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1 Introduction

A cellular automaton is a grid of elementary automata, each communicating
only with a finite number of its neighbours. In the simplest models each
elementary device, a cell or site, can take only two values and is updated
at intervals according to a rule which expresses the actual value from its
preceding value and that of its neighbours. Here the values are elements of
a field K, finite or infinite.

As O. MarTIN, A. OpLYZKO and S. WOLFRAM [7] emphasized, the
behaviour of a cellular automaton with a finite number of cells on a finite
field is ultimately periodic. It is natural to consider also automata with cells
in a line, which we call one dimensional automata. So a cell is indexed by
an integer n € Z. At each time all the cells but a finite number are in state
0. Throughout the paper we make use of generating series and, from this
point of view, a configuration is a Laurent polynomial

C(z)= chz" € K[z, 1/z].
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Here ¢, is the state of the cell number n. We assume the rule C(z) — C”(2)
is additive so that it can be written

C*(z) = Q(2)C(2),



where Q(z) € K[z,1/z] is a certain Laurent polynomial too. In plain words,
the output of a cell depends linearly on the outputs of some of its neighbours
at the previous stage. The most classical example is Wolfram’s rule 90 [9] ,
which corresponds to Q(z) = z + 1/z with K = F, and gives the Sierpinski
triangle. If Q(z) is an element of K[z] or K[1/z], the automaton is unilateral.
We refer to the case, Q(z) € K[1/z], as right-hand sided and the case,
Q(z) € K[2] as left-hand sided.

To study the behaviour of a cell in time we bring in a supplementary
indeterminate # and the evolution of the automaton is encapsulated in the
generating series

M(z,z)= Z cn 2zt
n,t
Immediately we find, by the additivity of the rule,

+oo
Co(2)
M(z,2)=) Co(2)Q(2)a' = ————,

2 =00
if Co(2) is the initial configuration. The vertical generating series, corre-
sponding to the cell number n is the coefficient of 2" in M(z, z), is given
by

Gplz)=[2"] M(z,z2).

We show here that the vertical generating functions can be computed
directly both in the case of finite fields and in the case of the complex
numbers. A number of explicit examples based on classical combinatorial
sequences (Catalan, Motzkin) are also worked out. Notably we show how
the paper folding sequence can be generated by an extended linear cellular
automaton.

2 Automata on a number field

Theorem 1 If the ground field is a number field, K, (for example the com-
plex numbers field C) the vertical generating series terms, G(z), are alge-
braic on K(x). Moreover they are rational if the automaton is unilateral.

Proof : We call —m the valuation of (z), which means that Q(z) =
27" P(z) and P(z) is a polynomial with P(0) # 0. The degree of P(2) is d.
A. Bilateral case. First, we assume d > m > 0. The series

M(r,2) =3 ()R



determines an analytic function in the product of an annulus by a disk,
defined by 0 < r < |z|] < R and |z| < ¢, for some 7, R and e. (The
restriction on z makes Q(z) bounded and the condition on z gives us the
uniform convergence.) Then this function possesses a Laurent expansion

M(z,z)= i Gp(z)z"

and the coefficient G, () is given by the Cauchy formula

Gol) = — / Cole) _dz (1)

T 2 )y 1 —2Q(z) 2t

where 7 is a circle centered at 0 with radius p € |r, R].
According to the implicit function theorem, the roots of the denominator
inside the circle are analytic functions of z and taking the residues we obtain

n Co(ai)azn_"_l

Galz) =)

—~ ma]"~" — 2 P'(a;)

+ (). (2)

The term r,(z) comes from the residue at 0 and is a rational function
of z. Formula (2) shows that G, is an algebraic function on the field of
rational functions K(z).

B. Unilateral case. If m > d > 0 (the automaton is right-hand sided),
the sum is a symetrical function of the roots a;, ..., a,,, then it can be
expressed as a rational function of the coefficients of 2 — 2 P(z), i.e., as a
rational function of 2. If m < 0 (left-hand side case) the sum disappears
and the result is just r,(z). It should be noticed that, in the latter case, the
Taylor formula also gives the result. a

It is worth noting that the sequence of the states of a given cell obeys
a linear recurrence with polynomial coefficients, according to the theorem
of Louis Comtet [3], and this permits us to look at the evolution of this
particular cell without computing the values of the other cells.

3 Automata on a field of finite characteristic

The reader may have noticed a strong resemblance between the preceding
result and an observation made by Furstenberg [4] about the diagonals of



bivariate complex power series. The diagonal of a formal series in m inde-
terminates

f(z1, 22,0 2m) = Z Uny oy 21 2522y € K((21, 22,000y 2m)

N1,N2,..,Nm

is the formal series in one indeterminate
Df(w) = ann, 0" €K((w)).

Harry Furstenberg proved the next result for the case of finite charac-
teristic. (The C case has been known for a long time.)

Proposition 1 Let f € K((2)) a rational formal series in m indeterminates
with coefficients in a field K.

If m = 2 and K is the complex number field, the diagonal D f(w) is
algebraic on K(w).

If m > 2 and X has a finite characteristic, the diagonal D f(w) is alge-
braic on K(w).

Conversely if the ground field, K, is the complex number field or a finite
field, an algebraic series is the diagonal of a rational series in 2 indetermi-
nates.

When the ground field is of finite characteristic, we can also treat r-
dimensional automata. The cells are now indexed by r-uples from Z". The
letter z represents the family of indeterminates (2;)1<i<, and the exponents
are multi-indices.

Theorem 2 For a ground field, K, of finite characteristic, and an r-dimen-
stonal automaton, the vertical generating series are algebraic on K(z).

Proof : We use directly Furstenberg’s theorem, because the coefficient of
zV in M(z,z) is the diagonal of 27" M (xz - - 2,, 2). a
We emphasize the fact that the algebraic character of the vertical gen-

erating series
Gy(z) =) e’
I3
(v € Z") translates into a linear recurrence

€t = A 1Ct—1 + GoaCi—2+ -+ Q1 0Ceyp + A1 1CH_1)p + 00



when the field has characteristic p.

The most classical example in this area is the Thue-Morse sequence (i, ).
If an integer » has binary expansion €¢_;---€q, then pu, is the residue
modulo 2 of the sum ¢ + ¢_1 + - - -+ ¢5. The sequence obeys the recurrence

to = 0
Mo = Mg
fopt1 = 1+ ug,

and its generating function
pla) =Y pna" € Fyffa]]
n>0

satisfies the algebraic equation,

x
14 22

pla) = (14 2)u(x)” +
Multiplying by 1+ 2? = (1 + 2)?, we obtain the homogeneous recurrence

Mo+ Pn—o = tnj2 + a2 + Bn—2)/2 + Hn-3)/2

or, if one prefers,

Mok + for—2 = Mgt -1
Pop41 + fog—1 = g+ fp—1-

This type of recurrence is a hybrid between the standard linear recur-
rences associated to the rational fractions and the divide-and-conquer recur-
rences, that are classical in computer science. If further the field is finite, we
obtain exactly the automatic sequences introduced by Cobham, as results
from the theorem of Christol, Kamae, Mendés France and Rauzy [1, 2].

Frequently, the generating series with a finite ground field appears as a
reduction modulo p of a series with integral coefficient.

4 Examples

Generalization of the Sierpinski triangle If ¢ and b are two integers
and g, (z) is the series

> ( ’ b") e € Qlle]]

n>0 n



we have [8] (L4 2
1—a(l42)/z

So we can find g, ;(z) using a cellular automaton initialized by

Jas(z) = [2°]

Colz) = (1+2)°

with the rule . ,
+ z
Ct(Z) = ( > ) Ct—l(Z)'
For @ = 0 and b = 2, we obtain Wolfram’s rule 90 and Sierpinski’s triangle
by reducing modulo 2.

Catalan numbers It is well known that the n-th Catalan number is the
number of binary trees with size n [5, p. 111]. A generating series for these

numbers is
1 2
2T (:)wz”“ € Q=]

n>0

and it satisfies the equation y = z + 2y*. According to Furstenberg’s proof
[4, p. 276] we can obtain it as the coefficient of 2° in the rational series

1—-2xz

z—x—x?

2,2

and as the sequence of the states of the cell number 0 of the cellular au-
tomaton initialized by

Co(2) =2
and the rule

Ci(z) = (é + z) Ci1(2).

The diagram below illustrates the rule. (We will use the same convention
for the other examples.) The coefficient of the box tagged by a circle o is
obtained by adding the coefficients in the boxes tagged by a cross x.

X | X | X | X
e}
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1 -1

1
1 1 -1

1 2
1 3 2 -2

1 4 5
1 5 9 5 -5

1 6 14 14
1 7 20 28 14 -14

1 8 27 48 42
1 9 35 75 90 42 -42

1 10 44 110 165 132
11 54 154 275 297 132 -132

12 65 208 429 572 429
7 273 637 1001 1001 429 -429

90 350 910 1638 2002 1430
440 1260 2548 3640 3432 1430 -1430

544 1700 3808 6188 7072 4862
2244 5508 9996 13260 11934 4862 -4862

2907 7752 15504 23256 25194 16796
10659 23256 38760 48450 41990 16796 -16796

i

Figure 1: A cellular automaton for the Catalan numbers.

We see the evolution of the automaton for the cells, which have a number
between —11 and 2, in the figure 1. (The arrows indicate the column number
0.)

More generally we can construct the generating series for the trees sub-
mitted to a condition on the degrees of the nodes, since this produces the
equation

y=a+a(y® +ty),

if we consider rooted, oriented trees each of whose nonleaf nodes has either
dy or dy ...or d,, successors.

Paper folding sequence This example shows an extension of our model
in which each automaton of the network can store a finite sequence of values
instead of a single value and the rule is still additive. This could be realized
by adding a limited memory.

The paper-folding sequence [6] is defined by the following procedure:
one folds a sheet of paper an infinite number of times always in the same
direction; next one unfolds it and one codes the sequence of the folds by



0 or 1 according to their up or down position . The sequence obeys the

Tecurrence
U4qp = 1
Usp+2 =
Usk+1 = Uk,

and its generating series u(z) € Fy[[z]] is a solution of the equation
r(1+2)'y* + (1 +2)'y+1=0,
The first few terms are
Il+a4+28+2r +2"+28+ 2+ 22+ 2B 2 42 420 4220 4.

The shape of the equation is not directly compatible with a representa-
tion by an additive cellular automaton since the coefficient of z° is not a
monomial. We modify the series by subtracting its first term and ¥ = 1+ y
satisfies the equation

x(l—l—x)4Y2—|—(1—|—x)4Y—|—x5—|—x4—|—x:0;

the latter has the right shape. The series Y is the coefficient of 2% in the
rational series

a4+ 1)
422+ D) +at(z+1)+ 25224+ 1)

We initialize the automaton by the configurations

ol Z = Z,
Wz) = 1422,
1/z+ 2%,

1/22+ 14 22 + 24,
2) = 1/ 41/ 424 +2°

s isNele
OO0
(

and, for t > 5, we define the state at time ¢, C; by the recurrence relation

Cu(z) = G + 2) Cor(2) + G + 1) Coa(2) + G + 2) Cos(2).

Figure 2 shows the evolution of this automaton and the diagram il-
lustrates the rule. One recognizes in the column indicated by arrows the
paper-folding sequence, except for its first term, which is suppressed.
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Figure 2: The paper folding cellular automaton.
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Motzkin numbers Here a path is a sequence ugu; ...u; of points from
Z x N, which satisfies w41 —up € {(1,-1),(1,0),(1,1)} for k=0...1 - 1.
The number [ is the length of the path. The Motzkin number M, is the
number of paths of length n from some point with ordinate 0 to points with
ordinate 0 [5, p. 309].

The generating series of the Motzkin numbers is

1—2—+1—-22 — 322

212

M(z) = Zann =

n>0
Its first few terms are

T4+242e2+422 +92* + 2125+ 5125 + 12727+ 32328 + 8352° + 218820 4 - - ..
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Figure 3: A cellular automaton for the Motzkin numbers reduced mod 2.

It is an algebraic series and satisfies P(z, M(z)) = 0 if
Pz,y) =1+ (z - Dy + 27y’

As in the previous example, we suppress its first term to obtain an equa-
tion in which the constant term (relative to z) is a monomial.

The diagram illustrates the rule with the same convention as for the
preceding example. Figure 3 shows the evolution of the automaton.

X X
X | X
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