Algorithms for solving fixed point equations of order 1

FELIM, 28 March 2022

Hadrien Notarantonio (Inria Saclay)

Joint work with:
Alin Bostan (Inria Saclay)
Frédéric Chyzak (Inria Saclay)
Mohab Safey El Din (Sorbonne Université)
Motivation: A non linear equation coming from combinatorics...

K field of characteristic 0. \quad K = \mathbb{Q}, \mathbb{C}, \ldots $

Starting point: F, solution in $\mathbb{K}[u][[t]]$ of the fixed point equation (FPE) of order 1

$$F(t, u) = 1 + tu(uF(t, u)^2 + F(t, u) + \Delta F(t, u)),$$

where Δ is the divided difference operator $\Delta F(t, u) := \frac{F(t, u) - F(t, 1)}{u - 1}$.

Motivation: A non linear equation coming from combinatorics...

\(\mathbb{K} \) field of characteristic 0.

\(\mathbb{K} = \mathbb{Q}, \mathbb{C}, \ldots \)

Starting point: \(F \), solution in \(\mathbb{K}[u][[t]] \) of the fixed point equation (FPE) of order 1

\[
F(t, u) = 1 + tu(uF(t, u)^2 + F(t, u) + \Delta F(t, u)),
\]

where \(\Delta \) is the divided difference operator \(\Delta F(t, u) := \frac{F(t, u) - F(t, 1)}{u - 1} \).

Interest: Nature of \(F(t, 1) \).
Motivation: A non linear equation coming from combinatorics...

\(\mathbb{K} \) field of characteristic 0. \(\mathbb{K} = \mathbb{Q}, \mathbb{C}, \ldots \)

Starting point: \(F \), solution in \(\mathbb{K}[u][[t]] \) of the fixed point equation (FPE) of order 1

\[
F(t, u) = 1 + tu(uF(t, u)^2 + F(t, u) + \Delta F(t, u)),
\]

where \(\Delta \) is the divided difference operator \(\Delta F(t, u) := \frac{F(t, u) - F(t, 1)}{u - 1} \).

Interest: Nature of \(F(t, 1) \).

Classical: \(F \) and \(F(t, 1) \) are algebraic.
Motivation: A non-linear equation coming from combinatorics...

\[\mathbb{K} \text{ field of characteristic } 0. \quad \mathbb{K} = \mathbb{Q}, \mathbb{C}, \ldots \]

Starting point: \(F \), solution in \(\mathbb{K}[u][[t]] \) of the fixed point equation (FPE) of order 1

\[F(t, u) = 1 + tu(uF(t, u)^2 + F(t, u) + \Delta F(t, u)), \]

where \(\Delta \) is the divided difference operator

\[\Delta F(t, u) := \frac{F(t, u) - F(t, 1)}{u - 1}. \]

Interest: Nature of \(F(t, 1) \).

Classical: \(F \) and \(F(t, 1) \) are algebraic.

Goals:

- Compute a polynomial \(R \in \mathbb{K}[t, z] \setminus \{0\} \) such that \(R(t, F(t, 1)) = 0. \)
- Estimate the size of \(R \) for any (FPE).
- Complexity estimates (ops. in \(\mathbb{K} \)) for the computation of \(R \).
...associated to planar maps enumeration

\[
\begin{align*}
\text{Count} \\
c_n &:= \# \{\text{planar maps with } n \text{ edges}\} \\
\downarrow \text{refinement} \\
c_{n,d} &:= \# \{\text{planar maps with } n \text{ edges,} \ \ d \text{ of them on the external face}\}
\end{align*}
\]
...associated to planar maps enumeration

Count

\[c_n := \# \{ \text{planar maps with } n \text{ edges} \} \]
\[\downarrow \text{refinement} \]
\[c_{n,d} := \# \{ \text{planar maps with } n \text{ edges,} \]
\[\quad d \text{ of them on the external face} \} \]

Solution in \(\mathbb{K}[u][[t]] \)

\[G(t) := \sum_{n=0}^{\infty} c_n t^n \quad \text{generating function} \]
\[\downarrow \text{refinement} \]
\[F(t, u) := \sum_{n=0}^{\infty} \sum_{d=0}^{n} c_{n,d} u^d t^n \quad \text{complete generating function} \]
...associated to planar maps enumeration

Count

\[c_n := \# \{ \text{planar maps with } n \text{ edges} \} \]
\[\downarrow \text{refinement} \]

\[c_{n,d} := \# \{ \text{planar maps with } n \text{ edges,} \]
\[d \text{ of them on the external face} \} \]

Solution in \(K[u][[t]] \)

\[G(t) := \sum_{n=0}^{\infty} c_n t^n \] generating function
\[\downarrow \text{refinement} \]

\[F(t, u) := \sum_{n=0}^{\infty} \sum_{d=0}^{n} c_{n,d} u^d t^n \] complete generating function

(FPE) of order 1 [Tutte '68]

\[F(t, u) = 1 + tu^2 F(t, u)^2 \]
\[+ tu \frac{uF(t, u) - F(t, 1)}{u - 1} \]
Deletion-contraction of edges

(FPE) of order 1 [Tutte '68]

\[F(t, u) = 1 + tu^2 F(t, u)^2 + tu \frac{uF(t, u) - F(t, 1)}{u - 1} \]
Theorem [Bousquet-Mélou, Jehanne ’06]

Let $f \in K[u]$ and $Q \in K[x, y, t, u]$. Let $F(t, u)$ be the unique solution in $K[u][[t]]$ of

$$F(t, u) = f(u) + tQ(F(t, u), \Delta F(t, u), t, u),$$

where Δ is the divided difference operator $\Delta F := \frac{F(t,u)-F(t,1)}{u-1}$.

Then F is algebraic over $K(t, u)$.
Theorem [Bousquet-Mélou, Jehanne ’06]
Let $f \in \mathbb{K}[u]$ and $Q \in \mathbb{K}[x, y, t, u]$. Let $F(t, u)$ be the unique solution in $\mathbb{K}[u][[t]]$ of
\[
F(t, u) = f(u) + tQ(F(t, u), \Delta F(t, u), t, u),
\]
where Δ is the divided difference operator $\Delta F := \frac{F(t,u) - F(t,1)}{u-1}$.

Then F is algebraic over $\mathbb{K}(t, u)$.

Systematic methods

[Tutte, Brown 60’s], [Zeilberger ’92]:
Guess-and-prove

[Brown ’65]:
Quadratic method

[Popescu ’86]:
Algebraicity result

[Bousquet-Mélou, Jehanne ’06]:
Polynomial elimination
State of the art

Theorem [Bousquet-Mélo, Jehanne ’06]
Let \(f \in \mathbb{K}[u] \) and \(Q \in \mathbb{K}[x, y, t, u] \). Let \(F(t, u) \) be the unique solution in \(\mathbb{K}[u][[t]] \) of
\[
F(t, u) = f(u) + tQ(F(t, u), \Delta F(t, u), t, u),
\]
where \(\Delta \) is the divided difference operator \(\Delta F := \frac{F(t, u) - F(t, 1)}{u-1} \).

Then \(F \) is **algebraic** over \(\mathbb{K}(t, u) \).

Systematic methods

- [Tutte, Brown 60’s], [Zeilberger ’92]: Guess-and-prove
- [Brown ’65]: Quadratic method
- [Popescu ’86]: Algebraicity result
- [Bousquet-Mélo, Jehanne ’06]: Polynomial elimination

Algorithms

- [Knuth ’68], [Banderier, Flajolet ’02]: Kernel method (linear case)
- [Bousquet-Mélo, Jehanne ’06]: Polynomial elimination
- [Gessel, Zeilberger ’14]: Guess-and-prove
[Bousquet-Mélou, Jehanne '06]: Take $P \in \mathbb{K}[x, z, t, u]$ the “numerator” of (FPE)

\[
\begin{align*}
\text{(FPE) of order 1} & \quad \rightarrow \quad \text{solution } u = U(t) \in \mathbb{K}[[t]] \text{ of } \\
\partial_x P(F(t, u), F(t, 1), t, u) &= 0 & \rightarrow \quad \begin{cases}
P(x, z, t, u) = 0, \\
\partial_x P(x, z, t, u) = 0, \\
\partial_u P(x, z, t, u) = 0.
\end{cases} \\
\end{align*}
\]

\(\text{(FPE)} \)
Modelization: from (FPE) of order 1 to polynomial systems

[Bousquet-Mélou, Jehanne '06]: Take \(P \in \mathbb{K}[x, z, t, u] \) the “numerator” of (FPE) of order 1 → solution \(u = U(t) \in \mathbb{K}[[t]] \) of

\[
\frac{\partial x}{\partial} P(F(t, u), F(t, 1), t, u) = 0
\]

\[
\begin{align*}
P(x, z, t, u) &= 0, \\
\frac{\partial x}{\partial} P(x, z, t, u) &= 0, \\
\frac{\partial u}{\partial} P(x, z, t, u) &= 0. \\
\end{align*}
\]

(\(F(t, U(t)), F(t, 1), U(t) \)) zero in \(\mathbb{K}[[t]]^3 \)

Fixed Point Equation (FPE)

\[
\downarrow \text{numer}
\]

\[
P(F(t, u), F(t, 1), t, u) = 0
\]

\[
\downarrow \frac{\partial u}{\partial}
\]

\[
\frac{\partial u}{\partial} F(t, u) \cdot \frac{\partial x}{\partial} P(F(t, u), F(t, 1), t, u) + \frac{\partial u}{\partial} P(F(t, u), F(t, 1), t, u) = 0
\]
Modelization: from (FPE) of order 1 to polynomial systems

[Bousquet-Mélou, Jehanne '06]: Take $P \in \mathbb{K}[x, z, t, u]$ the “numerator” of (FPE) of order 1 → solution $u = U(t) \in \mathbb{K}[[t]]$ of
\[
\begin{align*}
 \partial_x P(F(t, u), F(t, 1), t, u) &= 0 \\
 \partial_u P(F(t, u), F(t, 1), t, u) &= 0
\end{align*}
\]

\[
\begin{align*}
 P(x, z, t, u) &= 0, \\
 \partial_x P(x, z, t, u) &= 0, \\
 \partial_u P(x, z, t, u) &= 0.
\end{align*}
\]

(F(t, U(t)), F(t, 1), U(t)) zero in $\mathbb{K}[[t]]^3$

Planar maps
\[
F(t, u) = 1 + tu^2 F(t, u)^2 + tu \frac{uF(t, u) - F(t, 1)}{u - 1}
\]
Modelization: from (FPE) of order 1 to polynomial systems

[Bousquet-Mélou, Jehanne ’06]: Take $P \in \mathbb{K}[x, z, t, u]$ the “numerator” of (FPE)

\[(FPE) \text{ of order 1} \rightarrow \text{solution } u = U(t) \in \mathbb{K}[[t]] \text{ of}
\]
\[
\frac{\partial_x P(F(t, u), F(t, 1), t, u)}{\partial_y P(F(t, u), F(t, 1), t, u)} = 0
\]

\[
\left\{
\begin{array}{l}
P(x, z, t, u) = 0, \\
\partial_x P(x, z, t, u) = 0, \\
\partial_u P(x, z, t, u) = 0.
\end{array}
\right.
\]

\[(F(t, U(t)), F(t, 1), U(t)) \text{ zero in } \mathbb{K}[[t]]^3\]

Fixed Point Equation (FPE)

\[
\downarrow \text{numer}
\]

\[
P(F(t, u), F(t, 1), t, u) = 0
\]

\[
\downarrow \partial_u
\]

\[
\partial_u F(t, u) \cdot \partial_x P(F(t, u), F(t, 1), t, u) + \partial_u P(F(t, u), F(t, 1), t, u) = 0
\]

Planar maps

\[
F(t, u) = 1 + tu^2 F(t, u)^2 + tu \frac{uF(t, u) - F(t, 1)}{u - 1}
\]

\[
0 = (1 - F(t, u))(u - 1) + tu^2(u - 1)F(t, u)^2 + tu(uF(t, u) - F(t, 1))
\]
[Bousquet-Mélou, Jehanne '06]: Take \(P \in \mathbb{K}[x, z, t, u] \) the "numerator" of (FPE)

\[P(x, z, t, u) = 0, \]
\[\partial_x P(x, z, t, u) = 0, \]
\[\partial_u P(x, z, t, u) = 0. \]

\((F(t, U(t)), F(t, 1), U(t))\) zero in \(\mathbb{K}[[t]]^3 \)

P(F(t, u), F(t, 1), t, u) = 0

\(\partial_x P(F(t, u), F(t, 1), t, u) = 0 \)

\(\partial_u P(F(t, u), F(t, 1), t, u) = 0 \)

Planar maps

\(F(t, u) = 1 + tu^2 F(t, u)^2 + tu \frac{uF(t, u) - F(t, 1)}{u - 1} \) (FPE)

\[0 = (1 - F(t, u))(u - 1) + tu^2 (u - 1)F(t, u)^2 \]
\[+ tu(uF(t, u) - F(t, 1)) \]

\[0 = \partial_u F(t, u) \cdot (1 - u + 2tu^2(u - 1)F(t, u)^2 + tu^2) \]
\[+ (1 - F(t, u) + tu(3u - 2)F(t, u)^2 + 2tu^2 F(t, u) - tF(t, 1)) \]
Our contributions

Work based on [Bousquet-Mélou, Jehanne ’06]

1. Geometric refinements of a method based on discriminants,
2. A new guess-and-prove method based on geometry,
3. A complexity result on the resolution of (FPE) of order 1.

Attention is paid to

• assumptions,
• degree bounds on the output,
• complexity estimates,
• potential for generalization.

Input: $P := \text{numerator}(\text{FPE}),$
Goal: $\langle P, \partial_x P, \partial_u P \rangle \cap \mathbb{K}[t, z].$
Algebraic elimination via iterated discriminants

\[\text{disc}_x(P) = \text{Res}_x(P, \partial_x P) \] the discriminant of \(P \) in \(x \).

Theorem [Bousquet-Mélou, Jehanne ’06]

Suppose \(\deg_x(P) \geq 2 \) and \(u = U(t) \in \mathbb{K}[[t]] \) is a root of

\[\partial_x P(F(t, u), F(t, 1), t, u). \]

Then \(u = U(t) \) is a **double root** of \(\text{disc}_x(P)(F(t, 1), t, u) \).

Hence, \(F(t, 1) \) is a root of \(\text{disc}_u(\text{disc}_x(P)) \).
Algebraic elimination via iterated discriminants

\[\text{disc}_x(P) = \text{Res}_x(P, \partial_x P) \] the discriminant of \(P \) in \(x \).

Theorem [Bousquet-Mélou, Jehanne ’06]
Suppose \(\text{deg}_x(P) \geq 2 \) and \(u = U(t) \in K[[t]] \) is a root of

\[\partial_x P(F(t, u), F(t, 1), t, u). \]

Then \(u = U(t) \) is a **double root** of \(\text{disc}_x(P)(F(t, 1), t, u) \).

Hence, \(F(t, 1) \) is a root of \(\text{disc}_u(\text{disc}_x(P)) \).

\[
P := (1 - x)(u - 1) + tu^2(u - 1)x^2 \\
+ tu(ux - z)
\]

gives \(\text{disc}_u(\text{disc}_x(P)) \) equal to

\[
-256t^4 \cdot (27t^2z^2 - 18tz + 16t + z - 1) \\
\cdot (tz - 1)^2
\]
Algebraic elimination via iterated discriminants

\[\text{disc}_x(P) = \text{Res}_x(P, \partial_x P) \] the discriminant of \(P \) in \(x \).

Theorem [Bousquet-Mélou, Jehanne '06]

Suppose \(\deg_x(P) \geq 2 \) and \(u = U(t) \in \mathbb{K}[[t]] \) is a root of
\[\partial_x P(F(t, u), F(t, 1), t, u). \]

Then \(u = U(t) \) is a **double root** of \(\text{disc}_x(P)(F(t, 1), t, u) \).

Hence, \(F(t, 1) \) is a root of \(\text{disc}_u(\text{disc}_x(P)) \).

\[
P := (1 - x)(u - 1) + tu^2(u - 1)x^2 \\
+ tu(ux - z)
\]

gives \(\text{disc}_u(\text{disc}_x(P)) \) equal to
\[
-256t^4 \cdot (27t^2z^2 - 18tz + 16t + z - 1) \\
\cdot (tz - 1)^2
\]

\[
P := 97t^3u^2 + (-73u^4 - 56u^2x^2 + 87u^2x - 62x^2 + 124xz - 62z^2)t - xu^2 + u^2
\]

gives \(\text{disc}_x P \) equal to
\[
-16352t^2u^6 \\
+ \left(21728t^4 - 10535t^2 + 50t + 1 \right) u^4 \\
+ 248t \left(97t^3 - 56tz^2 + 87tz - z + 1 \right) u^2
\]

which has a double root at \(u = 0 \).
Contribution 1: ensuring non-nullity of double discriminant

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

Suppose

- \((H_0) \) \(\deg_x(P) \geq 2 \),
- \((H_1) \) \(\deg_u(\partial_x P(x, z, 0, u)) \geq 1 \) and \(\partial_x P(F(t, c), F(t, 1), t, c) \neq 0 \) for all \(c \in \mathbb{K} \),
- \((R) \) the zero set \(V(P) \subset \mathbb{K}^4 \) is smooth outside \(V(u - 1) \subset \mathbb{K}^4 \).

Set \(D_0 := \text{disc}_x P, D_1 := \text{SqFreePart}(D_0) \) and \(D_2 := \text{disc}_u D_1 \).

Then

- \(R := \text{SqFreePart}(D_2) \) is non-zero in \(\mathbb{K}[z, t] \) and satisfies \(R(F(t, 1), t) = 0 \).
Contribution 1: ensuring non-nullity of double discriminant

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

Suppose

- (H0) \(\deg_x(P) \geq 2 \),
- (H1) \(\deg_u(\partial_x P(x, z, 0, u)) \geq 1 \) and \(\partial_x P(F(t, c), F(t, 1), t, c) \neq 0 \) for all \(c \in K \),
- (R) the zero set \(V(P) \subset \overline{K}^4 \) is smooth outside \(V(u - 1) \subset \overline{K}^4 \).

Set \(D_0 := \text{disc}_x P \), \(D_1 := \text{SqFreePart}(D_0) \) and \(D_2 := \text{disc}_u D_1 \).

Then

- \(R := \text{SqFreePart}(D_2) \) is non-zero in \(\mathbb{K}[z, t] \) and satisfies \(R(F(t, 1), t) = 0 \).
- \(R \) has total size \(16\delta^8 \) with degree in each variable at most \(4\delta^4 \),
- \(R \) can be computed in \(O_{\log}(\delta^{10}) \) ops. in \(\mathbb{K} \).
Contribution 1: ensuring non-nullity of double discriminant

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

Suppose

- \(\text{(H0)} \) \(\deg_x(P) \geq 2 \),
- \(\text{(H1)} \) \(\deg_u(\partial_x P(x, z, 0, u)) \geq 1 \) and \(\partial_x P(F(t, c), F(t, 1), t, c) \neq 0 \) for all \(c \in \mathbb{K} \),
- \(\text{(R)} \) the zero set \(V(P) \subset \overline{\mathbb{K}}^4 \) is smooth outside \(V(u - 1) \subset \overline{\mathbb{K}}^4 \).

Set \(D_0 := \text{disc}_x P, D_1 := \text{SqFreePart}(D_0) \) and \(D_2 := \text{disc}_u D_1 \).

Then

- \(R := \text{SqFreePart}(D_2) \) is non-zero in \(\mathbb{K}[z, t] \) and satisfies \(R(F(t, 1), t) = 0 \).
- \(R \) has total size \(16\delta^8 \) with degree in each variable at most \(4\delta^4 \),
- \(R \) can be computed in \(O_{\text{log}}(\delta^{10}) \) ops. in \(\mathbb{K} \).

\[\delta = \deg(P) \]

\[D_1 := \text{SqFreePart}(\text{disc}_x(P)) \text{ satisfies} \]

\[\partial_u D_1(U(t), F(t, 1), t) = 0. \]

\[\left\{ \begin{align*}
(\partial_u D_1 \ & \partial_z D_1 \ & \partial_t D_1) \cdot (u \ z \ t)^T = 0, \\
(\partial_z D_1 \ & \partial_t D_1) \cdot (z \ t)^T &= 0
\end{align*} \right. \]
Contribution 1 (cont’d): using geometry arguments to refine the complexity

\(P \in \mathbb{K}[x, z, t, u] \) and \(\delta := \text{deg}(P) \).

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

Suppose

- (H1) \(\text{deg}_u(\partial_x P(x, z, 0, u)) \geq 1 \) and \(\partial_x P(F(t, c), F(t, 1), t, c) \neq 0 \) for all \(c \in \mathbb{K} \),
- \(\langle P, \partial_x P, \partial_u P \rangle : (u - 1)\infty \subset \mathbb{K}(t)[x, z, u] \) is radical and 0-dimensional over \(\mathbb{K}(t) \).

Then one can compute \(R \in \mathbb{K}[t, z] \setminus \{0\} \) annihilating \(F(t, 1) \)

- with degree in each variable at most \(\delta^3 \) and total size \(\delta^6 \),
- in \(O_{\log}(L\delta^6 + \delta^{7.89}) \subset O_{\log}(\delta^{10}) \) ops. in \(\mathbb{K} \),

where \(L = \text{cost of evaluating } P \) at \((x, z, t, u) \in \mathbb{K}^4 \).
Contribution 2: Guess-and-prove based on geometry

Input: \(P(F(t, u), F(t, 1), t, u) = 0, \delta := \deg(P) \).

Output: \(R \in \mathbb{K}[t, z] \setminus \{0\} \) annihilating \(F_1 = F(t, 1) \), i.e. \(R(t, F_1) = 0 \).
Contribution 2: Guess-and-prove based on geometry

Input: \(P(F(t, u), F(t, 1), t, u) = 0, \delta := \deg(P). \)

Output: \(R \in K[t, z] \setminus \{0\} \) annihilating \(F_1 = F(t, 1), \) i.e. \(R(t, F_1) = 0. \)

geometry

(1) Functional equation

\[\downarrow \]

(2) Polynomial system

\[\downarrow \]

(3) Bounds
- \(\deg_t(R) \leq \beta_t, \)
- \(\deg_z(R) \leq \beta_z. \)
Contribution 2: Guess-and-prove based on geometry

Input: \(P(F(t, u), F(t, 1), t, u) = 0, \delta := \text{deg}(P) \).

Output: \(R \in \mathbb{K}[t, z] \setminus \{0\} \) annihilating \(F_1 = F(t, 1) \), i.e. \(R(t, F_1) = 0 \).

geometry

(1) Functional equation

(2) Polynomial system

(3) Bounds
 - \(\text{deg}_t(R) \leq b_t \)
 - \(\text{deg}_z(R) \leq b_z \)

guess-and-prove

(4) Expand \(F_1 \)

(5) Compute \(R \in \mathbb{K}[t, z] \) s.t. \(R(t, F_1) = O(t^{b_t b_z}) \)

(6) Certify that \(R(t, F_1) = 0 \)
Contribution 2: Guess-and-prove based on geometry

Input: \(P(F(t, u), F(t, 1), t, u) = 0, \delta := \text{deg}(P). \)

Output: \(R \in K[t, z] \setminus \{0\} \) annihilating \(F_1 = F(t, 1), \) i.e. \(R(t, F_1) = 0. \)

guess-and-prove

(4) Expand \(F_1 \)

(5) Compute \(R \in K[t, z] \) s.t.
\[R(t, F_1) = O(t^{b_t b_z}) \]

(6) Certify that \(R(t, F_1) = 0 \)

tools

- Newton iteration
- Algebraic approximants “seriestoalgeq”
- Multiplicity lemma: \(R(t, F_1) = O(t^{2 b_t b_z}) \) implies \(R(t, F_1) = 0 \)
Theorem [Bostan, Chyzak, N., Safey El Din ’22]

Define $A_u := (F(t, u), F(t, 1), u)$ and assume that

- there exists $u = U(t) \in \mathbb{K}[t] \setminus \{1\}$ solution of $\partial_x P(F(t, u), F(t, 1), t, u) = 0$,
- the Jacobian of $(P, \partial_x P, \partial_u P)$ w.r.t. $\{x, z, u\}$ is invertible at $A_{U(t)} \in \mathbb{K}[t]^3$.

Then the geometry-driven guess-and-prove computes $R \in \mathbb{K}[t, z] \setminus \{0\}$

- such that $R(t, F(t, 1)) = 0$,
- having its partial degrees bounded by δ^3 and total size δ^6,
- in $O_{\log}(\delta^{10.14})$ arithmetic operations in \mathbb{K}.
Complexity result / degree bounds for geometry-driven guess-and-prove

\[\theta \in [2, 3] \text{ a feasible exponent of matrix multiplication} \]

Theorem [Bostan, Chyzak, N., Safey El Din '22]

Define \(A_u := (F(t, u), F(t, 1), u) \) and assume that
- there exists \(u = U(t) \in \mathbb{K}[[t]] \setminus \{1\} \) solution of \(\partial_x P(F(t, u), F(t, 1), t, u) = 0 \),
- the Jacobian of \((P, \partial_x P, \partial_u P) \) w.r.t \(\{x, z, u\} \) is invertible at \(A_{U(t)} \in \mathbb{K}[[t]]^3 \).

Then the geometry-driven guess-and-prove computes \(R \in \mathbb{K}[t, z] \setminus \{0\} \)
- such that \(R(t, F(t, 1)) = 0 \),
- having its partial degrees bounded by \(\delta^3 \) and total size \(\delta^6 \),
- in \(O_{\log}(\delta^{10.14}) \) arithmetic operations in \(\mathbb{K} \).
- \(O_{\log}(L\delta^6 + \delta^{3\theta+3}) \) ops. in \(\mathbb{K} \), where \(L = \text{cost for evaluating } P \) at \((x, z, t, u) \in \mathbb{K}^4 \).
Theorem [Bostan, Chyzak, N., Safey El Din ’22]

There exists $R \in \mathbb{K}[t, z] \setminus \{0\}$ annihilating $F(t, 1)$ of total arithmetic size δ^6. Moreover, one can compute R in $O_{\log(\delta^{14})}$ arithmetic operations in \mathbb{K}.
Contribution 3: a polynomial time complexity for solving a \((\text{FPE})\) of order 1

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

There exists \(R \in \mathbb{K}[t, z] \setminus \{0\}\) annihilating \(F(t, 1)\) of total arithmetic size \(\delta^6\). Moreover, one can compute \(R\) in \(O_{\log(\delta^{14})}\) arithmetic operations in \(\mathbb{K}\).

Sketch of proof:

- Symbolic homotopy [Bousquet-Mélou, Jehanne ’06]

\[
P, \delta, \quad \langle P, \partial_x P, \partial_u P \rangle \cap \mathbb{K}[t, z] \quad \text{ideal of } \mathbb{K}(t)[x, z, u]
\]

\[
\rightarrow \quad P_\epsilon, \delta_\epsilon = O(\delta), \quad \langle P_\epsilon, \partial_x P_\epsilon, \partial_u P_\epsilon \rangle \cap \mathbb{K}[t, \epsilon, z] \quad \text{radical, 0-dimensional}
\]
Contribution 3: a polynomial time complexity for solving a (FPE) of order 1

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

There exists \(R \in \mathbb{K}[t, z] \setminus \{0\} \) annihilating \(F(t, 1) \) of total arithmetic size \(\delta^6 \). Moreover, one can compute \(R \) in \(O_{\log} (\delta^{14}) \) arithmetic operations in \(\mathbb{K} \).

Sketch of proof:

- Symbolic homotopy [Bousquet-Mélou, Jehanne ’06]

\[
\begin{align*}
P, \delta, \\
\langle P, \partial_x P, \partial_u P \rangle \cap \mathbb{K}[t, z] \\
\mathcal{J} \text{ ideal of } \mathbb{K}(t)[x, z, u]
\end{align*}
\]

\[
\begin{align*}
P_{\epsilon}, \delta_{\epsilon} = O(\delta), \\
\langle P_{\epsilon}, \partial_x P_{\epsilon}, \partial_u P_{\epsilon} \rangle \cap \mathbb{K}[t, \epsilon, z] \\
\mathcal{J}_{\epsilon} \text{ ideal of } \mathbb{K}(t, \epsilon)[x, z, u] \\
\text{radical, 0-dimensional}
\end{align*}
\]

\[
\begin{align*}
(FPE) \\
\rightarrow \\
(FPE) + \epsilon \sqrt{t} \Delta F
\end{align*}
\]
Contribution 3: a polynomial time complexity for solving a (FPE) of order 1

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

There exists $R \in \mathbb{K}[t, z] \setminus \{0\}$ annihilating $F(t, 1)$ of total arithmetic size δ^6. Moreover, one can compute R in $O_{\log}(\delta^{14})$ arithmetic operations in \mathbb{K}.

Sketch of proof:

- Symbolic homotopy [Bousquet-Mélou, Jehanne ’06]
 \[\mathcal{J}_\epsilon \subset \mathbb{K}(t, \epsilon)[x, z, u] \text{ radical, 0-dimensional} \]
Contribution 3: a polynomial time complexity for solving a (FPE) of order 1

Theorem [Bostan, Chyzak, N., Safey El Din ’22]

There exists $R \in \mathbb{K}[t, z] \setminus \{0\}$ annihilating $F(t, 1)$ of total arithmetic size δ^6. Moreover, one can compute R in $O_{\log}(\delta^{14})$ arithmetic operations in \mathbb{K}.

Sketch of proof:

- Symbolic homotopy [Bousquet-Mélou, Jehanne ’06]

 $\rightarrow J_\epsilon \subset \mathbb{K}(t, \epsilon)[x, z, u]$ radical, 0-dimensional

- “Stickelberger’s theorem” [Stickelberger 1897], [Cox ’20]

 \rightarrow take R char. pol. of a linear map m_z defined over $\mathbb{K}(t, \epsilon)[x, z, u]/J_\epsilon$

- Parametric geometric resolution [Schost ’03]

 $O_{\log}(L_\epsilon \delta^9_\epsilon)$ ops. in \mathbb{K}, with $L_\epsilon = O(\delta L) \rightarrow z = \frac{V(t, \epsilon, \lambda)}{\partial_\lambda W(t, \epsilon, \lambda)}$, $W(t, \epsilon, \lambda) = 0$.

- Bivariate resultants [Villard ’18], [Hyun, Neiger, Schost ’19]

 $O_{\log}(\delta^{10.89}_\epsilon)$ ops. in $\mathbb{K} \rightarrow R = \text{Res}_\lambda (z - E(t, \epsilon, \lambda), W(t, \epsilon, \lambda))$.
Conclusion

- Refinement of an existing method based on discriminants,
- Design of a new guess-and-prove algorithm based on geometric bounds,
- A general complexity result for solving (FPE) of order 1.

Future works

- Improve the previous complexity estimates,
- Implement and compare the algorithms,
- Study the case of higher order equations.
Bibliography

M. Bousquet-Mélou and A. Jehanne.
Polynomial equations with one catalytic variable, algebraic series and map enumeration.

W. G. Brown.
On the existence of square roots in certain rings of power series.

On the enumeration of rooted non-separable planar maps.

D. A. Cox.
Stickelberger and the eigenvalue theorem.

I. M. Gessel and D. Zeilberger.
An Empirical Method for Solving (Rigorously!) Algebraic-Functional Equations of the Form $F(P(x, t), P(x, 1), x, t) = 0$, 2014.
Published in the Personal Journal of Shalosh B. Ekhad and Doron Zeilberger,
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarinhtml/funeq.html.

S. G. Hyun, V. Neiger, and E. Schost.
Implementations of efficient univariate polynomial matrix algorithms and application to bivariate resultants.

D. E. Knuth.

D. Popescu.
General néron desingularization and approximation.

É. Schost.
Computing parametric geometric resolutions.

W. T. Tutte.
On the enumeration of planar maps.

G. Villard.
On Computing the Resultant of Generic Bivariate Polynomials.

D. Zeilberger.
A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length n is $2(3n)!/((n + 1)(2n + 1)!)$.
Example where (H1) is not satisfied

Consider the functional equation

\[F(t, u) = 1 + t((u - 1)F(t, u)^2 + F(t, u) - F(t, 1)) . \] (1)

Here \(P = 1 - x + t((u - 1)x^2 + x - z) \).

Therefore, \(\partial_x P(x, z, 0, u) = 1 \), hence assumption (H1) is not satisfied.

Algorithm DD of page 8:

1. \(\text{disc}_x P = 4t^2 uz - 4t^2 z + t^2 - 4tu + 2t + 1 \),
2. \(\text{disc}_u (\text{disc}_x (P)) = 1 \).

The output is \(R = 1 \), which is obviously wrong.

In fact, the unique solution \(F(t, u) \) of (1) in \(\mathbb{Q}[u][[t]] \) satisfies \(F(t, 1) = 1 \), and is a root of \(R := t(u - 1)x^2 + (t - 1)x + 1 - t \).
Recap

Generic case

<table>
<thead>
<tr>
<th>Page</th>
<th>Contribution</th>
<th>Hypothesis</th>
<th>Total size</th>
<th>Complexity</th>
<th>Relative exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>DD</td>
<td>(H0), (H1), (R)</td>
<td>δ^8</td>
<td>$O(\log(\delta^{10}))$</td>
<td>$\frac{10}{8} = 1.25$</td>
</tr>
<tr>
<td>9</td>
<td>Geom</td>
<td>(H1), radical, 0-dim</td>
<td>δ^6</td>
<td>$O(\log(L\delta^6 + \delta^{7.89}))$</td>
<td>$\frac{10}{6} = 1.6$</td>
</tr>
<tr>
<td>11</td>
<td>G&P</td>
<td>(H1), Jac $\neq 0$</td>
<td>δ^6</td>
<td>$O(\log(L\delta^6 + \delta^{3\theta+3}))$</td>
<td>$\frac{10.14}{6} = 1.69$</td>
</tr>
<tr>
<td>13</td>
<td>General</td>
<td>None</td>
<td>δ^6</td>
<td>$O(\log(\delta^{14}))$</td>
<td>$\frac{14}{6} \sim 2.33$</td>
</tr>
</tbody>
</table>

Sparse case

<table>
<thead>
<tr>
<th>Page</th>
<th>Contribution</th>
<th>Hypothesis</th>
<th>Total size</th>
<th>Complexity</th>
<th>Relative exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>DD</td>
<td>(H0), (H1), (R)</td>
<td>δ^8</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>9</td>
<td>Geom</td>
<td>(H1), radical, 0-dim</td>
<td>δ^6</td>
<td>$O(\log(\delta^{7.89}))$</td>
<td>$\frac{7.89}{6} = 1.315$</td>
</tr>
<tr>
<td>11</td>
<td>G&P</td>
<td>(H1), Jac $\neq 0$</td>
<td>δ^6</td>
<td>$O(\log(\delta^{3\theta+3}))$</td>
<td>$\frac{\theta+1}{2} \sim 1.69 \rightarrow \frac{\theta}{2} \sim 1.19$</td>
</tr>
<tr>
<td>13</td>
<td>General</td>
<td>None</td>
<td>δ^6</td>
<td>$O(\log(\delta^{10.89}))$</td>
<td>$\frac{10.89}{6} \sim 1.815$</td>
</tr>
</tbody>
</table>