C such that if we write n
in base k as n = (n` · · ·n0)k, the value of sn is given by

sn = LAn`
· · ·An0C.

By convention, s0 = LC. In this definition, it is assumed that the expansion of the integer n satisfies
n` 6= 0 because generally speaking we do not have LA0 = L, but this property will be satisfied in the
example under consideration. The family L, (Ai), C is called a linear representation of dimension d of
the sequence. The following lemma shows that sbs(n) is a rational sequence with respect to the octal
numeration.
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Lemma 7 Let S be a rational series over the alphabet {0, . . . , k − 1}. The sequence sn obtained by
putting side-by-side the values of S(w) according to the length and rank in the lexicographic order of
words is a k-rational sequence. Moreover, if L, (Ai)k−1

i=0 , C is a linear representation of S with dimen-
sion d, the following is a linear representation of sn with dimension 2d + 1: L′ =

(
1 L 0 · · · 0

)
,

C ′ =
(
0 C 0 · · · 0

)T
,

A′
0 =

1 L 0
0 0 0
0 Ak−1 Ak−2

 , A′
1 =

0 0 L
0 A0 0
0 0 Ak−1

 ,

and A′
r =

0 0 0
0 Ar−1 Ar−2

0 0 0

 for 1 < r < k.

Proof: The rational character of the rational formal series S means that there exists a finite dimensional
vector space V containing S, which is left invariant by the action of the free monoid of words defined by
r.S(w) = S(wr). The linear representation comes from the existence of a finite family of formal series
(f i)1≤i≤d generating V , and the matrices Ar express the action (the superscripts in (f i) are not exponents
but indices). We have a similar property for a rational sequence. To prove the lemma, it suffices to verify
that the family (e0, u1, . . . , ud, v1, . . . , vd) defined below is a generating family of a vector space W left
invariant by the action r.un = ukn+r of the free monoid on the space of sequences. The sequence e0 is
defined by e0

0 = 1 and e0
n = 0 for n 6= 0. The sequences u1, . . ., ud are those which correspond to the

formal series f1, . . ., fd via the numeration with radix k, and the sequences v1, . . ., vd are variations of
the sequences ui defined by vi

0 = 0 and vi
n = ui

n−1 for n > 0. The result follows from a simple algebraic
manipulation. 2

Applying Lemma 7 to the linear representation of adp gives a linear representation L′, A′
0, . . . , A

′
7, C ′

of dimension 17 of the 8-rational sequence sbs(n).
By the previous lemma and Lemma 2, we obtain immediately the following property, which results

from the fact that the rational sequence sbs(n) and the rational series adp(w) take the same values.

Lemma 8 All sequences in the vector space generated by sbs(n) under the action of the monoid of octal
words are bounded.

6.2 Periodic function
For all real x ∈ [0, 1), we thus have

∑
n< 8N−1

7 +8N x

sbs(n) =
N−1∑
k=0

∑
|w|=k

adp(w) +
∑
|w|=N

(w)8<8N x

adp(w)

=
N−1∑
k=0

4k +
∑
|w|=N

(w)8<8N x

adp(w) =
N→∞

4N

(
1
3

+ F (x) + O(2−N )
)

.
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Let ν = (8N − 1)/7 + 8Nx. Since

ν2/3 =
4N

72/3

(
1 + 7x− 1

8N

)2/3

=
N→∞

4N

72/3
(1 + 7x)2/3 + O(2−N ),

we obtain

1
ν2/3

∑
n<ν

sbs(n) =
N→∞

Γ(x) + O

(
1

ν1/3

)
with Γ(x) = 72/3

1
3 + F (x)

(1 + 7x)2/3
.

We find easily limx→1− Γ(x) = limx→0+ Γ(x) and Γ(x) extends to the real line as a continuous 1-
periodic function which is Hölder with exponent 2/3, according to the formula

Γ(x + δ) =
δ→0

72/3
1
3 + F (x) + O(δ2/3)

(1 + 7x)2/3 + O(δ)
= Γ(x) + O(δ2/3)

and the constant implied in the big oh is independant of x (because the constant implied in the Hölder
property for F (x) is independant of x and x 7→ (1 + 7x)2/3 is Lipschitz on [0, 1]).

Let {λ} = λ − bλc denote the fractional part of λ. Since 0 ≤ x < 1, we have 1 ≤ 1 + 7x < 8
and {log8(7ν + 1)} = log8(1 + 7x). Besides, let x′ be such that {log8(7ν)} = log8(1 + 7x′). The
number x′ is well given because the map z 7→ log8(1 + 7z) defines a bijection from [0, 1) onto itself.
For 8−N/7 ≤ x < 1 we have blog8(7ν)c = N and x − x′ = 8−N/7. For 0 ≤ x < 8−N/7 we have
blog8(7ν)c = N − 1 and 8−N/7 < 1 + x − x′ ≤ 8 · 8−N/7. Thanks to the periodic character of Γ(x)
we obtain, in every case, Γ(x′) = Γ(x + δ) with |δ| ≤ 8 · 8−N/7, hence δ = O(1/ν) uniformly with
respect to x. Because Γ(x) is Hölder with exponent 2/3, this gives Γ(x′) = Γ(x) + O(1/ν2/3) and the
asymptotic formula for the running sum rewrites∑

n<ν

sbs(n) =
ν→∞

ν2/3Γ(x′) + O(ν1/3).

We conclude by expressing x′ as a function of log8 ν that∑
n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + O(ν1/3),

where G2/3(λ) is a 1-periodic function, namely

G2/3(λ) = 72/3

1
3 + F

(
8{λ+log8 7}−1

7

)
4{λ+log8 7} .

As a remark, this definition provides us with the formula G2/3(− log8 7) = 72/3/3, since F (0) = 0, and
the bounds 72/3/12 ≤ G2/3(λ) ≤ 4 · 72/3/3 for all λ, since F takes values in [0, 1].

We note that the big oh is uniform with respect to x or ν in all the previous formulæ. This point
arises from the uniform convergence in Theorem1 and from the previous computations. This justifies the
uniform character of the convergence in the following theorem.
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Theorem 4 There exists a strictly positive 1-periodic function G2/3 such that∑
n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + O(ν1/3)

uniformly with respect to ν.

The occurrence of the exponent 2/3 may be obtained by elementary means. Indeed, equation (3), and
the nonnegativity of adp(w) give

4N − 1
3

≤
∑
n<ν

sbs(n) <
4N+1 − 1

3

for (8N − 1)/7 ≤ ν < (8N+1 − 1)/7, and the relation
∑

n<ν sbs(n)� ν2/3 follows.
The properties of F (x), the periodicity of G2/3(λ), and the equality

lim
λ′→λ+

G2/3(λ′) = lim
λ′→λ−

G2/3(λ′)

for λ = − log8 7 lead to the following result about the regularity of G2/3(λ).

Corollary 1 The function G2/3(λ) is Hölder of order 2/3 and 2/3 is locally the best Hölder exponent
on an everywhere dense subset of the real line. Moreover it is differentiable almost everywhere and non-
differentiable on an everywhere dense subset.

The problem of non-differentiability was addressed in (Tenenbaum, 1997), but the argument relies on
the assumption that the sequence under consideration un satisfies infn |un| > 0. This argument does not
apply here because sbs(n) has the value 0 infinitely often. Moreover, the argument gives only the non-
differentiability at every point. It seems that our example is the first where the function is differentiable
on an everywhere dense subset, and also not differentiable on an everywhere dense subset.

6.3 Bounded variation and convergence of the Fourier series
Because G2/3(λ) is a continuous function, we may consider its Fourier series, but at this point we do not
know if this Fourier series is convergent. Let λ be a real number and νN the integral part of 8N+λ. The
formula

G2/3(λ) =
N→+∞

1
4λ

4−N
∑

0≤n<νN

sbs(n) + o(1)

provides the decomposition log8 G2/3(λ) = −2λ/3 + H(λ) with

H(λ) = lim
N→+∞

log8 4−N
∑

0≤n<νN

sbs(n).

For a given N , the last sum is a nondecreasing function of λ, hence H(λ) is a nondecreasing function
of λ. Since the function log8 G2/3(λ) is the difference of two nondecreasing bounded functions, it is of
bounded variation in every finite interval. It follows that G2/3(λ) is of bounded variation.

There is another way to obtain this conclusion. The function G2/3(λ) appears to be a composition
of functions which are piecewise indefinitely differentiable, at the exception of F (x) which is Hölder
of order 2/3. By repeated applications of the mean value theorem, we see that G2/3(λ) is Hölder of
order 2/3 too. Hence it is of bounded variation.



Asymptotic behaviour of rational series 265

Lemma 9 The function G2/3(λ) is Hölder of order 2/3 and of bounded variation.

This permits us to apply the Jordan-Dirichlet theorem, taking into account the continuity of G2/3(λ).

Theorem 5 The Fourier series of G2/3(λ) converges towards G2/3(λ), and the convergence is uniform.

According to (Zygmund, 1977, Thm. 10.9, p. 64) (and more specifically Remark (a), p. 120), the
Fourier series of G2/3(λ) converges with a kth remainder of the order of k−2/3. Hence the convergence
is uniform but very slow. This is to be compared with the convergence of the sequence (FN ) with an error
of order 2−N .

7 Dirichlet series
The precise study of the Fourier expansion of G2/3(λ) relies on the use of Dirichlet series associated to
sbs(n). Recall that the Dirichlet series f(s) of a sequence (an) is defined by f(s) =

∑∞
n=1 ann−s for

s ∈ C. Following tradition, we will write s = σ + it where σ, t ∈ R. Each Dirichlet series has an abscissa
of convergence σc such that f(s) converges for σ > σc and diverges for σ < σc. If f(s) diverges or
converges for all s, σc = ±∞. The following result (Hardy and Riesz, 1964) can be used for computing
the abscissa of convergence.

Lemma 10 If the abscissa of convergence of the Dirichlet series for a sequence (an) is positive, it is
given by

σc = lim sup
n→∞

log |
∑n

k=1 ak|
log n

.

Combined with Theorem 4, this shows that the abscissa of convergence σc of the Dirichlet series for
sbs(n) is σc = 2/3.

We consider the seventeen rational sequences u1
n, u2

n, . . . , u17
n that arise from the linear representation

L′, A′
0, . . . , A

′
7 and each vector from the canonical basis of Q17. Note that u2

n = sbs(n). Let ui(s) be the
Dirichlet series of ui

n, and let U(s) be the row vector of the series ui(s).
According to Lemma 8, all sequences u1

n, u2
n, . . . , u17

n are bounded. As a consequence each Dirichlet
series ui(s) has an abscissa of convergence ≤ 1. Thus, U(s) has abscissa of convergence σc ≤ 1.

7.1 Meromorphicity
Our next goal is to show that the analytic function U(s), defined in the half-plane σ > σc, admits an
meromorphic extension. Let Un = (u1

n, . . . , u17
n ). Following (Allouche and Cohen, 1985), we write

U(s) =
∞∑

n=1

Un

ns
=

∞∑
n=1

U8n

(8n)s
+

7∑
r=1

(
Ur

rs
+

∞∑
n=1

U8n+r

(8n + r)s

)

=
∞∑

n=1

UnA′
0

(8n)s
+

7∑
r=1

(
Ur

rs
+

∞∑
n=1

UnA′
r

(8n + r)s

)
=

7∑
r=1

Ur

rs
+

7∑
r=0

∞∑
n=1

UnA′
r

(8n + r)s
.

Denote Q′ =
∑7

r=0 A′
r and

∇U(s) =
7∑

r=1

Ur

rs
+

7∑
r=1

∞∑
n=1

UnA′
r

(
1

(8n + r)s
− 1

(8n)s

)
. (5)
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Thus we have U(s)(I17−8−sQ′) = ∇U(s). Let ∆h be the difference operator ∆hu(n) = u(n + h) −
u(n). Then we can write ∇U(s) as

∇U(s) =
7∑

r=1

Ur

rs
+

1
8s

7∑
r=1

∞∑
n=1

UnA′
r∆r/8

1
ns

. (6)

Since ∆r/8n
−s = (n + r/8)−s − n−s = −s

∫ n+r/8

n
u−(s+1) du,∣∣∣∣∆r/8

1
ns

∣∣∣∣ ≤ |s|
∫ n+r/8

n

du

uσ+1
=
|s|
σ

∣∣∣∣∆r/8
1
nσ

∣∣∣∣ . (7)

For fixed s, we have ∆r/8 n−σ ∼n→∞ σn−(σ+1). Since the components of Un are bounded sequences,
it follows that

1
8s

UnA′
r∆r/8

1
ns

=
n→∞

O

(
1

nσ+1

)
.

We conclude that the series (5) converges absolutely in the half-plane σ > 0. Thus, the function ∇U(s)
is analytic in this half-plane.

7.2 Poles
The poles of U(s) come from the term I17 − 8−sQ′. The eigenvalues of Q′ are 4, 2, 1, 1/4 and 0, with
multiplicities 1, 3, 6, 3 and 4, respectively. Let J = P−1Q′P be the Jordan form of Q′, where J is the
quasi-diagonal matrix

J = diag
(

4 2 2 2
(

1 1
0 1

)
1 1 1 1 1

4
1
4

1
4 0 0 0 0

)
.

We make a change of coordinates to get a new sequence Vn with Un = VnP−1 and U(s) = V (s)P−1.
More precisely, if L′ A′

0, . . . , A
′
7, C ′ is the linear representation of Un, we get the linear representation

L′′ = L′P , C ′′ = P−1C ′, A′′
0 = P−1A′

0P , . . . , A′′
7 = P−1A′

7P . Applying this change of coordinates
to (5) gives V (s)(I17 − 8−sJ) = ∇V (s), where

∇V (s) =
7∑

r=1

Vr

rs
+

7∑
r=1

∞∑
n=1

VnA′′
r

(
1

(8n + r)s
− 1

(8n)s

)
.

The function ∇V (s) is analytic for σ > 0.
The equation V (s)(I17−8−sJ) = ∇V (s) gives a system of equations of the form vj(s)(1−Jjj ·8−s) =

∇vj(s), j = 1, . . . , 17, at the exception of j = 6, where the equation is (v5(s) + v6(s))(1 − 8−s) =
∇v6(s).

From these equations we see, with χ = 2πi/ ln 8, that

• The function v1(s) is meromorphic in the half plane σ > 0, with possible poles as 2/3+kχ, k ∈ Z.

• The functions v2(s), . . . , v4(s) are meromorphic in the half plane σ > 0, with possible poles as
1/3 + kχ, k ∈ Z.
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• The functions v5, . . . , v17(s) are analytic in the half plane σ > 0.

Recall that the Dirichlet series u2(s) of sbs(n) has abscissa of convergence 2/3, and U(s) = V (s)P−1.
Hence, u2(s) extends to a meromorphic function in σ > 0. Since sbs(n) is nonnegative, 2/3 is a singu-
larity of u2(s). If 2/3 would not be a pole of v1(s), the argument above would show that u2(s) is analytic
in σ > 1/3—a contradiction. Thus, 2/3 indeed is a pole for v1(s). For the other Dirichlet series uj(s),
we do not know exactly their abscissa of convergence, but since the Dirichlet series have nonnegative
coefficients, and the rightmost possible singularity is at 2/3, we know that all the Dirichlet series have
abscissa of convergence not greater that 2/3.

7.3 Order of growth
Recall that the order of growth µg(σ) of a function g(s) along the vertical line of abscissa σ is

µg(σ) = inf
{

λ | g(σ + it) =
|t|→∞

O(|t|λ)
}

.

Since the Dirichlet series defining uj(s) have nonnegative coefficients and abscissæof convergence≤ 2/3,
their order of growth is µuj (σ) = 0 for σ > 2/3.

From (6) and (7), we obtain the inequality ‖∇U(s)‖ ≤ C0 + C1|s|8−σζ(σ + 1) for some constants
C0 and C1. We see that µ∇uj (σ) ≤ 1 for 0 < σ < 1. Moreover it is evident that the series of (5) is
bounded for every σ > 1, because the sequence Un is bounded. According to Lindelöf’s theorem (Hardy
and Riesz, 1964, Theorem 14), µ(σ) is a convex function, and thus

µ∇uj (σ) ≤ 1− σ for 0 < σ < 1 and µ∇uj (σ) = 0 for σ > 1.

Since the function s 7→ I17−8−sQ′ is periodic with respect to t, this is valid also for the functions uj .
Since the functions vj(s) are linear combinations of the uj(s), the same result holds for all the vj(s).

8 Fourier series
8.1 Mellin-Perron formula
We now apply the following Mellin-Perron formula (Tenenbaum, 1995). Let (c) denote the vertical line
σ = c.

Lemma 11 (Mellin-Perron formula) Let f(s) =
∑∞

k=1 fkk−s be the Dirichlet series of the sequence
(fk). Let the line (c), with c > 0, lie inside the half-plane of absolute convergence of f(s). With these
hypotheses, the sums of first-order and second-order of the sequence fn are given by the formulæ∑

1≤k<ν

fk +
1
2
fν =

1
2πi

∫
(c)

f(s)νs ds

s
, (8.1)

1
ν

∑
1≤k≤n<ν

fk =
1
ν

∑
1≤k<n≤ν

fk =
∑

1≤k<ν

fk

(
1− k

ν

)
=

1
2πi

∫
(c)

f(s)νs ds

s(s + 1)
. (8.2)
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Fig. 3: Poles of U(s).

In the first case, the integral is a principal value integral.
The first idea which comes in mind is to apply the first formula to the Dirichlet series V (s). Precisely,

we want to use a vertical line (c) with c > 2/3, and for a positive integer K we want to replace (Fig-
ure 3) the vertical segment [M−K−1/2,MK+1/2] by the polygonal line M−K−1/2, M ′

−K−1/2, M ′
K+1/2,

MK+1/2. The horizontal segment [M ′
K+1/2,MK+1/2] goes through the middle of the poles 2/3+Kχ and

2/3+ (K +1)χ (with χ = 2πi/ ln 8), and the abscissa c′ of M ′
K+1/2 is between 1/3 and 2/3. The figure

is symmetric with respect to the σ-axis. Collecting the residues of the poles which are inside the rectangle,
we obtain a trigonometric polynomial multiplied by ν2/3, and we are not far from ν2/3G2/3(log8 ν).

However we cannot let K go to infinity, because we know only that U(s)/s is O(|t|−c′) if c′ is the
abscissa of the new vertical line, and c′ is between 1/3 and 2/3. This does not ensure the absolute
convergence of the integral on the line (c′). Hence we are led to use the second formula.

We apply the formula for the second-order sums to the row vector V (s), and push the line of integration
to the left, taking the residues of the function into account. Because of the factor s(s+1), we may consider
both lines of poles at abscissæ 2/3 and 1/3. Hence we introduce a new vertical line (ε) with 0 < ε < 1/3.
For v1(s), we get

1
ν

∑
1≤n≤ν

n−1∑
k=1

v1
k =

∑
k∈Z

Res
s= 2

3+kχ

∇v1(s)νs

(1− 4 · 8−s)s(s + 1)
+

1
2πi

∫
(ε)

∇v1(s)νs

1− 4 · 8−s

ds

s(s + 1)
.

For j = 2, 3, 4, we get

1
ν

∑
1≤n≤ν

n−1∑
k=1

vj
k =

∑
k∈Z

Res
s= 1

3+kχ

∇vj(s)νs

(1− 2 · 8−s)s(s + 1)
+

1
2πi

∫
(ε)

∇vj(s)νs

1− 2 · 8−s

ds

s(s + 1)
.
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For j = 5, . . . , 17, at the exception of j = 6, we get

1
ν

∑
1≤n≤ν

n−1∑
k=1

vj
k =

1
2πi

∫
(ε)

∇vj(s)νs

1− Jjj · 8−s

ds

s(s + 1)
.

For j = 6, we get

1
ν

∑
1≤n≤ν

n−1∑
k=1

v6
k =

1
2πi

∫
(ε)

(∇v6(s)−∇v5(s))νs

1− 8−s

ds

s(s + 1)
.

All the integrals above can be bounded as∣∣∣∣∣ 1
2πi

∫
(ε)

∇vj(s)νs

1− Jjj · 8−s

ds

s(s + 1)

∣∣∣∣∣ =
ν→∞

O(νε).

By computing the residues, we obtain

1
ν

∑
1≤n≤ν

n−1∑
k=1

v1
k =

ν→∞

ν2/3

ln 8

∑
k∈Z

∇v1(2/3 + kχ)
(2/3 + kχ)(5/3 + kχ)

exp(2πik log8 ν) + O(νε).

For j = 2, 3, 4, we obtain

1
ν

∑
1≤n≤ν

n−1∑
k=1

vj
k

=
ν→∞

ν1/3

ln 8

∑
k∈Z

∇vj(1/3 + kχ)
(1/3 + kχ)(4/3 + kχ)

exp(2πik log8 ν) + O(νε).

Finally, for j = 5, . . . , 17, we have 1
ν

∑
1≤n<ν

∑n−1
k=1 vj

k
=ν→∞ O(νε).

Note that ∇v1(2/3 + it) =|t|→∞ O(|t|1/3) and ∇vj(1/3 + it) =|t|→∞ O(|t|2/3) for j ≥ 2. Thus, the
series above converge absolutely. It follows that the trigonometric series define 1-periodic continuous
functions. Since the sequence sbs(n) is a linear combination of the sequences v1, . . . , v17, we obtain the
following result.

Theorem 6 For all 0 < ε < 1/3,

∑
1≤n≤ν

n−1∑
k=1

sbs(k) =
ν→∞

ν5/3H5/3(log8 ν) + ν4/3H4/3(log8 ν) + O(ν1+ε),

where H5/3(λ) and H4/3(λ) are 1-periodic continuous functions.

8.2 From double to simple sums
By Theorem 4 ∑

1≤n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + O(ν1/3),

where G2/3(λ) is a 1-periodic continuous function. We will use the following pseudo-Tauberian re-
sult (Flajolet et al., 1994, Proposition 6.4) to derive a Fourier series expansion for G2/3(λ).
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Lemma 12 Let f(λ) be a 1-periodic continuous function and let τ be a complex number with positive real
part. Then there exists a 1-periodic continuously differentiable function g(λ) = g(f, τ ; λ), depending
on f(λ), τ , and λ, such that

1
ντ+1

∑
1≤n<ν

nτf(log8 n) =
ν→∞

g(f, τ ; log8 ν) + o(1).

Moreover, the function g(λ) = g(f, τ ; λ) satisfies∫ 1

0

g(λ) dλ =
1

τ + 1

∫ 1

0

f(λ) dλ

and

g

(
f(λ)e−2πiλ, τ +

2πi

ln 8
; λ

)
= g(f(λ), τ ; λ) e−2πiλ.

Lemma 12 (with τ = 2/3) implies that there exists a 1-periodic and continuously differentiable function
G5/3(λ) such that ∑

1≤n≤ν

n−1∑
k=1

sbs(k) =
ν→∞

ν5/3G5/3(log8 ν) + o(ν5/3).

The uniqueness of asymptotic expansion with variable coefficients (Bourbaki, 1976, Chapter V) shows
that G5/3(λ) = H5/3(λ). Let ck(F ) denote the Fourier coefficients of the periodic function F (λ). By
Lemma 12, we get with χ = 2πi/ ln 8

ck(H5/3) =
∫ 1

0

H5/3(λ)e−2πikλ dλ =
∫ 1

0

g(G2/3(λ)e−2πikλ, 2/3 + χk ; λ) dλ

=
1

2/3 + χk + 1

∫ 1

0

G2/3(λ)e−2πikλ dλ =
1

5/3 + χk
ck(G2/3).

This shows that the Fourier coefficients of G2/3 are given by

ck(G2/3) =
(

5
3

+ kχ

)
ck(H5/3) =

1
ln 8

∇v1(2/3 + kχ)
2/3 + kχ

.

Theorem 7 The function G2/3(λ) admits the Fourier series

G2/3(λ) =
1

ln 8

∑
k∈Z

∇v1(2/3 + kχ)
2/3 + kχ

e2πikλ,

where χ = 2πi/ ln 8.
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8.3 More natural approach
Now we know that the residues of v1(s) on the rightmost line of poles give the Fourier coefficients
of G2/3(λ). This permits us to take a slightly different approach to our computation. Let γK be the
polygonal line M−∞, M−K−1/2, M ′

−K−1/2, M ′
K+1/2, MK+1/2, M+∞ of Figure 3. Cauchy’s theorem

gives, with λ = log8 ν,

1
2πi

∫
(c)

v1(s)νs ds

s
− 1

2πi

∫
γK

v1(s)νs ds

s
= ν2/3

K∑
k=−K

ck(G2/3)e2πikλ.

The integrals over the horizontal segments go to zero when K tends towards infinity, because the func-
tion inside them is O(1/Kc′). The partial sum of the Fourier series converges towards G2/3(λ). As a
consequence, the integral over the vertical segment [M ′

−K−1/2,M
′
K+1/2] is convergent. In the limit, we

obtain
1

2πi

∫
(c)

v1(s)νs ds

s
− 1

2πi

∫
(c′)

v1(s)νs ds

s
= ν2/3G2/3(λ).

In other words, the idea we exposed at the beginning of this section gives the correct result. The use of
the second-order sum was only a technical mean in order to justify the idea.
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