Transcendence of solutions of Mahler equations

Thomas Dreyfus
Joint work with Charlotte Hardouin and Julien Roques

1University Lyon 1, France
2University Toulouse 3, France
3University Grenoble 1, France

October 12, 2015
Abstract

- Generating functions of automatic sequences are solutions of Mahler equations

\[\phi_p^n y + a_{n-1} \phi_p^{n-1} y + \cdots + a_0 y = 0, \]

where \(p \geq 2, \phi_p y(z) := y(z^p) \ a_i \in \mathbb{C}(z), 0 \neq a_0. \)

- Many authors are interested about the differential-algebraic properties of such generating functions.

- In this talk we use parametrized differential Galois theory to study this question in a systematic way.
Case $n = 1$

Proposition (D., Hardouin, Roques)

Let $f \neq 0$ such that $\phi_p(f) = a_0 f$. The following statements are equivalent:

1. f is hyperalgebraic over $\mathbb{C}(z)^1$;
2. there exist $c \in \mathbb{C}^\times$, $m \in \mathbb{Z}$ and $u \in \mathbb{C}(z)^\times$ such that $a_0 = cz^m \frac{\phi_p(u)}{u}$.

We say that f is hyperalgebraic over $\mathbb{C}(z)$ if there is an algebraic relation over $\mathbb{C}(z)$ between f and its derivatives.
Case \(n = 2 \)

Theorem (D., Hardouin, Roques)

Let \(f(z) \in \mathbb{C}((z)) \) be a nonzero solution of

\[
\phi^2_p y + a_1 \phi_p y + a_0 y = 0. \tag{1}
\]

Assume that (1) can not be reduced into an order one equation\(^2\). Then, \(f \) is hypertranscendental over \(\mathbb{C}(z) \).

\(^2\)More formally, we assume that the difference Galois group contains \(\text{SL}_2(\mathbb{C}) \).
The Baum-Sweet sequence

Example

The generating function of the Baum-Sweet sequence satisfies

\[\phi_2^2 y + z\phi_2 y - y = 0. \]

It is hypertranscendental.
The Rudin-Shapiro sequence

Example

The generating function of the Rudin-Shapiro sequence satisfies

\[\phi_2^2 y + \frac{1}{2z} \phi_2 y - \frac{1}{2z} y = 0. \]

It is hypertranscendental.
Difference Galois theory

Parametrized difference Galois theory

Hypertranscendence of solutions of Mahler equations
Consider the field
\[K := \bigcup_{j \geq 1} \mathbb{C} \left(z^{1/j} \right), \]
we equip with the automorphism \(\phi_p \). Let
\[\phi_p Y = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix} Y = AY, \quad (2) \]
which is equivalent to
\[\phi_p^2 y + a \phi_p y + by = 0, \]
with \(a, b \in \mathbb{C}(z) \), \(b \neq 0 \).
A Picard-Vessiot ring for (2) over K is a difference ring extension $R|K$ such that

1) there exists $U \in \text{GL}_2(R)$ such that $\phi_p(U) = AU$;

2) R is generated, as a K-algebra, by the entries of U and $\det(U)^{-1}$;

3) the only ϕ_p-ideals of R are $\{0\}$ and R.
Difference Galois group

Let $R \mid K$ be a Picard-Vessiot ring for (2). The difference Galois group $\text{Gal}(R/K)$ of R over K is the group of K-automorphisms of R commuting with ϕ_p:

$$\text{Gal}(R/K) := \{ \sigma \in \text{Aut}(R/K) \mid \phi_p \circ \sigma = \sigma \circ \phi_p \}.$$

The image

$$\text{Gal}(R/K) \rightarrow \text{GL}_2(\mathbb{C})$$

$$\sigma \mapsto U^{-1} \sigma(U)$$

is an algebraic subgroup of $\text{GL}_2(\mathbb{C})$.
Proposition

The algebraic dimension of $R|K$ equals to the dimension of $\text{Gal}(R/K) \subset \text{GL}_2(\mathbb{C})$.

Theorem (Roques)

One of the three following cases occurs.

1. $\text{Gal}(R/K)$ is conjugated to a group on upper triangular matrices. This happens if and only if there exists a solution $u \in K$ of the Riccati equation $(\phi_p(u) + a)u = -b$.

2. The first case does not occur and $\text{Gal}(R/K)$ is conjugated to a subgroup of
\[
\left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \bigg| \alpha, \beta \in \mathbb{C}^\times \right\} \cup \left\{ \begin{pmatrix} 0 & \gamma \\ \epsilon & 0 \end{pmatrix} \bigg| \gamma, \epsilon \in \mathbb{C}^\times \right\}.
\] This happens if and only if the first case does not occur and there exists a solution $u \in K$ of the Riccati equation
\[
\left(\phi_p^2(u) + \left(\phi_p^2 \left(\frac{b}{a} \right) - \phi_p(a) + \frac{\phi_p(b)}{a} \right) \right)u = -\frac{\phi_p(b)b}{a^2}.
\]

3. $\text{Gal}(R/K)$ contains $\text{SL}_2(\mathbb{C})$.

Differentially closed field

Definition

Let \mathcal{C} be a field equipped with a derivation δ. We say that (\mathcal{C}, δ) is differentially closed if, for every (finite) set of δ-polynomials \mathcal{F} in coefficients in \mathcal{C}, if the system of differential equations $\mathcal{F} = 0$ has a solution with entries in some δ-field extension \mathcal{L}, then it has a solution with entries in \mathcal{C}. Any δ-field \mathcal{C} has a differential closure $\tilde{\mathcal{C}}$.
Consider the derivation

\[\delta := z \log(z) \partial_z, \text{ such that } \delta \circ \phi_p = \phi_p \circ \delta. \]

Let \((\tilde{C}, \delta)\) be a differential closure of \((C, \delta)\). Let

\[L := \text{Frac} \left(\tilde{C} \otimes_C K(\log) \right). \]
Parametrized Picard-Vessiot extension

A parametrized Picard-Vessiot ring for (2) over \mathbf{L} is a differential-difference ring extension $S|\mathbf{L}$ such that
1) there exists $U \in \text{GL}_2(S)$ such that $\phi_p(U) = AU$;
2) S is generated, as a δ-\mathbf{L}-algebra, by the entries of U, and $\det(U)^{-1}$;
3) the only (δ, ϕ_p)-ideals of S are $\{0\}$ and S.
Let $S|L$ be a parametrized Picard-Vessiot ring for (2). The parametrized difference Galois group $\text{PGal}(S/L)$ of S over L is the group of L-automorphisms of S commuting with ϕ_p and δ:

$$\text{PGal}(S/L) := \{ \sigma \in \text{Aut}(S/L) \mid \phi_p \circ \sigma = \sigma \circ \phi_p, \delta \circ \sigma = \sigma \circ \delta \}.$$
Linear differential algebraic group

Definition
We say that a subgroup G of $\text{GL}_2(\tilde{\mathbb{C}})$ is a differential algebraic group if there exist P_1, \ldots, P_k, δ-polynomials in 4 variables and in coefficients in $\tilde{\mathbb{C}}$ such that for $A = (a_{i,j}) \in \text{GL}_2(\tilde{\mathbb{C}})$,

$$A \in G \iff P_1(a_{i,j}) = \cdots = P_k(a_{i,j}) = 0.$$

The image

$$\text{PGal}(S/L) \rightarrow \text{GL}_2(\tilde{\mathbb{C}})$$

$$\sigma \mapsto U^{-1} \sigma(U)$$

is a differential algebraic subgroup of $\text{GL}_2(\tilde{\mathbb{C}})$.
Proposition (Hardouin-Singer)

The differential dimension of $S|L$ equals to the dimension of $\text{PGal}(S/L) \subset \text{GL}_2 \left(\widehat{\mathbb{C}} \right)$.
Case \(n = 1 \)

Proposition (D., Hardouin, Roques)

Let \(f \neq 0 \) such that \(\phi_p(f) = af \) with \(a \neq 0 \). We have the following alternative:

1. \(f \) is hypertranscendental over \(\mathbb{C}(z) \). In this case \(\text{PGal}(S/L) = \tilde{\mathbb{C}}^\times \);
2. \(f \) is hyperalgebraic over \(\mathbb{C}(z) \). In this case \(\text{PGal}(S/L) \) is conjugated to a subgroup of \(\mathbb{C}^\times \).

Furthermore, the last case occurs if and only if there exist \(c \in \mathbb{C}^\times \), \(m \in \mathbb{Z} \) and \(u \in \mathbb{C}(z)^\times \) such that \(a = cz^m \phi_p(u) \).
From now, we consider

\[\phi_p Y = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix} Y = AY, \]

(2)

and assume that \(\text{Gal}(R/K) \) contains \(\text{SL}_2(\mathbb{C}) \). This implies that \(\text{PGal}(S/L) \) contains \(\text{SL}_2(\mathbb{C}) \).

Let \(U \in \text{GL}_2(S) \) be a fundamental solution. \(\det(U) \) is solution of

\[\phi_p \det(U) = \det(A) \det(U) = b \det(U). \]
det(\(U\)) is hypertranscendental

Assume that \(\det(U)\) is hypertranscendental over \(\mathbb{C}(z)\). We have the following alternative:

1. \(\text{PGal}(S/L)\) is conjugated to \(\tilde{\mathbb{C}} \times \text{SL}_2(\mathbb{C})\);
2. \(\text{PGal}(S/L)\) is equal to a \(\text{GL}_2(\tilde{\mathbb{C}})\).

Moreover, the first case holds if and only if there exists \(B \in K^{2 \times 2}\) such that

\[
\rho_{\phi p}(B) = ABA^{-1} + z\partial_z(A)A^{-1} - \frac{1}{2} z\partial_z(b)b^{-1}l_2.
\]
det(U) is hypertranscendental

Theorem (D., Hardouin, Roques)

Assume that det(U) is hypertranscendental over $\mathbb{C}(z)$. Assume that $\phi^2_y + a\phi_y + by = 0$ admits a nonzero solution $f \in \mathbb{C}((z))$. Then, f is hypertranscendental over $\mathbb{C}(z)$.
det(U) is hyperalgebraic

Theorem (D., Hardouin, Roques)

Assume that det(U) is hyperalgebraic over $\mathbb{C}(z)$. Then, the parametrized difference Galois group $\text{PGal}(S/L)$ is a subgroup of $\mathbb{C}^\times \text{SL}_2(\tilde{\mathbb{C}})$ containing $\text{SL}_2(\tilde{\mathbb{C}})$. Furthermore, if $\phi_p^2y + a\phi_py + by = 0$ admits a nonzero solution $f \in \mathbb{C}((z))$, then f is hypertranscendental over $\mathbb{C}(z)$.