On the Formalization of Foundations of Tarski’s System of Geometry

Pierre Boutry

University of Strasbourg - ICCube - CNRS

Computations and Proofs - Specfun - March 2016
Motivations

Geometry has played a central role in the history of mathematical proof:
- Axiomatic approach;
- Foundational crisis of mathematics;
- Metamathematics;
- Education.

Pierre Boutry
Formal Proofs in Tarski’s System of Geometry
Motivations

Geometry has played a central role in the history of mathematical proof:
Geometry has played a central role in the history of mathematical proof:

- Axiomatic approach;

Euclid
(325 B.C. - 265 B.C.)
Geometry has played a central role in the history of mathematical proof:

- Axiomatic approach;
- Foundational crisis of mathematics;
Motivations

Geometry has played a central role in the history of mathematical proof:

- Axiomatic approach;
- Foundational crisis of mathematics;
- Metamathematics;

Alfred Tarski (1901 - 1983)
Geometry has played a central role in the history of mathematical proof:

- Axiomatic approach;
- Foundational crisis of mathematics;
- Metamathematics;
- Education.
Motivations

Tarski's system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

State of the art

Pierre Boutry
Formal Proofs in Tarski's System of Geometry
Motivations

- The **missing** concept in *Euclid’s Elements*
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.

Moritz Pasch
(1843 - 1930)
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.
Motivations

- The **missing** concept in *Euclid's Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.

Posidonius
(135 B.C. - 51 B.C.)
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.

- More than two millennia of **false proofs** of the parallel postulate.
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.

- More than two millennia of **false proofs** of the parallel postulate.

Proclus (412 - 485)
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.

- More than two millennia of **false proofs** of the parallel postulate.

Omar Khayyam
(1048 - 1131)
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.

- More than two millennia of **false proofs** of the parallel postulate.

John Wallis
(1616 - 1703)
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.

Jean-Henri Lambert
(1728 - 1777)
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.

- More than two millennia of **false proofs** of the parallel postulate.
Motivations

- The **missing** concept in *Euclid's Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.
- We can still make **mistakes**.
Motivations

- The **missing** concept in *Euclid’s Elements*: the betweenness.
- More than two millennia of **false proofs** of the parallel postulate.
- We can still make **mistakes**.

It soon became clear that the only real long-term solution to the problems that I encountered is to start using computers in the verification of mathematical reasoning.

(Vladimir Voevodsky, talk in March 2014 at the Institute for Advanced Studies at Princeton)
Motivations
Il n’en est pas moins certain que le théorème sur la somme des trois angles du triangle doit être regardé comme l’une de ces vérités fondamentales qu’il est impossible de contester, et qui sont un exemple toujours subsistant de la certitude mathématique qu’on recherche sans cesse et qu’on n’obtient que bien difficilement dans les autres branches des connaissances humaines.

(Adrien-Marie Legendre, Réflexions sur quelques manières de démontrer la théorie des parallèles ou le théorème sur la somme des trois angles du triangle)
Il n’en est pas moins certain que le théorème sur la somme des trois angles du triangle doit être regardé comme l’une de ces vérités fondamentales qu’il est impossible de contester, et qui sont un exemple toujours subsistant de la certitude mathématique qu’on recherche sans cesse et qu’on n’obtient que bien difficilement dans les autres branches des connaissances humaines.

(Adrien-Marie Legendre, Réflexions sur quelques manières de démontrer la théorie des parallèles ou le théorème sur la somme des trois angles du triangle)
Formalizations of foundations of geometry
Formalizations of foundations of geometry

- Synthetic approach
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid

Euclid
(325 av. J.-C. - 265 av. J.-C.)
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid

Euclid.
Les éléments.
Traduit par Bernard Vitrac.
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert

David Hilbert
(1862 - 1943)
Introduction

Tarski’s system of geometry

Parallel postulates

Arithmetic of geometry

Perspectives

Motivations

State of the art

Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert

David Hilbert.

Foundations of Geometry (Grundlagen der Geometrie).

Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski.

Metamathematische Methoden in der Geometrie.

Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Analytic approach
Formalizations of foundations of geometry

- **Synthetic approach**: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- **Analytic approach**: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.
Introduction

Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Motivations
State of the art

Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Analytic approach: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.

- Mixed analytic/synthetic approach
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Analytic approach: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.

- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
Formalizations of foundations of geometry

- **Synthetic approach**: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- **Analytic approach**: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.

- **Mixed analytic/synthetic approach**: existence of a field and geometric axioms.
 - Birkhoff
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Analytic approach: a field F is assumed and the space is defined as F^n.

- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff

George David Birkhoff.

A set of postulates for plane geometry (based on scale and protractors).

Formalizations of foundations of geometry

- **Synthetic approach**: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- **Analytic approach**: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.

- **Mixed analytic/synthetic approach**: existence of a field and geometric axioms.
 - Birkhoff

- **Erlangen program**

Felix Klein
(1849 - 1925)
Formalizations of foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Analytic approach: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.

- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff

- Erlangen program: a geometry is defined as a space of objects and a group of transformations acting on it.

Felix C. Klein.
A comparative review of recent researches in geometry, 1872.
Introduction

Tarski’s system of geometry

Parallel postulates

Arithmetization of geometry

Perspectives

Outline

1 Introduction

2 Tarski’s system of geometry
 - The axioms
 - Overview of the formalization

3 Parallel postulates

4 Arithmetization of geometry

5 Perspectives
Outline

1. Introduction

2. Tarski’s system of geometry
 - The axioms
 - Overview of the formalization

3. Parallel postulates

4. Arithmetization of geometry

5. Perspectives
Outline

1. Introduction
2. Tarski’s system of geometry
 - The axioms
 - Overview of the formalization
3. Parallel postulates
4. Arithmetization of geometry
5. Perspectives
The axioms

Introduction
Tarski's system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

The axioms
Overview of the formalization

The axioms

A single primitive type: point.
Two primitive predicates:
1 congruence
AB CD
2 betweenness
A B C

11 axioms.
A parameter controls the dimension.

Alfred Tarski
(1901 - 1983)
The axioms

- A single primitive type: point.
The axioms

- A single primitive type: point.
- Two primitive predicates:

Alfred Tarski
(1901 - 1983)
The axioms

- A single primitive type: point.
- Two primitive predicates:
 1. congruence $AB \equiv CD$;
The axioms

- A single primitive type: point.
- Two primitive predicates:
 1. congruence $AB \equiv CD$;
 2. betweenness $A-B-C$.

Alfred Tarski
(1901 - 1983)
The axioms

- A single primitive type: point.
- Two primitive predicates:
 1. congruence $AB \equiv CD$;
 2. betweenness $A-B-C$.
- 11 axioms.
The axioms

- A single primitive type: point.
- Two primitive predicates:
 1. congruence $AB \equiv CD$;
 2. betweenness $A-B-C$.
- 11 axioms.
- A parameter controls the dimension.
The axioms

- A single primitive type: point.
- Two primitive predicates:
 1. congruence $AB \equiv CD$;
 2. betweenness $A - B - C$.
- 11 axioms.
- A parameter controls the dimension.
- Good meta-theoretical properties.

Alfred Tarski (1901 - 1983)
Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

\[AB \parallel CD \rightarrow AB \parallel EF, \quad CD \parallel EF \]

Axiom (Pseudo-reflexivity for congruence)

\[AB \parallel BA \]

Axiom (Identity for congruence)

\[AB \parallel CC \rightarrow A = B \]
Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

\[AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF \]
Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

\[AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF \]

Axiom (Pseudo-reflexivity for congruence)

\[AB \equiv BA \]
Axioms about congruence

<table>
<thead>
<tr>
<th>Axiom (Pseudo-transitivity for congruence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axiom (Pseudo-reflexivity for congruence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AB \equiv BA]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axiom (Identity for congruence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AB \equiv CC \Rightarrow A = B]</td>
</tr>
</tbody>
</table>
Axiom about betweenness
Axiom (Identity for betweenness)

\[A \sim B \sim A \Rightarrow A = B \]
Five-Segment Axiom
Five-Segment Axiom

Axiom (Five-Segment)

\[AB \equiv A'B' \land BC \equiv B'C' \land AD \equiv A'D' \land BD \equiv B'D' \land A\!-\!B\!-\!C \land A'\!-\!B'\!-\!C' \land A \neq B \Rightarrow CD \equiv C'D' \]
Five-Segment Axiom

Axiom (Five-Segment)

\[
AB \equiv A'B' \land BC \equiv B'C' \land \\
AD \equiv A'D' \land BD \equiv B'D' \land \\
A - B - C \land A' - B' - C' \land A \neq B \Rightarrow CD \equiv C'D'
\]
Axiom of Segment Construction
Axiom of Segment Construction

Axiom (Segment Construction)

$$\exists E, A-B-E \land BE \equiv CD$$
Axiom of Segment Construction

\[\exists E, A - B - E \land BE \equiv CD \]
Pasch axiom
Pasch axiom

Axiom (Pasch)

\[A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A \]
Pasch axiom

Axiom (Pasch)

\[A - P - C \land B - Q - C \Rightarrow \exists X, \, P - X - B \land Q - X - A \]
Pasch axiom

Axiom (Pasch)

\[A - P - C \wedge B - Q - C \Rightarrow \exists X, P - X - B \wedge Q - X - A \]
Pasch axiom

Axiom (Pasch)

\[A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A \]
2-Dimensional Axiom
2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

$$\exists ABC, \neg A-B-C \land \neg B-C-A \land \neg C-A-B$$
2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

\[\exists ABC, \neg A-B-C \land \neg B-C-A \land \neg C-A-B \]

Axiom (Upper 2-Dimensional)

\[AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow \]
\[A-B-C \lor B-C-A \lor C-A-B \]
Euclid’s axiom

Introduction
Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

The axioms
Overview of the formalization

Axiom (Euclid)

\[AD^B DT^A \neq D) \]

\[9 \ XY; \ A \ B X^A C Y^X T Y \]

Pierre Boutry
Formal Proofs in Tarski’s System of Geometry
Euclid’s axiom

Axiom (Euclid)

\[A \neq D \land B \neq D \land C \neq D \Rightarrow \exists X, Y, A \neq B \land X \neq Y \land X \neq T \land Y \]
Euclid’s axiom

Axiom (Euclid)

\[A - D - T \land B - D - C \land A \neq D \Rightarrow \exists XY, A - B - X \land A - C - Y \land X - T - Y \]
Euclid’s axiom

Axiom (Euclid)

\[A \neq D \land B \neq D \land C \neq A \land A \neq D \Rightarrow \exists XY, A \neq B \land A \neq C \land X \neq Y \land X \neq T \land Y \]
Euclid’s axiom

Axiom (Euclid)

\[A \neq D \land B \neq C \land A \neq D \Rightarrow \exists XY, A \neq B \land A \neq C \land X \neq Y \]

![Diagram of Euclid's axiom](image)
The axioms (summary)

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A - B - A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A - B - E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A'B' \land BC \equiv B'C' \land AD \equiv A'D' \land BD \equiv B'D' \land A - B - C \land A' - B' - C' \land A \neq B \Rightarrow CD \equiv C'D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A - B - C \lor B - C - A \lor C - A - B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A - D - T \land B - D - C \land A \neq D \Rightarrow \exists XY, A - B - X \land A - C - Y \land X - T - Y$</td>
</tr>
<tr>
<td>Continuity</td>
<td>$\forall \Xi, (\exists A, (\forall XY, X \in \Xi \land Y \in \Upsilon \Rightarrow A - X - Y)) \Rightarrow \exists B, (\forall XY, X \in \Xi \land Y \in \Upsilon \Rightarrow X - B - Y)$</td>
</tr>
</tbody>
</table>
The axioms (summary)

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$AB = B - A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A - B - E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A' - B' \land BC \equiv B' - C' \land AD \equiv A' - D' \land BD \equiv B' - D'$</td>
</tr>
<tr>
<td></td>
<td>$A - B - C \land A' - B' - C' \land A \neq B \Rightarrow CD \equiv C' - D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow A - B - C \lor B - C - A \lor C - A - B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A - D - T \land B - D - C \land A \neq D \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>$\exists XY, A - B - X \land A - C - Y \land X - T - Y$</td>
</tr>
<tr>
<td>Continuity</td>
<td>$\forall \exists \gamma, (\exists A, (\forall XY, X \in \Xi \land Y \in \gamma \Rightarrow A - X - Y)) \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>$\exists B, (\forall XY, X \in \Xi \land Y \in \gamma \Rightarrow X - B - Y)$</td>
</tr>
</tbody>
</table>
Overview of the formalization

W. Schwabhäuser
W. Szmielew A. Tarski

Metamathematische Methoden in der Geometrie
Mit 187 Abbildungen

Teil I: Ein axiomatischer Aufbau der euklidischen Geometrie
von W. Schwabhäuser, W. Szmielew und A. Tarski

Teil II: Metamathematische Betrachtungen
von W. Schwabhäuser

Springer-Verlag
Berlin Heidelberg New York Tokyo 1983

geocoq.github.io/GeoCoq/
Overview of the formalization

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Neutral \geq 2D</th>
<th>$= 2D$</th>
<th>Euclid</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 2: Properties about betweenness</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 3: Properties about congruence</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 4: Properties about bet. et cong.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5: Order relation on points</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 6: Collinearity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 7: Midpoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 8: Orthogonality</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 9: Planes</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 10: Reflection</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 11: Angles</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 12: Parallelism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 13: Pappus and Desargues</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 14: Ordered field</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 15: Pythagorean ordered field</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 16: Coordinates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Tarski’s system of geometry

3. Parallel postulates
 - A syntaxic proof of the independence
 - Decidability of the predicates of the development
 - Equivalent statements

4. Arithmetization of geometry

5. Perspectives
Outline

1. Introduction

2. Tarski’s system of geometry

3. Parallel postulates
 - A syntactic proof of the independence
 - Decidability of the predicates of the development
 - Equivalent statements

4. Arithmetization of geometry

5. Perspectives
Euclid’s axiom

Axiom (Euclid)

\[A \neq D \land B \neq C \land A \neq D \Rightarrow \exists XY, A \neq B \land A \neq C \land X \neq Y \]
Types of independence proofs
Types of independence proofs

- Semantic proofs: prove the consistency of non-Euclidean geometry.
Types of independence proofs

- Semantic proofs: prove the consistency of non-Euclidean geometry.

Hyperbolic geometry
Types of independence proofs

- Semantic proofs: prove the consistency of non-Euclidean geometry.

Hyperbolic geometry

Elliptic geometry
Types of independence proofs

- Semantic proofs: prove the consistency of non-Euclidean geometry.
 - Hyperbolic geometry
 - Elliptic geometry

- Syntaxic proofs: prove there does not exist a derivation of the axiom from the others.
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A - B - A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A - B - E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A'B' \land BC \equiv B'C' \land AD \equiv A'D' \land BD \equiv B'D' \land A - B - C \land A' - B' - C' \land A \neq B \Rightarrow CD \equiv C'D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A - B - C \lor B - C - A \lor C - A - B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A - D - T \land B - D - C \land A \neq D \Rightarrow \exists XY, A - B - X \land A - C - Y \land X - T - Y$</td>
</tr>
<tr>
<td>Continuity</td>
<td>$\forall \Xi \forall \Upsilon, (\exists A, (\forall XY, X \in \Xi \land Y \in \Upsilon \Rightarrow A - X - Y)) \Rightarrow \exists B, (\forall XY, X \in \Xi \land Y \in \Upsilon \Rightarrow X - B - Y)$</td>
</tr>
</tbody>
</table>
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>A–B–A ⇒ A = B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>AB ≡ BA</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>AB ≡ CC ⇒ A = B</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>∃E, A–B–E ∧ BE ≡ CD</td>
</tr>
<tr>
<td>Pasch</td>
<td>A–P–C ∧ B–Q–C ⇒ ∃X, P–X–B ∧ Q–X–A</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′ ∧ A–B–C ∧ A′–B′–C′ ∧ A ≠ B ⇒ CD ≡ C′D′</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>∃ABC, ¬A–B–C ∧ ¬B–C–A ∧ ¬C–A–B</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P ≠ Q ⇒ A–B–C ∨ B–C–A ∨ C–A–B</td>
</tr>
</tbody>
</table>
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>A—B—$A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A$—B—$E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>A—P—$C \land B$—Q—$C \Rightarrow \exists X, P$—$X$—$B \land Q$—$X$—$A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A'B' \land BC \equiv B'C' \land AD \equiv A'D' \land BD \equiv B'D' \land A$—$B$—$C \land A'$—$B'$—$C' \land A \neq B \Rightarrow CD \equiv C'D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A$—B—$C \land \neg B$—C—$A \land \neg C$—A—B</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A$—$B$—$C \lor B$—$C$—$A \lor C$—$A$—$B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>A—D—$T \land B$—D—$C \land A \neq D \Rightarrow \exists XY, A$—$B$—$X \land A$—$C$—$Y \land X$—$T$—$Y$</td>
</tr>
</tbody>
</table>
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A \parallel B \parallel A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A \parallel B \parallel E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A \parallel P \parallel C \land B \parallel Q \parallel C \Rightarrow \exists X, P \parallel X \parallel B \land Q \parallel X \parallel A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A' \parallel B' \parallel BC \equiv B' \parallel C'$</td>
</tr>
<tr>
<td></td>
<td>$AD \equiv A' \parallel D' \parallel BD \equiv B' \parallel D'$</td>
</tr>
<tr>
<td></td>
<td>$A \parallel B \parallel C \land A' \parallel B' \parallel C' \land A \neq B \Rightarrow CD \equiv C' \parallel D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A \parallel B \parallel C \land \neg B \parallel C \parallel A \land \neg C \parallel A \parallel B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>$A \parallel B \parallel C \lor B \parallel C \parallel A \lor C \parallel A \parallel B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A \parallel D \parallel T \land B \parallel D \parallel C \land A \neq D \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>$\exists XY, A \parallel B \parallel X \land A \parallel C \parallel Y \land X \parallel T \parallel Y$</td>
</tr>
</tbody>
</table>
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A \overline{B} A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A \overline{B} E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A \overline{P} C \land B \overline{Q} C \Rightarrow \exists X, P \overline{X} B \land Q \overline{X} A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A' B' \land BC \equiv B' C' \land AD \equiv A' D' \land BD \equiv B' D' \land A \overline{B} C \land A' \overline{B'} C' \land A \neq B \Rightarrow CD \equiv C' D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A \overline{B} C \land \neg B \overline{C} A \land \neg C \overline{A} B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A \overline{B} C \lor B \overline{C} A \lor C \overline{A} B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A \overline{D} T \land B \overline{D} C \land A \neq D \Rightarrow \exists XY, A \overline{B} X \land A \overline{C} Y \land X \overline{T} Y$</td>
</tr>
</tbody>
</table>
Syntaxic proof

\[A - B - A \Rightarrow A = B \]
\[AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF \]
\[AB \equiv BA \]
\[AB \equiv CC \Rightarrow A = B \]
\[\exists E, A - B - E \land BE \equiv CD \]
\[A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A \]
\[AB \equiv A' - B' \land BC \equiv B' - C' \land \]
\[AD \equiv A' - D' \land BD \equiv B' - D' \land \]
\[A - B - C \land A' - B' - C' \land A \neq B \Rightarrow CD \equiv C' - D' \]
\[\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B \]
\[AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow \]
\[A - B - C \lor B - C - A \lor C - A - B \]
\[A - D - T \land B - D - C \land A \neq D \Rightarrow \]
\[\exists XY, A - B - X \land A - C - Y \land X - T - Y \]
Introduction
Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

A syntaxic proof of the independence
Decidability of the predicates of the development
Equivalent statements

Syntaxic proof

<table>
<thead>
<tr>
<th>A-B-A ⇒ A = B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB \equiv CD \land AB \equiv EF ⇒ CD \equiv EF</td>
</tr>
<tr>
<td>AB \equiv BA</td>
</tr>
<tr>
<td>AB \equiv CC ⇒ A = B</td>
</tr>
<tr>
<td>\exists E, A-B-E \land BE \equiv CD</td>
</tr>
<tr>
<td>A-P-C \land B-Q-C ⇒ \exists X, P-X-B \land Q-X-A</td>
</tr>
<tr>
<td>AB \equiv A'B' \land BC \equiv B'C' \land</td>
</tr>
<tr>
<td>AD \equiv A'D' \land BD \equiv B'D' \land</td>
</tr>
<tr>
<td>A-B-C \land A'-B'-C' \land A \neq B ⇒ CD \equiv C'D'</td>
</tr>
<tr>
<td>\exists ABC, \neg A-B-C \land \neg B-C-A \land \neg C-A-B</td>
</tr>
<tr>
<td>AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q ⇒</td>
</tr>
<tr>
<td>A-B-C \lor B-C-A \lor C-A-B</td>
</tr>
<tr>
<td>A-D-T \land B-D-C \land A \neq D ⇒</td>
</tr>
<tr>
<td>\exists XY, A-B-X \land A-C-Y \land X-T-Y</td>
</tr>
</tbody>
</table>
Syntaxic proof

\[A - B - A \Rightarrow A = B \]
\[AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF \]
\[AB \equiv BA \]
\[AB \equiv CC \Rightarrow A = B \]
\[\exists E, A - B - E \land BE \equiv CD \]
\[A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A \]
\[AB \equiv A'B' \land BC \equiv B'C' \land \]
\[AD \equiv A'D' \land BD \equiv B'D' \land \]
\[A - B - C \land A'B'C' \land A \neq B \Rightarrow CD \equiv C'D' \land \]
\[\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B \]
\[AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow \]
\[A - B - C \lor B - C - A \lor C - A - B \]
\[A - D - T \land B - D - C \land A \neq D \Rightarrow \]
\[\exists XY, A - B - X \land A - C - Y \land X - T - Y \]
Syntaxic proof

A–B–A ⇒ A = B

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

AB ≡ BA

AB ≡ CC ⇒ A = B

∃ E, A–B–E ∧ BE ≡ CD

A–P–C ∧ B–Q–C ⇒ ∃ X, P–X–B ∧ Q–X–A

AB ≡ A′B′ ∧ BC ≡ B′C′∧

AD ≡ A′D′ ∧ BD ≡ B′D′∧

A–B–C ∧ A–B′–C′ ∧ A ≠ B ⇒ CD ≡ C′D′

∃ ABC, ¬A–B–C ∧ ¬B–C–A ∧ ¬C–A–B

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P ≠ Q ⇒

A–B–C ∨ B–C–A ∨ C–A–B

A–D–T ∧ B–D–C ∧ A ≠ D ⇒

∃ XY, A–B–X ∧ A–C–Y ∧ X–T–Y
Syntaxic proof

\[A - B - A \Rightarrow A = B \]
\[AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF \]
\[AB \equiv BA \]
\[AB \equiv CC \Rightarrow A = B \]
\[\exists E, A - B - E \land BE \equiv CD \]
\[A - P - C \land B - Q - C \Rightarrow \exists X, P - X - B \land Q - X - A \]
\[AB \equiv A'B' \land BC \equiv B'C' \land \]
\[AD \equiv A'D' \land BD \equiv B'D' \land \]
\[A - B - C \land A' - B' - C' \land A \neq B \Rightarrow CD \equiv C'D' \]
\[\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B \]
\[AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow \]
\[A - B - C \lor B - C - A \lor C - A - B \]
\[A - D - T \land B - D - C \land A \neq D \Rightarrow \]
\[\exists XY, A - B - X \land A - C - Y \land X - T - Y \]
Syntaxic proof

\[A - B - A \implies A = B \]
\[AB \equiv CD \land AB \equiv EF \implies CD \equiv EF \]
\[AB \equiv BA \]
\[AB \equiv CC \implies A = B \]
\[\exists E, A - B - E \land BE \equiv CD \]
\[A - P - C \land B - Q - C \implies \exists X, P - X - B \land Q - X - A \]
\[AB \equiv A' B' \land BC \equiv B' C' \land \]
\[AD \equiv A' D' \land BD \equiv B' D' \land \]
\[A - B - C \land A' - B' - C' \land A \neq B \implies CD \equiv C' D' \]
\[\exists ABC, \neg A - B - C \land \neg B - C - A \land \neg C - A - B \]
\[AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \implies \]
\[A - B - C \lor B - C - A \lor C - A - B \]
\[A - D - T \land B - D - C \land A \neq D \implies \exists XY, A - B - X \land A - C - Y \land X - T - Y \]
A syntactic proof of the independence
Decidability of the predicates of the development
Equivalent statements

Syntaxic proof

<table>
<thead>
<tr>
<th>A–B–A (\Rightarrow) A = B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF)</td>
</tr>
<tr>
<td>(AB \equiv BA)</td>
</tr>
<tr>
<td>(AB \equiv CC \Rightarrow A = B)</td>
</tr>
<tr>
<td>(\exists E, A–B–E \land BE \equiv CD)</td>
</tr>
<tr>
<td>(A–P–C \land B–Q–C \Rightarrow \exists X, P–X–B \land Q–X–A)</td>
</tr>
<tr>
<td>(AB \equiv A'B' \land BC \equiv B'C')</td>
</tr>
<tr>
<td>(AD \equiv A'D' \land BD \equiv B'D')</td>
</tr>
<tr>
<td>(A–B–C \land A'B'C' \land A \neq B \Rightarrow CD \equiv C'D')</td>
</tr>
<tr>
<td>(\exists ABC, \neg A–B–C \land \neg B–C–A \land \neg C–A–B)</td>
</tr>
<tr>
<td>(AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow)</td>
</tr>
<tr>
<td>(A–B–C \lor B–C–A \lor C–A–B)</td>
</tr>
<tr>
<td>(A–D–T \land B–D–C \land A \neq D \Rightarrow)</td>
</tr>
<tr>
<td>(\exists XY, A–B–X \land A–C–Y \land X–T–Y)</td>
</tr>
</tbody>
</table>
Introduction
Tarski's system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

A syntactic proof of the independence
Decidability of the predicates of the development
Equivalent statements

Syntaxic proof

<table>
<thead>
<tr>
<th>(A-B-A)</th>
<th>(A = B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF)</td>
<td></td>
</tr>
<tr>
<td>(AB \equiv BA)</td>
<td></td>
</tr>
<tr>
<td>(AB \equiv CC \Rightarrow A = B)</td>
<td></td>
</tr>
<tr>
<td>(\exists E, A-B-E \land BE \equiv CD)</td>
<td></td>
</tr>
<tr>
<td>(A-P-C \land B-Q-C \Rightarrow \exists X, P-X-B \land Q-X-A)</td>
<td></td>
</tr>
<tr>
<td>(AB \equiv A'B' \land BC \equiv B'C' \land)</td>
<td></td>
</tr>
<tr>
<td>(AD \equiv A'D' \land BD \equiv B'D' \land)</td>
<td></td>
</tr>
<tr>
<td>(A-B-C \land A'-B'-C' \land A \neq B \Rightarrow CD \equiv C'D')</td>
<td></td>
</tr>
<tr>
<td>(\exists ABC, \neg A-B-C \land \neg B-C-A \land \neg C-A-B)</td>
<td></td>
</tr>
<tr>
<td>(AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow)</td>
<td></td>
</tr>
<tr>
<td>(A-B-C \lor B-C-A \lor C-A-B)</td>
<td></td>
</tr>
<tr>
<td>(A-D-T \land B-D-C \land A \neq D \Rightarrow)</td>
<td></td>
</tr>
<tr>
<td>(\exists XY, A-B-X \land A-C-Y \land X-T-Y)</td>
<td></td>
</tr>
</tbody>
</table>
Syntaxic proof

\[
A \rightarrow B \rightarrow A \Rightarrow A = B
\]

\[
AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF
\]

\[
AB \equiv BA
\]

\[
AB \equiv CC \Rightarrow A = B
\]

\[
\exists E, A \rightarrow B \rightarrow E \land BE \equiv CD
\]

\[
A \rightarrow P \rightarrow C \land B \rightarrow Q \rightarrow C \Rightarrow \exists X, P \rightarrow X \rightarrow B \land Q \rightarrow X \rightarrow A
\]

\[
AB \equiv A' \rightarrow B' \land BC \equiv B' \rightarrow C'\land
\]

\[
AD \equiv A' \rightarrow D' \land BD \equiv B' \rightarrow D'\land
\]

\[
A \rightarrow B \rightarrow C \land A' \rightarrow B' \rightarrow C' \land A \neq B \Rightarrow CD \equiv C' \rightarrow D'
\]

\[
\exists ABC, \neg A \rightarrow B \rightarrow C \land \neg B \rightarrow C \rightarrow A \land \neg C \rightarrow A \rightarrow B
\]

\[
AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow
\]

\[
A \rightarrow B \rightarrow C \lor B \rightarrow C \rightarrow A \lor C \rightarrow A \rightarrow B
\]

\[
A \rightarrow D \rightarrow T \land B \rightarrow D \rightarrow C \land A \neq D \Rightarrow
\]

\[
\exists XY, A \rightarrow B \rightarrow X \land A \rightarrow C \rightarrow Y \land X \rightarrow T \rightarrow Y
\]
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A-B-A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A-B-E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A-P-C \land B-Q-C \Rightarrow \exists X, P-X-B \land Q-X-A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A'B' \land BC \equiv B'C'$, $AD \equiv A'D' \land BD \equiv B'D'$, $A-B-C \land A'-B'-C' \land A \neq B \Rightarrow CD \equiv C'D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A-B-C \land \neg B-C-A \land \neg C-A-B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A-B-C \lor B-C-A \lor C-A-B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A-D-T \land B-D-C \land A \neq D \Rightarrow \exists XY, A-B-X \land A-C-Y \land X-T-Y$</td>
</tr>
</tbody>
</table>
Syntaxic proof

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>(A \text{--} B \text{--} A \Rightarrow A = B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>(AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF)</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>(AB \equiv BA)</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>(AB \equiv CC \Rightarrow A = B)</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>(\exists E, A \text{--} B \text{--} E \land BE \equiv CD)</td>
</tr>
<tr>
<td>Pasch</td>
<td>(A \text{--} P \text{--} C \land B \text{--} Q \text{--} C \Rightarrow \exists X, P \text{--} X \text{--} B \land Q \text{--} X \text{--} A)</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>(AB \equiv A' B' \land BC \equiv B' C' \land AD \equiv A' D' \land BD \equiv B' D' \land A \text{--} B \text{--} C \land A' \text{--} B' \text{--} C' \land A \neq B \Rightarrow CD \equiv C' D')</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>(\exists ABC, \neg A \text{--} B \text{--} C \land \neg B \text{--} C \text{--} A \land \neg C \text{--} A \text{--} B)</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>(AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A \text{--} B \text{--} C \lor B \text{--} C \text{--} A \lor C \text{--} A \text{--} B)</td>
</tr>
<tr>
<td>Euclid</td>
<td>(A \text{--} D \text{--} T \land B \text{--} D \text{--} C \land A \neq D \Rightarrow \exists XY, A \text{--} B \text{--} X \land A \text{--} C \text{--} Y \land X \text{--} T \text{--} Y)</td>
</tr>
<tr>
<td>\textbf{Continuity}</td>
<td>(\forall \exists \gamma, (\exists A, (\forall XY, X \in \exists \land Y \in \gamma \Rightarrow A \text{--} X \text{--} Y)) \Rightarrow \exists B, (\forall XY, X \in \exists \land Y \in \gamma \Rightarrow X \text{--} B \text{--} Y))</td>
</tr>
</tbody>
</table>
Introduction

Tarski’s system of geometry

Parallel postulates

Arithmetization of geometry

Perspectives

Outline

1 Introduction

2 Tarski’s system of geometry

3 Parallel postulates
 - A syntaxic proof of the independence
 - Decidability of the predicates of the development
 - Equivalent statements

4 Arithmetization of geometry

5 Perspectives
One remark
One remark

Axiom (Playfair)

In a plane, there is at most one line parallel to another given line and passing by a given point.
One remark

Axiom (Playfair)

In a plane, there is at most one line parallel to another given line and passing by a given point.
Axiom (Playfair)

In a plane, there is at most one line parallel to another given line and passing by a given point.
Intuitionistic Logic

L. E. J. Brouwer (1881 - 1966)

Pierre Boutry

Formal Proofs in Tarski's System of Geometry
Intuitionistic Logic

Axiom (Excluded middle (not admitted))

\[\forall A, A \lor \neg A \]
Intuitionistic Logic

Axiom (Excluded middle (not admitted))

\(\forall A, A \lor \neg A \)
Intuitionistic Logic

Axiom (Excluded middle (not admitted))

\[\forall A, A \lor \neg A \]

A particular instance of the excluded middle

\[\forall ABCD, (\exists I, \text{Col } AB I \land \text{Col } CD I) \lor \\
(\exists I, \text{Col } AB I \land \text{Col } CD I) \Rightarrow \\
(\exists I, \text{Col } AB I \land \text{Col } CD I) \}

L. E. J. Brouwer (1881 - 1966)
Intuitionistic Logic

Axiom (Excluded middle (not admitted))

\[\forall A, A \lor \neg A \]

A particular instance of the excluded middle

\[\forall ABCD, (\exists I, \text{Col } AB I \land \text{Col } CD I) \lor \neg (\exists I, \text{Col } AB I \land \text{Col } CD I) \]

The most frequent instance of the excluded middle

\[\forall AB : \text{Point}, A = B \lor A \neq B \]
A first equivalence

We proved that the following formulas are equivalent in Tarski's system of geometry in intuitionistic logic:

- $\forall AB : Point; A = B _ A \neq B$;
- $\forall ABC; AB \angle AC$;
- $\forall ABCD; AB \angle CD$.

Pierre Boutry

Formal Proofs in Tarski's System of Geometry
A first equivalence

We proved that the following formulas are equivalent in Tarski’s system of geometry in intuitionistic logic:
A first equivalence

We proved that the following formulas are equivalent in Tarski’s system of geometry in intuitionistic logic:

\[\forall AB : \text{Point}, A = B \lor A \neq B; \]
A first equivalence

We proved that the following formulas are equivalent in Tarski’s system of geometry in intuitionistic logic:

- $\forall AB : \text{Point}, A = B \lor A \neq B$;
- $\forall ABC, A \dashv B \dashv C \lor \neg A \dashv B \dashv C$;
A first equivalence

We proved that the following formulas are equivalent in Tarski’s system of geometry in intuitionistic logic:

- $\forall AB : Point, A = B \lor A \neq B$;
- $\forall ABC, A \underline{B} C \lor \neg A \underline{B} C$;
- $\forall ABCD, AB \equiv CD \lor \neg AB \equiv CD$.
Results

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A \overline{B} A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, \overline{A-B-E} \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$\overline{A-P-C} \land \overline{B-Q-C} \Rightarrow \exists X, \overline{P-X-B} \land \overline{Q-X-A}$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A'B' \land BC \equiv B'C' \land AD \equiv A'D' \land BD \equiv B'D' \land A-B-C \land A'-B'-C' \land A \neq B \Rightarrow CD \equiv C'D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A-B-C \land \neg B-C-A \land \neg C-A-B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A-B-C \lor B-C-A \lor C-A-B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$\overline{A-D-T} \land \overline{B-D-C} \land A \neq D \Rightarrow \exists XY, \overline{A-B-X} \land \overline{A-C-Y} \land \overline{X-T-Y}$</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Identity for betweenness</th>
<th>$A \rightarrow B \rightarrow A \Rightarrow A = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitivity for congruence</td>
<td>$AB \equiv CD \land AB \equiv EF \Rightarrow CD \equiv EF$</td>
</tr>
<tr>
<td>Reflexivity for congruence</td>
<td>$AB \equiv BA$</td>
</tr>
<tr>
<td>Identity for congruence</td>
<td>$AB \equiv CC \Rightarrow A = B$</td>
</tr>
<tr>
<td>Segment Construction</td>
<td>$\exists E, A \rightarrow B \rightarrow E \land BE \equiv CD$</td>
</tr>
<tr>
<td>Pasch</td>
<td>$A \rightarrow P \rightarrow C \land B \rightarrow Q \rightarrow C \Rightarrow \exists X, P \rightarrow X \rightarrow B \land Q \rightarrow X \rightarrow A$</td>
</tr>
<tr>
<td>Five-Segment</td>
<td>$AB \equiv A' \rightarrow B' \land BC \equiv B' \rightarrow C'$</td>
</tr>
<tr>
<td></td>
<td>$AD \equiv A' \rightarrow D' \land BD \equiv B' \rightarrow D'$</td>
</tr>
<tr>
<td></td>
<td>$A \rightarrow B \rightarrow C \land A' \rightarrow B' \rightarrow C' \land A \neq B \Rightarrow CD \equiv C' \rightarrow D'$</td>
</tr>
<tr>
<td>Lower 2-Dimensional</td>
<td>$\exists ABC, \neg A \rightarrow B \rightarrow C \land \neg B \rightarrow C \rightarrow A \land \neg C \rightarrow A \rightarrow B$</td>
</tr>
<tr>
<td>Upper 2-Dimensional</td>
<td>$AP \equiv AQ \land BP \equiv BQ \land CP \equiv CQ \land P \neq Q \Rightarrow A \rightarrow B \rightarrow C \lor B \rightarrow C \rightarrow A \lor C \rightarrow A \rightarrow B$</td>
</tr>
<tr>
<td>Euclid</td>
<td>$A \rightarrow D \rightarrow T \land B \rightarrow D \rightarrow C \land A \neq D \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>$\exists XY, A \rightarrow B \rightarrow X \land A \rightarrow C \rightarrow Y \land X \rightarrow T \rightarrow Y$</td>
</tr>
<tr>
<td>Decidability of equality</td>
<td>$A = B \lor A \neq B$</td>
</tr>
</tbody>
</table>
Results

We proved the decidability of:

- **Bet** \(\forall ABC, A \rightarrow B \rightarrow C \vee \neg A \rightarrow B \rightarrow C; \)
- **Cong** \(\forall ABCD, AB \equiv CD \vee \neg AB \equiv CD; \)
- **Col** \(\forall ABC, \text{Col } A B C \vee \neg \text{Col } A B C; \)
- **Out** \(\forall ABC, A \leftarrow B \leftarrow C \vee \neg A \leftarrow B \leftarrow C; \)
- **Per** \(\forall ABC, \triangle A B C \vee \neg \triangle A B C; \)
- **Perp at** \(\forall ABCDP, AB \perp \downarrow CD \vee \neg AB \perp \downarrow CD; \)
- **TS** \(\forall ABCD, \overrightarrow{D} \overrightarrow{C} \overrightarrow{B} \vee \neg \overrightarrow{A} \overrightarrow{C} \overrightarrow{B}; \)
- **OS** \(\forall ABCD, \overrightarrow{C} \overrightarrow{D} \overrightarrow{B} \vee \neg \overrightarrow{A} \overrightarrow{C} \overrightarrow{D} \overrightarrow{B}; \)
- **CongA** \(\forall ABCDEF, AB \equiv D \equiv E \equiv F \vee \neg AB \equiv D \equiv E \equiv F; \)
- **Reflect** . . .
Results

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Neutral</th>
<th>2D</th>
<th>= 2D</th>
<th>Euclid</th>
<th>Decidability of equality</th>
<th>Excluded middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 2: Properties about betweenness</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 3: Properties about congruence</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 4: Properties about bet. et cong.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5: Order relation on points</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 6: Collinearity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 7: Midpoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 8: Orthogonality</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 9: Planes</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 10: Reflection</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 11: Angles</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 12: Parallelism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 13: Pappus and Desargues</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 14: Ordered field</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 15: Pythagorean ordered field</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ch 16: Coordinates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Tarski’s system of geometry

3. Parallel postulates
 - A syntaxic proof of the independence
 - Decidability of the predicates of the development
 - Equivalent statements

4. Arithmetization of geometry

5. Perspectives
Equivalent statements
<table>
<thead>
<tr>
<th>Number</th>
<th>Postulate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postulate of existence of a right Saccheri quadrilateral</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Postulate of existence of a right Lambert quadrilateral</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lambert's postulate</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Posidonius' postulate</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Existential Thales' postulate</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thales' converse postulate</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Thales' postulate</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Postulate of existence of similar triangles</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Triangle postulate</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Postulate of existence of a triangle whose angles sum to 2 rights</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Saccheri’s hypothesis of right angle</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Postulate of parallelism of perpendicular transversals</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Proclus' second postulate</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alternative Playfair's postulate</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Alternate interior angles postulate</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Consecutive interior angles postulate</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Midpoint converse postulate</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Postulate of transitivity of parallelism</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Playfair's postulate</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Perpendicular transversal postulate</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Strong parallel postulate</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Triangle circumscription principle</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TarSKI's version of the parallel postulate</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Beeson’s version of Euclid’s postulate</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Euclid’s postulate</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Alternative Strong parallel postulate</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Inverse projection postulate</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Alternative Proclus' postulate</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Proclus' postulate</td>
<td></td>
</tr>
</tbody>
</table>
Equivalent statements

1. Postulate of existence of a right Saccheri quadrilateral
2. Postulate of existence of a right Lambert quadrilateral
3. Lambert’s postulate
4. Posidonius’ postulate
5. Existential Thales’ postulate
6. Thales’ converse postulate
7. Thales’ postulate
8. Postulate of existence of similar triangles
9. Triangle postulate
10. Postulate of existence of a triangle whose angles sum to 2 rights
11. Saccheri’s hypothesis of right angle
12. Postulate of parallelism of perpendicular transversals
13. Proclus’ second postulate
14. Alternative Playfair’s postulate
15. Alternate interior angles postulate
16. Consecutive interior angles postulate
17. Midpoint converse postulate
18. Postulate of transitivity of parallelism
19. Playfair’s postulate
20. Perpendicular transversal postulate
21. Strong parallel postulate
22. Triangle circumscription principle
23. Tarski’s version of the parallel postulate
24. Beeson’s version of Euclid’s postulate
25. Euclid’s postulate
26. Alternative Strong parallel postulate
27. Inverse projection postulate
28. Alternative Proclus’ postulate
29. Proclus’ postulate
<table>
<thead>
<tr>
<th>Equivalent statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Postulate of existence of a right Saccheri quadrilateral</td>
</tr>
<tr>
<td>2. Postulate of existence of a right Lambert quadrilateral</td>
</tr>
<tr>
<td>3. Lambert’s postulate</td>
</tr>
<tr>
<td>4. Posidonius’ postulate</td>
</tr>
<tr>
<td>5. Existential Thales' postulate</td>
</tr>
<tr>
<td>6. Thales' converse postulate</td>
</tr>
<tr>
<td>7. Thales' postulate</td>
</tr>
<tr>
<td>8. Postulate of existence of similar triangles</td>
</tr>
<tr>
<td>9. Triangle postulate</td>
</tr>
<tr>
<td>10. Postulate of existence of a triangle whose angles sum to 2 rights</td>
</tr>
<tr>
<td>11. Saccheri’s hypothesis of right angle</td>
</tr>
<tr>
<td>12. Postulate of parallelism of perpendicular transversals</td>
</tr>
<tr>
<td>13. Proclus' second postulate</td>
</tr>
<tr>
<td>14. Alternative Playfair’s postulate</td>
</tr>
<tr>
<td>15. Alternate interior angles postulate</td>
</tr>
<tr>
<td>16. Consecutive interior angles postulate</td>
</tr>
<tr>
<td>17. Midpoint converse postulate</td>
</tr>
<tr>
<td>18. Postulate of transitivity of parallelism</td>
</tr>
<tr>
<td>19. Playfair’s postulate</td>
</tr>
<tr>
<td>20. Perpendicular transversal postulate</td>
</tr>
<tr>
<td>21. Strong parallel postulate</td>
</tr>
<tr>
<td>22. Triangle circumscription principle</td>
</tr>
<tr>
<td>23. Tarski’s version of the parallel postulate</td>
</tr>
<tr>
<td>24. Beeson’s version of Euclid’s postulate</td>
</tr>
<tr>
<td>25. Euclid’s postulate</td>
</tr>
<tr>
<td>26. Alternative Strong parallel postulate</td>
</tr>
<tr>
<td>27. Inverse projection postulate</td>
</tr>
<tr>
<td>28. Alternative Proclus' postulate</td>
</tr>
<tr>
<td>29. Proclus’ postulate</td>
</tr>
</tbody>
</table>
Equivalent statements

1. Postulate of existence of a right Saccheri quadrilateral
2. Postulate of existence of a right Lambert quadrilateral
3. Lambert's postulate
4. Posidonius' postulate
5. Existential Thales' postulate
6. Thales' converse postulate
7. Thales' postulate
8. Postulate of existence of similar triangles
9. Triangle postulate
10. Postulate of existence of a triangle whose angles sum to 2 rights
11. Saccheri's hypothesis of right angle
12. Postulate of parallelism of perpendicular transversals
13. Proclus' second postulate
14. Alternative Playfair's postulate
15. Alternate interior angles postulate
16. Consecutive interior angles postulate
17. Midpoint converse postulate
18. Postulate of transitivity of parallelism
19. Playfair's postulate
20. Perpendicular transversal postulate
21. Strong parallel postulate
22. Triangle circumscription principle
23. Tarski's version of the parallel postulate
24. Beeson's version of Euclid's postulate
25. Euclid's postulate
26. Alternative Strong parallel postulate
27. Inverse projection postulate
28. Alternative Proclus' postulate
29. Proclus' postulate
Equivalent statements
Equivalent statements

1. ...
8. ...
9. Triangle postulate
10. ...
12. ...
18. ...
19. Playfair’s postulate
20. ...
21. ...
22. ...
23. Tarski’s version of the parallel postulate
24. ...
Equivalent statements

1. ...
8. ...
9. Triangle postulate
10. ...

11. ...
12. ...
13. ...
14. ...

15. ...
16. ...
17. ...
18. ...

19. Playfair’s postulate
20. ...
21. ...
22. ...
23. Tarski’s version of the parallel postulate
24. ...

Imply the decidability of intersection of lines

Pierre Boutry
Formal Proofs in Tarski’s System of Geometry
Equivalent statements

1. ... 12. ...
8. ... 18. ...
10. ... 20. ...

Imply the decidability of intersection of lines

Pierre Boutry: Formal Proofs in Tarski’s System of Geometry
Equivalent statements

1. ... 12. ... 21. ...
8. ... 18. ... 22. ...
10. ...

Imply the decidability of intersection of lines

X

Pierre Boutry Formal Proofs in Tarski’s System of Geometry
Equivalent statements

1 ... 12 ...
8 ... 18 ...
9 Triangle postulate 19 Playfair’s postulate
10 ... 20 ...
21 ...
22 ...
23 Tarski’s version of the parallel postulate
24 ...

Imply the decidability of intersection of lines

X

Pierre Boutry Formal Proofs in Tarski’s System of Geometry
The role of continuity
The role of continuity

Here, we consider two postulates:
The role of continuity

Here, we consider two postulates:

- Triangle postulate;

\[\begin{align*}
\text{Tarski's system of geometry} \\
\text{Parallel postulates} \\
\text{Arithmetization of geometry} \\
\text{Perspectives}
\end{align*} \]

A syntaxic proof of the independence
Decidability of the predicates of the development
Equivalent statements
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \(\Rightarrow\) Triangle postulate;
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- \[\text{Triangle postulate} \nRightarrow \text{Playfair's postulate} \]
 (Max Dehn);
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- Triangle postulate $\not\Rightarrow$ Playfair’s postulate (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- Triangle postulate \nRightarrow Playfair’s postulate (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- Triangle postulate $\not\Rightarrow$ Playfair’s postulate (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- Triangle postulate $\not\Rightarrow$ Playfair’s postulate (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- Triangle postulate $\not\Rightarrow$ Playfair’s postulate (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
The role of continuity

Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- Triangle postulate \nRightarrow Playfair’s postulate (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
Here, we consider two postulates:

- Triangle postulate;
- Playfair’s postulate.

An extra axiom is needed to prove their equivalence. Indeed:

- Playfair’s postulate \Rightarrow Triangle postulate;
- \(\text{Triangle postulate} \nRightarrow \text{Playfair's postulate} \) (Max Dehn);
- Archimedes’ Axiom \land Triangle postulate \Rightarrow Playfair’s postulate.
Equivalent statements

<table>
<thead>
<tr>
<th>Triangle postulate</th>
<th>Equivalent to Playfair's postulate without continuity axiom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Pierre Boutry
Formal Proofs in Tarski's System of Geometry
Equivalent statements

1. ... 12. ...
8. ... 18. ...
10. ... 20. ...

Equivalent to Playfair’s postulate without continuity axiom

21. ...
22. ...
23. Tarski’s version of the parallel postulate
24. ...

Pierre Boutry Formal Proofs in Tarski’s System of Geometry
Equivalent statements

1. ...
8. ...
9. Triangle postulate
10. ...
12. ...
18. ...
19. Playfair’s postulate
20. ...
21. ...
22. ...
23. Tarski’s version of the parallel postulate
24. ...
Equivalent statements

1. ...
8. ...
9. Triangle postulate
10. ...

12. ...
18. ...
19. Playfair’s postulate
20. ...

21. ...
22. ...
23. Tarski’s version of the parallel postulate
24. ...

Equivalent to Playfair’s postulate without continuity axiom
Introduction

Tarski’s system of geometry

Parallel postulates

Arithmetization of geometry

Perspectives

A syntaxic proof of the independence

Decidability of the predicates of the development

Equivalent statements

Equivalent statements

Triangle postulate

Playfair’s postulate

Tarski’s version of the parallel postulate

Equivalent to Playfair’s postulate without continuity axiom
Equivalent statements

1 ... 12 ...
8 ... 18 ...
9 Triangle postulate 19 Playfair’s postulate
10 ... 20 ...

Equivalent to Playfair’s postulate without continuity axiom

X ✓ ✓
Introduction

Tarski’s system of geometry

Parallel postulates

Arithmetization of geometry

Perspectives

1. Introduction

2. Tarski’s system of geometry

3. Parallel postulates

4. Arithmetization of geometry
 - Construction of an ordered field
 - Automated proofs of algebraic characterization

5. Perspectives
Several ways to define the foundations of geometry
Several ways to define the foundations of geometry

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Analytic approach: a field \mathbb{F} is assumed and the space is defined as \mathbb{F}^n.

- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff

- Erlangen program: a geometry is defined as a space of objects and a group of transformations acting on it.
Introduction

Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Arithmetization of geometry

These approaches seem very different. In 1637, Descartes proved that the analytic approach can be derived from the synthetic approach. This is called arithmetization and coordination of geometry.

Pierre Boutry

Formal Proofs in Tarski’s System of Geometry
Arithmetization of geometry

- These approaches seem very different.
These approaches seem very different.

In 1637, Descartes proved that the analytic approach can be derived from the synthetic approach.
These approaches seem very different.

In 1637, Descartes proved that the analytic approach can be derived from the synthetic approach.

A page from *La Géométrie* of Descartes
These approaches seem very different.

In 1637, Descartes proved that the analytic approach can be derived from the synthetic approach.

This is called arithmetization and coordination of geometry.
Introduction
Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Arithmetization of geometry

As long as algebra and geometry traveled separate paths their advance was slow and their applications limited. But when these two sciences joined company, they drew from each other fresh vitality, and thenceforth marched on at a rapid pace toward perfection.

(Joseph-Louis Lagrange, Lecons élémentaires sur les mathématiques; quoted by Morris Kline, Mathematical Thought from Ancient to Modern Times, p. 322)

First presented by Descartes, the arithmetization of geometry is the culminating result of both Hilbert’s and Tarski’s developments.

Pierre Boutry
Introduction
Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Arithmetization of geometry

As long as algebra and geometry traveled separate paths their advance was slow and their applications limited. But when these two sciences joined company, they drew from each other fresh vitality, and thenceforth marched on at a rapid pace toward perfection.

Arithmetization of geometry

As long as algebra and geometry traveled separate paths their advance was slow and their applications limited. But when these two sciences joined company, they drew from each other fresh vitality, and thenceforth marched on at a rapid pace toward perfection.

(Joseph-Louis Lagrange, Leçons élémentaires sur les mathématiques; quoted by Morris Kline, Mathematical Thought from Ancient to modern Times, p. 322)

First presented by Descartes, the arithmetization of geometry is the culminating result of both Hilbert’s and Tarski’s developments.
As long as algebra and geometry traveled separate paths their advance was slow and their applications limited. But when these two sciences joined company, they drew from each other fresh vitality, and thenceforth marched on at a rapid pace toward perfection.

First presented by Descartes, the arithmetization of geometry is the culminating result of both Hilbert’s and Tarski’s developments.
Arithmetization of geometry

As long as algebra and geometry traveled separate paths their advance was slow and their applications limited. But when these two sciences joined company, they drew from each other fresh vitality, and thenceforth marched on at a rapid pace toward perfection.

(Joseph-Louis Lagrange, Leçons élémentaires sur les mathématiques; quoted by Morris Kline, Mathematical Thought from Ancient to modern Times, p. 322)

First presented by Descartes, the arithmetization of geometry is the culminating result of both Hilbert’s and Tarski’s developments.

Alfred Tarski (1901 - 1983)
Outline

1. Introduction
2. Tarski’s system of geometry
3. Parallel postulates
4. Arithmetization of geometry
 - Construction of an ordered field
 - Automated proofs of algebraic characterization
5. Perspectives
Outline

1. Introduction
2. Tarski’s system of geometry
3. Parallel postulates
4. Arithmetization of geometry
 - Construction of an ordered field
 - Automated proofs of algebraic characterization
5. Perspectives
Arithmetic operations

Introduction
Tarski's system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Arithmetic operations

To define the operations we need three points: 1 point defines the neutral element of the addition; 1 point defines the neutral element of the multiplication; these 2 points define the line on which we will define the operations; 1 to define a line needed for the ruler and compass constructions.

Definition
Ar2 O E E' A B C :=

Pierre Boutry
Formal Proofs in Tarski's System of Geometry
To define the operations we need three points:
Arithmetic operations

To define the operations we need three points:

- 1 point defines the neutral element of the addition;
Arithmetic operations

To define the operations we need three points:

- 1 point defines the neutral element of the addition;
- 1 point defines the neutral element of the multiplication;
Arithmetic operations

To define the operations we need three points:

- 1 point defines the neutral element of the addition;
- 1 point defines the neutral element of the multiplication;
- These 2 points define the line on which we will define the operations;
Arithmetic operations

To define the operations we need three points:

- 1 point defines the neutral element of the addition;
- 1 point defines the neutral element of the multiplication;
- These 2 points define the line on which we will define the operations;
- 1 to define a line needed for the ruler and compass constructions.
Arithmetic operations

To define the operations we need three points:

- 1 point defines the neutral element of the addition;
- 1 point defines the neutral element of the multiplication;
- These 2 points define the line on which we will define the operations;
- 1 to define a line needed for the ruler and compass constructions.

These properties are summarized as:
Arithmetic operations

To define the operations we need three points

- 1 point defines the neutral element of the addition
- 1 point defines the neutral element of the multiplication
- These 2 points define the line on which we will define the operations
- 1 to define a line needed for the ruler and compass constructions

These properties are summarized as:

\[
\text{Definition } \text{Ar2 } O E E' A B C := \\
\sim \text{Col } O E E' \land \text{Col } O E A \land \text{Col } O E B \land \text{Col } O E C.
\]
Addition (a first approach)
Addition (a first approach)

Let us prolong OB but the length of OA. But: this does not work for negative points. Therefore, we need to be able to handle the negative points.
Let us prolong \overline{OB} but the length of \overline{OA}.
Addition (a first approach)

- Let us prolong \overline{OB} but the length of \overline{OA}.
- But:
Addition (a first approach)

- Let us prolong \overline{OB} but the length of \overline{OA}.
- But: this does not work for negative points.
Addition (a first approach)

- Let us prolong \overline{OB} but the length of \overline{OA}.
- But: this does not work for negative points.
Addition (a first approach)

- Let us prolong \overline{OB} but the length of \overline{OA}.
- But: this does not work for negative points.
- Therefore, we need to be able to handle the **negative** points.
Addition

Tarski's system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Addition

Definition: Sum O E E' A B C :=
Ar2 O E E' A B C /
exists A', exists C',
Pj E E' A A' /
Col O E' A' /
Pj O E A' C' /
Pj O E' B C' /
Pj E' E C' C.

Properties of parallelograms to prove properties about Sum.
Addition

Originally from Descartes.
Originally from Descartes.

Definition $\text{Sum } O \ E \ E' \ A \ B \ C :=$

$\text{Ar2 } O \ E \ E' \ A \ B \ C /\$

exists A', exists C',

$\text{Pj } E \ E' \ A \ A' /\ \text{Col } O \ E' \ A' /\$

$\text{Pj } O \ E \ A' \ C' /\ \text{Pj } O \ E' \ B \ C' /\$

$\text{Pj } E' \ E \ C' \ C$.
Addition

Originally from Descartes.

Definition \text{Sum} O E E' A B C :=
\text{Ar}_2 O E E' A B C \land
\text{exists } A', \text{ exists } C',
\text{Pj} E E' A A' \land \text{Col} O E' A' \land
\text{Pj} O E A' C' \land \text{Pj} O E' B C' \land
\text{Pj} E' E C' C.
Introduction to Tarski's System of Geometry

Parallel Postulates

Arithmetization of Geometry

Perspectives

Construction of an ordered field

Automated proofs of algebraic characterization

Addition

Originally from Descartes.

Definition: Sum O E E’ A B C :=
Ar2 O E E’ A B C /
exists A’, exists C’,
Pj E E’ A A’ /
Col O E’ A’ /
Pj O E A’ C’ /
Pj O E’ B C’ /
Pj E’ E C’ C.
Introduction

Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Addition

Originally from Descartes.

Definition $\text{Sum } O \ E \ E' \ A \ B \ C :=$
\[
\text{Ar2 } O \ E \ E' \ A \ B \ C /\
\exists A', \exists C', \
\text{Pj } E \ E' \ A \ A' /\ \text{Col } O \ E' \ A' /\
\text{Pj } O \ E \ A' \ C' /\ \text{Pj } O \ E' \ B \ C' /\
\text{Pj } E' \ E \ C' \ C.
\]
Addition

Originally from Descartes.

Definition Sum $O E E' A B C :=$

\[
\text{Ar2 } O E E' A B C \land \\
\text{exists } A', \text{exists } C', \\
Pj E E' A A' \land \text{Col } O E' A' \land \\
Pj O E A' C' \land Pj O E' B C' \land \\
Pj E' E C' C.
\]
Addition

Originally from Descartes.

Definition Sum O E E' A B C :=
 Ar2 O E E' A B C /
 exists A', exists C',
 Pj E E' A A' /
 Col O E' A' /
 Pj O E A' C' /
 Pj O E' B C' /
 Pj E' E C' C.
Addition

Originally from Descartes.

Definition \[\text{Sum } O \ E \ E' \ A \ B \ C := \]
\[\text{Ar2 } O \ E \ E' \ A \ B \ C /\]
\[\text{exists A', exists C',}
\[\text{Pj } E \ E' \ A \ A'/\text{Col } O \ E' \ A'/\]
\[\text{Pj } O \ E \ A' \ C'/\text{Pj } O \ E' \ B \ C'/\]
\[\text{Pj } E' \ E \ C' \ C. \]
Addition

Originally from Descartes.

Definition $\text{Sum } O E E' A B C :=$

$\text{Ar2 } O E E' A B C \land$

exists A', exists C',

$\text{Pj } E E' A A' \land \text{Col } O E' A' \land$

$\text{Pj } O E A' C' \land \text{Pj } O E' B C' \land$

$\text{Pj } E' E C' C.$
Addition

Originally from Descartes.

Definition: \(\text{Sum} \ O \ E \ E' \ A \ B \ C := \)
\[
\text{Ar2} \ O \ E \ E' \ A \ B \ C \ /
\exists A', \exists C',
\text{Pj} \ E \ E' \ A \ A' \ /
\text{Col} \ O \ E' \ A' \ /
\text{Pj} \ O \ E \ A' \ C' \ /
\text{Pj} \ O \ E' \ B \ C' \ /
\text{Pj} \ E' \ E \ C' \ C.
\]
Originally from Descartes.

Definition \(\text{Sum} \ O \ E \ E' \ A \ B \ C := \)
\[\text{Ar2} \ O \ E \ E' \ A \ B \ C \ \land \]
exists \(A' \), exists \(C' \),
\[\text{Pj} \ E \ E' \ A \ A' \ \land \ \text{Col} \ O \ E' \ A' \ \land \]
\[\text{Pj} \ O \ E \ A' \ C' \ \land \ \text{Pj} \ O \ E' \ B \ C' \ \land \]
\[\text{Pj} \ E' \ E \ C' \ C. \]

Properties of parallelograms to prove properties about \(\text{Sum} \).
Introduction
Tarski's system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Multiplication

Originally from Descartes.

Definition Prod O E E' A B C :=
Ar2 O E E' A B C /
exists B',
Pj E E' B B' /
Col O E' B' /

Using Pappus theorem, we proved the
commutativity of Prod
and, using
Desargues theorem, its associativity.

Pierre Boutry

Formal Proofs in Tarski's System of Geometry
Introduction
Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Multiplication

Originally from Descartes.
Introduction

Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Multiplication

Originally from Descartes.

Definition Prod O E E’ A B C :=
Ar2 O E E’ A B C /
exists B’,
Pj E E’ B B’ /
Col O E’ B’ /
Pj E’ A B’ C.
Multiplication

Originally from Descartes.

Definition Prod $O E E' A B C :=$

$\text{Ar2 } O E E' A B C \land \exists B'$,

$\text{Pj } E E' B B' \land \text{Col } O E' B' \land$

$\text{Pj } E' A B' C.$
Introduction

Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Multiplication

Originally from Descartes.

Definition Prod O E E’ A B C :=
 Ar2 O E E’ A B C /\ exists B’,
 Pj E E’ B B’ /\ Col O E’ B’ /\
 Pj E’ A B’ C.
Multiplication

Originally from Descartes.

Definition Prod $0\ E\ E'\ A\ B\ C :=$

$$\text{Ar2}\ 0\ E\ E'\ A\ B\ C /\ \text{exists}\ B',$$
$$\text{Pj}\ E\ E'\ B\ B' /\ \text{Col}\ 0\ E'\ B' /\$$
$$\text{Pj}\ E'\ A\ B'\ C.$$
Introduction

Tarski’s system of geometry
Parallel postulates
Arithmetization of geometry
Perspectives

Construction of an ordered field
Automated proofs of algebraic characterization

Multiplication

Originally from Descartes.

Definition Prod 0 E E’ A B C :=
Ar2 0 E E’ A B C /\ exists B’,
Pj E E’ B B’ /\ Col 0 E’ B’ /\ Pj E’ A B’ C.

\[
\frac{OB}{OE} = \frac{OB'}{OE'}
\]

\[
\frac{OC}{OA} = \frac{OB'}{OE'}
\]
Multiplication

Originally from Descartes.

Definition \(\text{Prod} \ O \ E \ E' \ A \ B \ C := \)
\[
\text{Ar2} \ O \ E \ E' \ A \ B \ C \ \land \ \exists B',
\text{Pj} \ E \ E' \ B \ B' \ \land \ \text{Col} \ O \ E' \ B' \ \land
\text{Pj} \ E' \ A \ B' \ C.
\]

\[
\frac{OB}{OE} = \frac{OB'}{OE'}
\]
\[
\frac{OC}{OA} = \frac{OB'}{OE'}
\]

Using Pappus' theorem, we proved the commutativity of \(\text{Prod} \) and, using Desargues' theorem, its associativity.
Multiplication

Originally from Descartes.

Definition $\text{Prod} \ O \ E \ E' \ A \ B \ C :=$
\begin{align*}
\text{Ar2} & \ O \ E \ E' \ A \ B \ C /\ \exists \ B', \\
\text{Pj} & \ E \ E' \ B \ B' /\ \text{Col} \ O \ E' \ B' /\ \\
\text{Pj} & \ E' \ A \ B' \ C.
\end{align*}

\[
\frac{OB}{OE} = \frac{OB'}{OE'}
\]
\[
\frac{OC}{OA} = \frac{OB'}{OE'}
\]

Using **Pappus' theorem**, we proved the commutativity of Prod and, using **Desargues' theorem**, its associativity.
From predicates to function symbols
From predicates to function symbols

Problems linked to the use of predicates:
From predicates to function symbols

Problems linked to the use of predicates:

- Statements become quickly unreadable;
From predicates to function symbols

Problems linked to the use of predicates:

- Statements become quickly unreadable;

Lemma `sum_assoc`: for all `O E E' A B C AB BC ABC`,

```
Lemma sum_assoc : forall O E E' A B C AB BC ABC,
    Sum O E E' A B AB ->
    Sum O E E' B C BC ->
    (Sum O E E' A BC ABC <-> Sum O E E' AB C ABC).
```
From predicates to function symbols

Problems linked to the use of predicates:

- Statements become quickly unreadable;

Lemma sum_assoc : forall O E E' A B C AB BC ABC,
Sum O E E' A B AB ->
Sum O E E' B C BC ->
(Sum O E E' A BC ABC <-> Sum O E E' AB C ABC).

- We cannot apply the standard Coq tactics ring and field.

Axiom constructive_definite_description :
forall (A : Type) (P : A->Prop),
(exists! x, P x) -> { x : A | P x }.

However, this axiom turns the intuitionistic logic of Coq into an almost classical logic.
Problems linked to the use of predicates:

- Statements become quickly unreadable;

```
Lemma sum_assoc : forall O E E' A B C AB BC ABC,
  Sum O E E' A B AB ->
  Sum O E E' B C BC ->
  (Sum O E E' A BC ABC <-> Sum O E E' AB C ABC).
```

- We cannot apply the standard Coq tactics ring and field.

We used an axiom which turns a relation which has been proved to be functional into a proper Coq function.
From predicates to function symbols

Problems linked to the use of predicates:

- Statements become quickly unreadable;

```
Lemma sum_assoc : forall O E E' A B C AB BC ABC,
  Sum O E E' A B AB ->
  Sum O E E' B C BC ->
  (Sum O E E' A BC ABC <-> Sum O E E' AB C ABC).
```

- We cannot apply the standard Coq tactics ring and field.

We used an axiom which turns a relation which has been proved to be functional into a proper Coq function.

```
Axiom constructive_definite_description :
  forall (A : Type) (P : A->Prop),
  (exists! x, P x) -> { x : A | P x }.
```
From predicates to function symbols

Problems linked to the use of predicates:

- Statements become quickly unreadable;

```
Lemma sum_assoc : forall O E E’ A B C AB BC ABC,
    Sum O E E’ A B AB ->
    Sum O E E’ B C BC ->
    (Sum O E E’ A BC ABC <-> Sum O E E’ AB C ABC).
```

- We cannot apply the standard Coq tactics ring and field.

We used an axiom which turns a relation which has been proved to be functional into a proper Coq function.

```
Axiom constructive_definite_description :
    forall (A : Type) (P : A->Prop),
    (exists! x, P x) -> { x : A | P x }.
```

However, this axiom turns the intuitionistic logic of Coq into an almost classical logic.
Total functions

Definition: Sum of E E' A B C :=
Ar^2 O E E' A B C /\ exists A', exists C',
Pj E E' A A' /\ Col O E' A' /\ Pj O E A' C' /
Pj O E' B C' /\ Pj E' E C' C.

Nothing but total functions are allowed in Coq. Therefore we defined a dependent type to represent the points belonging to the ruler.

Definition: F : Type := {P: Tpoint | Col O E P}.

Pierre Boutry
Formal Proofs in Tarski's System of Geometry
Total functions

- The function are only defined for points which belong to our ruler.
The function are only defined for points which belong to our ruler.

Definition Sum O E E’ A B C :=
Ar2 O E E’ A B C /
exists A’, exists C’,
Pj E E’ A A’ /
Col O E’ A’ /
Pj O E A’ C’ /
Pj O E’ B C’ /
Pj E’ E C’ C.
The function are only defined for points which belong to our ruler.

Definition Sum O E E' A B C :=
Ar2 O E E' A B C /
exists A', exists C',
Pj E E' A A' /
Col O E A' /
Pj O E' B C' /
Pj E' E C' C.

Nothing but total functions are allowed in Coq.
Total functions

- The function are only defined for points which belong to our ruler.

Definition Sum O E E’ A B C :=
Ar2 O E E’ A B C /
exists A’, exists C’,
Pj E E’ A A’ /
Col O E A’ /
Pj O E A’ C’ /
Pj O E’ B C’ /
Pj E’ E C’ C.

- Nothing but total functions are allowed in Coq.
- Therefore we defined a dependent type to represent the points belonging to the ruler.
The function are only defined for points which belong to our ruler.

Definition Sum O E E' A B C :=
Ar2 O E E' A B C /
exists A', exists C',
Pj E E' A A' /
Col O E' A' /
Pj O E A' C' /
Pj O E' B C' /
Pj E' E C' C.

Nothing but total functions are allowed in Coq.
Therefore we defined a dependent type to represent the points belonging to the ruler.

Definition F : Type := {P : Tpoint | Col O E P}.
An ordered field

We proved some lemmas asserting that the operations are morphisms relative to our defined equality. For example, the lemma asserting that if $A = A'$ and $B = B'$ implies $A + B = A' + B'$ is defined in Coq as:

```
Global Instance addF_morphism :
  Proper (EqF ==> EqF ==> EqF) AddF.
```

Finally, we can prove we have a field:

```
Lemma fieldF :
  (field_theory OF OneF AddF MulF SubF OppF DivF InvF EqF).
```
We proved some lemmas asserting that the operations are morphisms relative to our defined equality.
We proved some lemmas asserting that the operations are morphisms relative to our defined equality. For example, the lemma asserting that if $A = A'$ and $B = B'$ implies $A + B = A' + B'$ is defined in Coq as:
We proved some lemmas asserting that the operations are morphisms relative to our defined equality. For example, the lemma asserting that if $A = A'$ and $B = B'$ implies $A + B = A' + B'$ is defined in Coq as:

```
Global Instance addF_morphism :
    Proper (EqF ==> EqF ==> EqF) AddF.
```
We proved some lemmas asserting that the operations are morphisms relative to our defined equality. For example, the lemma asserting that if $A = A'$ and $B = B'$ implies $A + B = A' + B'$ is defined in Coq as:

\[
\text{Global Instance addF_morphism :}
\text{ Proper (EqF ==> EqF ==> EqF) AddF.}
\]

Finally, we can prove we have a field:
We proved some lemmas asserting that the operations are morphisms relative to our defined equality. For example, the lemma asserting that if $A = A'$ and $B = B'$ implies $A + B = A' + B'$ is defined in Coq as:

```
Global Instance addF_morphism :
  Proper (EqF ==> EqF ==> EqF) AddF.
```

Finally, we can prove we have a field:

```
Lemma fieldF :
  (field_theory OF OneF AddF MulF SubF OppF DivF InvF EqF).
```
Outline

1. Introduction
2. Tarski’s system of geometry
3. Parallel postulates
4. Arithmetization of geometry
 - Construction of an ordered field
 - Automated proofs of algebraic characterization
5. Perspectives
Characterization of the predicates of the theory

Formal Proofs in Tarski’s System of Geometry
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.
For example, the characterization of the congruence predicate is:
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

\[
\text{Lemma characterization_of_congruence_F : forall A B C D,} \\
\text{Cong A B C D <->} \\
\text{let (Ac, HA) := coordinates_of_point_F A in let (Ax,Ay) := Ac in} \\
\text{let (Bc, HB) := coordinates_of_point_F B in let (Bx,By) := Bc in} \\
\text{let (Cc, HC) := coordinates_of_point_F C in let (Cx,Cy) := Cc in} \\
\text{let (Dc, HD) := coordinates_of_point_F D in let (Dx,Dy) := Dc in} \\
\text{(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -} \\
\text{((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.}
\]
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
 Cong A B C D <-
 let (Ac, HA) := coordinates_of_point_F A in let (Ax,Ay) := Ac in
 let (Bc, HB) := coordinates_of_point_F B in let (Bx,By) := Bc in
 let (Cc, HC) := coordinates_of_point_F C in let (Cx,Cy) := Cc in
 let (Dc, HD) := coordinates_of_point_F D in let (Dx,Dy) := Dc in
 (Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
 ((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.

coordinates_of_point_F is a one-to-one correspondence between the pairs of points on the ruler representing the coordinates and the points of the plane.
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

\begin{verbatim}
Lemma characterization_of_congruence_F : forall A B C D,
 Cong A B C D <->
 let (Ac, HA) := coordinates_of_point_F A in let (Ax,Ay) := Ac in
 let (Bc, HB) := coordinates_of_point_F B in let (Bx,By) := Bc in
 let (Cc, HC) := coordinates_of_point_F C in let (Cx,Cy) := Cc in
 let (Dc, HD) := coordinates_of_point_F D in let (Dx,Dy) := Dc in
 ((Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
 ((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy))) =F= 0.
\end{verbatim}

coordinates_of_point_F is a one-to-one correspondence between the pairs of points on the ruler representing the coordinates and the points of the plane.
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.
For example, the characterization of the congruence predicate is:

\[
\text{Lemma characterization_of_congruence_F} : \forall A B C D, \quad\text{Cong } A B C D \iff
\begin{align*}
 &\text{let } (Ac, Ha) := \text{coordinates_of_point_F } A \text{ in let } (Ax, Ay) := Ac \text{ in} \quad \\
 &\text{let } (Bc, Hb) := \text{coordinates_of_point_F } B \text{ in let } (Bx, By) := Bc \text{ in} \quad \\
 &\text{let } (Cc, Hc) := \text{coordinates_of_point_F } C \text{ in let } (Cx, Cy) := Cc \text{ in} \quad \\
 &\text{let } (Dc, Hd) := \text{coordinates_of_point_F } D \text{ in let } (Dx, Dy) := Dc \text{ in} \quad \\
 &\quad (Ax - Bx) \times (Ax - Bx) + (Ay - By) \times (Ay - By) - \\
 &\quad ((Cx - Dx) \times (Cx - Dx) + (Cy - Dy) \times (Cy - Dy)) = \text{F=} \ 0.
\end{align*}
\]

\text{coordinates_of_point_F} is a one-to-one correspondence between the pairs of points on the ruler representing the coordinates and the points of the plane.

\[
(x_A - x_B)^2 + (y_A - y_B)^2 = (x_C - x_D)^2 + (y_C - y_D)^2
\]
We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

\[
\text{Lemma characterization_of_congruence_F : forall A B C D,} \\
\text{Cong A B C D} \iff \\
\text{let (Ac, HA) := coordinates_of_point_F A in let (Ax, Ay) := Ac in} \\
\text{let (Bc, HB) := coordinates_of_point_F B in let (Bx, By) := Bc in} \\
\text{let (Cc, HC) := coordinates_of_point_F C in let (Cx, Cy) := Cc in} \\
\text{let (Dc, HD) := coordinates_of_point_F D in let (Dx, Dy) := Dc in} \\
(\text{Ax - Bx}) \times (\text{Ax - Bx}) + (\text{Ay - By}) \times (\text{Ay - By}) - \\
((\text{Cx - Dx}) \times (\text{Cx - Dx}) + (\text{Cy - Dy}) \times (\text{Cy - Dy})) = \text{F= 0}.
\]

coordinates_of_point_F is a one-to-one correspondence between the pairs of points on the ruler representing the coordinates and the points of the plane.

\[(x_A - x_B)^2 + (y_A - y_B)^2 = (x_C - x_D)^2 + (y_C - y_D)^2\]

This was proved using the first synthetic and formal proofs of the \textit{intercept} and \textit{Pythagoras’} theorems.
Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory. For example, the characterization of the congruence predicate is:

```
Lemma characterization_of_congruence_F : forall A B C D, 
  Cong A B C D <-> 
  let (Ac, HA) := coordinates_of_point_F A in let (Ax,Ay) := Ac in 
  let (Bc, HB) := coordinates_of_point_F B in let (Bx,By) := Bc in 
  let (Cc, HC) := coordinates_of_point_F C in let (Cx,Cy) := Cc in 
  let (Dc, HD) := coordinates_of_point_F D in let (Dx,Dy) := Dc in 
  (Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) - 
  ((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.
```

coordinates_of_point_F is a one-to-one correspondence between the pairs of points on the ruler representing the coordinates and the points of the plane.

\[(x_A - x_B)^2 + (y_A - y_B)^2 = (x_C - x_D)^2 + (y_C - y_D)^2\]

This was proved using the first **synthetic and formal** proofs of the **intercept** and **Pythagoras’** theorems.
A bootstrapping approach
A bootstrapping approach

• Wu’s approach: prove manually the characterizations **then**
 use these characterizations to obtain theorems automatically.
A bootstrapping approach

- Wu’s approach: prove manually the characterizations *then* use these characterizations to obtain theorems automatically.
- Our approach: prove manually only the first three characterizations and obtain *automatically* the others.
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones. For example, to characterize the parallelism, we did not use its definition, namely:

\[
\text{Definition Par}_\text{stric}t\ A\ B\ C\ D := \\
A\neq B \land C\neq D \land \text{Coplanar} A\ B\ C\ D /\neg \exists X, \text{Col}\ X\ A\ B \land \text{Col}\ X\ C\ D.
\]

\[
\text{Definition Par}\ A\ B\ C\ D := \\
\text{Par}_\text{stric}t\ A\ B\ C\ D \lor (A\neq B \land C\neq D \land \text{Col}\ A\ C\ D \land \text{Col}\ B\ C\ D).
\]

But an equivalent statement:

\[
\text{Lemma characterization_of_parallelism_F_aux} : \\
\forall A\ B\ C\ D, \\
\text{Par}\ A\ B\ C\ D \iff A\neq B \land C\neq D \land \exists P, \text{Midpoint}\ C\ A\ P \land \exists Q, \text{Midpoint}\ Q\ B\ P \land \text{Col}\ C\ D\ Q.
\]

Pierre Boutry

Formal Proofs in Tarski's System of Geometry
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones.
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones.

For example, to characterize the parallelism, we did not use its definition, namely:

\[
\text{Definition Par}_\text{strict} \ A \ B \ C \ D := \not(\text{Col} \ X \ A \ B) \lor \not(\text{Col} \ X \ C \ D).
\]

But an equivalent statement:

\[
\text{Lemma characterization_of_parallelism_F_aux} : \forall A \ B \ C \ D, \text{Par} \ A \ B \ C \ D \iff (A \not= B) \land (C \not= D) \land \exists P, \text{Midpoint} \ C \ A \ P \land \exists Q, \text{Midpoint} \ Q \ B \ P \land \text{Col} \ C \ D \ Q.
\]
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones.

For example, to characterize the parallelism, we did not use its definition, namely:

\[
\text{Definition Par_strict A B C D :=}
\begin{array}{l}
A<>B \land C<>D \land \text{Coplanar A B C D} \land \\
\neg \exists \text{X, Col X A B} \land \text{Col X C D}.
\end{array}
\]

\[
\text{Definition Par A B C D :=}
\begin{array}{l}
\text{Par_strict A B C D} \\
(A<>B \land C<>D \land \text{Col A C D} \land \text{Col B C D}.
\end{array}
\]
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones.

For example, to characterize the parallelism, we did not use its definition, namely:

Definition Par_strict A B C D :=
 A<>B \land C<>D \land Coplanar A B C D \land
 \neg \exists X, Col X A B \land Col X C D.

Definition Par A B C D :=
 Par_strict A B C D \lor
 (A<>B \land C<>D \land Col A C D \land Col B C D).

But an equivalent statement:
We used the Gröbner basis method to prove new characterizations from already proven ones.

For example, to characterize the parallelism, we did not use its definition, namely:

\[
\text{Definition Par_strict } A \ B \ C \ D := \\
A<>B \land C<>D \land \text{Coplanar } A \ B \ C \ D \land \\
\neg \exists X, \text{Col } X \ A \ B \land \text{Col } X \ C \ D.
\]

\[
\text{Definition Par } A \ B \ C \ D := \\
\text{Par_strict } A \ B \ C \ D \lor \\
(A<>B \land C<>D \land \text{Col } A \ C \ D \lor \text{Col } B \ C \ D).
\]

But an equivalent statement:

\[
\text{Lemma characterization_of_parallelism_F_aux :} \\
\forall A \ B \ C \ D, \\
\text{Par } A \ B \ C \ D \iff \\
A <> B \land C <> D \land \\
\exists P, \text{Midpoint } C \ A \ P \land \\
\exists Q, \text{Midpoint } Q \ B \ P \lor \text{Col } C \ D \ Q.
\]
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones.

For example, to characterize the parallelism, we did not use its definition, namely:

\[
\text{Definition Par_strict } A \ B \ C \ D := \\
A<>B \land C<>D \land \text{Coplanar } A \ B \ C \ D \\
\sim \text{ exists } X, \text{Col } X \ A \ B \land \text{Col } X \ C \ D.
\]

\[
\text{Definition Par } A \ B \ C \ D := \\
\text{Par_strict } A \ B \ C \ D \lor \\
(A<>B \land C<>D \land \text{Col } A \ C \ D \land \text{Col } B \ C \ D).
\]

But an equivalent statement:

\[
\text{Lemma characterization_of_parallelism_F_aux :} \\
\text{forall } A \ B \ C \ D, \\
\text{Par } A \ B \ C \ D \iff \\
A <> B \land C <> D \land \\
\text{exists } P, \text{Midpoint } C \ A \ P \land \\
\text{exists } Q, \text{Midpoint } Q \ B \ P \land \text{Col } C \ D \ Q.
\]
Automated proofs of characterizations

We used the Gröbner basis method to prove new characterizations from already proven ones.

For example, to characterize the parallelism, we did not use its definition, namely:

\[
\text{Definition } \text{Par} \text{_strict } A \text{ B } C \text{ D } := \\
A<>B \land C<>D \land \text{Colplanar } A \text{ B } C \text{ D } \land \\
\neg \exists X, \text{Col } X \text{ A } B \land \text{Col } X \text{ C D}.
\]

\[
\text{Definition } \text{Par } A \text{ B } C \text{ D } := \\
\text{Par} \text{_strict } A \text{ B } C \text{ D } \lor \\
(A<>B \land C<>D \land \text{Col } A \text{ C D } \land \text{Col } B \text{ C D}).
\]

But an equivalent statement:

\[
\text{Lemma characterization_of_parallelism_F_aux :} \\
\forall A \text{ B } C \text{ D}, \\
\text{Par } A \text{ B } C \text{ D } \iff \\
A <> B \land C <> D \land \\
\exists P, \text{Midpoint } C \text{ A } P \land \\
\exists Q, \text{Midpoint } Q \text{ B } P \land \text{Col } C \text{ D Q}.
\]
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \equiv CD$</td>
<td>$(x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0$</td>
</tr>
<tr>
<td>$A-B-C$</td>
<td>$\exists t, 0 \leq t \leq 1 \land t(x_C - x_A) = x_B - x_A \land t(y_C - y_A) = y_B - y_A$</td>
</tr>
<tr>
<td>$\text{Col } A \ B \ C$</td>
<td>$(x_A - x_B)(y_B - y_C) - (y_A - y_B)(x_B - x_C) = 0$</td>
</tr>
<tr>
<td>$A-I-B$</td>
<td>$2x_I - (x_A + x_B) = 0 \land 2y_I - (y_A + y_B) = 0$</td>
</tr>
<tr>
<td>$\triangle A \ B \ C$</td>
<td>$(x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0$</td>
</tr>
<tr>
<td>$AB \parallel CD$</td>
<td>$(x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0 \land$ $\neq 0 \land$ $\neq 0$</td>
</tr>
<tr>
<td>$AB \perp CD$</td>
<td>$(x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0 \land$ $\neq 0 \land$ $\neq 0$</td>
</tr>
</tbody>
</table>
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB \equiv CD)</td>
<td>((x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0)</td>
</tr>
<tr>
<td>(A - B - C)</td>
<td>(\exists t, 0 \leq t \leq 1 \land t(x_C - x_A) = x_B - x_A \land t(y_C - y_A) = y_B - y_A)</td>
</tr>
<tr>
<td>(\text{Coll} \ A \ B \ C)</td>
<td>((x_A - x_B)(y_B - y_C) - (y_A - y_B)(x_B - x_C) = 0)</td>
</tr>
<tr>
<td>(A - I - B)</td>
<td>(2x_I - (x_A + x_B) = 0 \land 2y_I - (y_A + y_B) = 0)</td>
</tr>
<tr>
<td>(\triangle A \ B \ C)</td>
<td>((x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0)</td>
</tr>
<tr>
<td>(AB \parallel CD)</td>
<td>((x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0 \land (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \land (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0)</td>
</tr>
<tr>
<td>(AB \perp CD)</td>
<td>((x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0 \land (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \land (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0)</td>
</tr>
</tbody>
</table>
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB \equiv CD)</td>
<td>((x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0)</td>
</tr>
<tr>
<td>(A \cong B \cong C)</td>
<td>(\exists t, 0 \leq t \leq 1 \wedge t(x_C - x_A) = x_B - x_A \wedge t(y_C - y_A) = y_B - y_A)</td>
</tr>
<tr>
<td>(\text{Col } AB \text{ } C)</td>
<td>((x_A - x_B)(y_B - y_C) - (y_A - y_B)(x_B - x_C) = 0)</td>
</tr>
<tr>
<td>(A \cong I \cong B)</td>
<td>(2x_I - (x_A + x_B) = 0 \wedge 2y_I - (y_A + y_B) = 0)</td>
</tr>
<tr>
<td>(\triangle A \text{ } B \text{ } C)</td>
<td>((x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0)</td>
</tr>
<tr>
<td>(AB \parallel CD)</td>
<td>((x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0 \wedge (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \wedge (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0)</td>
</tr>
<tr>
<td>(AB \perp CD)</td>
<td>((x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0 \wedge (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \wedge (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0)</td>
</tr>
</tbody>
</table>
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \equiv CD$</td>
<td>$(x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0$</td>
</tr>
<tr>
<td>$A-B-C$</td>
<td>$\exists t, 0 \leq t \leq 1 \land t(x_C - x_A) = x_B - x_A \land t(y_C - y_A) = y_B - y_A$</td>
</tr>
<tr>
<td>Col $A B C$</td>
<td>$(x_A - x_B)(y_C - y_B) - (y_A - y_B)(x_B - x_C) = 0$</td>
</tr>
<tr>
<td>$A-I-B$</td>
<td>$2x_I - (x_A + x_B) = 0 \land 2y_I - (y_A + y_B) = 0$</td>
</tr>
<tr>
<td>$\triangle A B C$</td>
<td>$(x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0$</td>
</tr>
<tr>
<td>$AB \parallel CD$</td>
<td>$(x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0 \land (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \land (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0$</td>
</tr>
<tr>
<td>$AB \perp CD$</td>
<td>$(x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0 \land (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \land (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0$</td>
</tr>
</tbody>
</table>
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \equiv CD$</td>
<td>$(x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0$</td>
</tr>
</tbody>
</table>
| $A\parallel B\parallel C$ | $\exists t, 0 \leq t \leq 1 \land \begin{align*} t(x_C - x_A) &= x_B - x_A \\
 t(y_C - y_A) &= y_B - y_A \end{align*}$ |
| Col $ABCD$ | $(x_A - x_B)(y_B - y_C) - (y_A - y_B)(x_B - x_C) = 0$ |
| $A\parallel I\parallel B$ | $2x_I - (x_A + x_B) = 0 \land 2y_I - (y_A + y_B) = 0$ |
| $\triangle ABD$ | $(x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0$ |
| $AB \parallel CD$ | $(x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0 \land (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \land (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0$ |
| $AB \perp CD$ | $(x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0 \land (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0 \land (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0$ |
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \equiv CD$</td>
<td>$(x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0$</td>
</tr>
<tr>
<td>$A-B-C$</td>
<td>$\exists t, 0 \leq t \leq 1 \land t(x_C - x_A) = x_B - x_A$ \land $t(y_C - y_A) = y_B - y_A$</td>
</tr>
<tr>
<td>$Col\ A\ B\ C$</td>
<td>$(x_A - x_B)(y_B - y_C) - (y_A - y_B)(x_B - x_C) = 0$</td>
</tr>
<tr>
<td>$A-I-B$</td>
<td>$2x_I - (x_A + x_B) = 0$ \land $2y_I - (y_A + y_B) = 0$</td>
</tr>
<tr>
<td>$\triangle A\ B\ C$</td>
<td>$(x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0$</td>
</tr>
<tr>
<td>$AB \parallel CD$</td>
<td>$(x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0$ \land $(x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0$ \land $(x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0$</td>
</tr>
<tr>
<td>$AB \perp CD$</td>
<td>$(x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0$ \land $(x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) \neq 0$ \land $(x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) \neq 0$</td>
</tr>
</tbody>
</table>
Automated proofs of characterizations

<table>
<thead>
<tr>
<th>Geometric predicate</th>
<th>Algebraic Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \equiv CD$</td>
<td>$(x_A - x_B)^2 + (y_A - y_B)^2 - (x_C - x_D)^2 + (y_C - y_D)^2 = 0$</td>
</tr>
</tbody>
</table>
| $A \dashv B \dashv C$ | $\exists t, 0 \leq t \leq 1 \land \,
\begin{align*}
 t(x_C - x_A) &= x_B - x_A \\
 t(y_C - y_A) &= y_B - y_A
\end{align*}$ |
| $\text{Col } A B C$ | $(x_A - x_B)(y_B - y_C) - (y_A - y_B)(x_B - x_C) = 0$ |
| $A \dashv I \dashv B$ | $2x_I - (x_A + x_B) = 0 \land 2y_I - (y_A + y_B) = 0$ |
| $\triangle A B C$ | $(x_A - x_B)(x_B - x_C) + (y_A - y_B)(y_B - y_C) = 0$ |
| $AB \parallel CD$ | $(x_A - x_B)(x_C - x_D) + (y_A - y_B)(y_C - y_D) = 0 \land
\begin{align*}
 (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) &\neq 0 \land
 (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) &\neq 0
\end{align*}$ |
| $AB \perp CD$ | $(x_A - x_B)(y_C - y_D) - (y_A - y_B)(x_C - x_D) = 0 \land
\begin{align*}
 (x_A - x_B)(x_A - x_B) + (y_A - y_B)(y_A - y_B) &\neq 0 \land
 (x_C - x_D)(x_C - x_D) + (y_C - y_D)(y_C - y_D) &\neq 0
\end{align*}$ |
We first proved the characterization of the midpoint predicate manually and then automatically and the script of the proof by computation was eight times shorter than our original one.
An example of proof by computation

Our example is the nine-point circle theorem which states that the following nine points are concyclic:

- The midpoints of each side of the triangle;
- The feet of each altitude;
- The midpoints of the line-segments from each vertex of the triangle to the orthocenter.
An example of proof by computation

Our example is the nine-point circle theorem which states that the following nine points are concyclic:
An example of proof by computation

Our example is the nine-point circle theorem which states that the following nine points are concyclic:

- The midpoints of each side of the triangle;
An example of proof by computation

Our example is the nine-point circle theorem which states that the following nine points are concyclic:

- The midpoints of each side of the triangle;
- The feet of each altitude;
Our example is the nine-point circle theorem which states that the following nine points are concyclic:

- The midpoints of each side of the triangle;
- The feet of each altitude;
- The midpoints of the line-segments from each vertex of the triangle to the orthocenter.
Lemma nine_point_circle:
forall A B C A1 B1 C1 A2 B2 C2 A3 B3 C3 H O,
~ Col A B C ->
Col A B C2 -> Col B C A2 -> Col A C B2 ->
Perp A B C C2 -> Perp B C A A2 -> Perp A C B B2 ->
Perp A B C2 H -> Perp B C A A2 H -> Perp A C B2 H ->
Midpoint A3 A H -> Midpoint B3 B H -> Midpoint C3 C H ->
Midpoint C1 A B -> Midpoint A1 B C -> Midpoint B1 C A ->
Cong O A1 O B1 -> Cong O A1 O C1 ->
Cong 0 A2 0 A1 /\ Cong 0 B2 0 A1 /\ Cong 0 C2 0 A1 /\ Cong 0 A3 0 A1 /\ Cong 0 B3 0 A1 /\ Cong 0 C3 0 A1.

We did not prove a theorem about polynomials but a geometric statement. The nine-point circle theorem is true in any model of Tarski’s Euclidean geometry axioms (without continuity) and not only in a specific one.
An example of proof by computation

Lemma nine_point_circle:
forall A B C A1 B1 C1 A2 B2 C2 A3 B3 C3 H O,
~ Col A B C ->
Col A B C2 -> Col B C A2 -> Col A C B2 ->
Perp A B C C2 -> Perp B C A A2 -> Perp A C B B2 ->
Perp A B C2 H -> Perp B C A2 H -> Perp A C B2 H ->
Midpoint A3 A H -> Midpoint B3 B H -> Midpoint C3 C H ->
Midpoint C1 A B -> Midpoint A1 B C -> Midpoint B1 C A ->
Cong O A1 O B1 -> Cong O A1 O C1 ->
Cong 0 A2 0 A1 /
Cong 0 B2 0 A1 /
Cong 0 C2 0 A1 /
Cong 0 A3 0 A1 /
Cong 0 B3 0 A1 /
Cong 0 C3 0 A1.

- We did not prove a theorem about polynomials but a geometric statement.
We did not prove a theorem about polynomials but a geometric statement.

The nine-point circle theorem is true in any model of Tarski's Euclidean geometry axioms (without continuity) and not only in a specific one.
Pierre Boutry

Formal Proofs in Tarski's System of Geometry
Perspectives

- Instantiate other automated deduction methods or axiomatic systems such as Wu’s method or real closed fields.
Perspectives

- Instantiate other automated deduction methods or axiomatic systems such as Wu’s method or real closed fields.
- Verify the **constructive** version of the arithmetization of geometry introduced by Beeson.
Perspectives

- Instantiate other automated deduction methods or axiomatic systems such as Wu’s method or real closed fields.
- Verify the *constructive* version of the arithmetization of geometry introduced by Beeson.
- Formalize the arithmetization of hyperbolic geometry.
Perspectives

- Instantiate other automated deduction methods or axiomatic systems such as Wu’s method or real closed fields.
- Verify the **constructive** version of the arithmetization of geometry introduced by Beeson.
- Formalize the arithmetization of **hyperbolic** geometry.
- Extend our formalization of geometry to **higher dimension** geometry.
Thank you!