The Ramanujan τ-function

Let $\tau(n)$ be the Ramanujan function given by

$$\sum_{n \geq 1} \tau(n)q^n = q \prod_{i \geq 1} (1 - q^i)^24 \quad (|q| < 1).$$

Ramanujan observed but could not prove the following three properties of $\tau(n)$:

(i) $\tau(mn) = \tau(m)\tau(n)$ whenever $\gcd(m, n) = 1$.

(ii) $\tau(p^{r+1}) = \tau(p)\tau(p^r) - p^{11}\tau(p^{r-1})$ for p prime and $r \geq 1$.

(iii) $|\tau(p)| \leq 2p^{11/2}$ for all primes p.

These conjectures were proved by Mordell and Deligne.
Zero values of $\tau(n)$

Lehmer conjectured that $\tau(n) \neq 0$ for all n. This is still unknown. It is known that

$$\tau(n) \neq 0 \quad \text{for} \quad n \leq 22798241520242687999.$$

Serre proved that

$$\# \{ p \leq x : \tau(p) = 0 \} = O \left(\frac{x}{(\log x)^{3/2}} \right).$$
Today’s problem

The **Dedekind** eta function is a modular form:

\[
\eta(\tau) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n), \quad \left(q := e^{2\pi i \tau}, \quad \text{Im}(\tau) > 0 \right).
\]

Euler and **Jacobi** studied \(\eta(\tau)^k\) and proved that

\[
\prod_{m=1}^{\infty} (1 - q^m) = \sum_{m=-\infty}^{\infty} (-1)^m q^{\frac{3m^2+m}{2}}, \quad (1)
\]

\[
\prod_{m=1}^{\infty} (1 - q^m)^3 = \sum_{m=0}^{\infty} (-1)^m (2m + 1) q^{\frac{m^2+m}{2}}. \quad (2)
\]

More powers of \(\eta\) were studied by **Serre**.
A family of interesting polynomials

We look at the Fourier coefficients simultaneous for all powers of the Dedekind eta function. We define a family of polynomials $P_m(X)$ for $m \geq 0$ with interesting properties. Consider the identity

$$\prod_{m \geq 1} (1 - q^m)^{-z} = \sum_{m=0}^{\infty} P_m(z) q^m \quad (z \in \mathbb{C}). \quad (3)$$

The roots of $P_m(z)$ dictate the vanishing properties of the Fourier coefficients. These polynomials have degree m and

$$A_m(X) := m! \ P_m(X) \in \mathbb{Z}[X]$$

is normalized. It follows also from the definition that $P_m(X)$ are integer-valued polynomials.
The polynomials can be defined also recursively. We put \(P_0(X) := 1 \) and define

\[
P_m(X) = \frac{X}{m} \left(\sum_{k=1}^{m} \sigma(k) P_{m-k}(X) \right), \quad m \geq 1. \tag{4}
\]

Here, \(\sigma(k) \) denotes the sum of the divisors of \(k \).
To illustrate the complexity of these polynomials here are the first ten:

\[
P_1(X) = X; \\
2!P_2(X) = X^2 + 3X = X(X + 3); \\
3!P_3(X) = X(X^2 + 9X + 8) \\
= X(X + 8)(X + 1); \\
4!P_4(X) = X(X^3 + 18X^2 + 59X + 42) \\
= X(X + 14)(3 + X)(X + 1); \\
5!P_5(X) = X(X^4 + 30X^3 + 215X^2 + 450X + 144) \\
= X(3 + X)(X + 6)(X^2 + 21X + 8); \\
\]
6! \(P_6 (X) = X (X^5 + 45 X^4 + 565 X^3 + 2475 X^2 + 3394 X + 1440) \)
\[= X (X + 10) (X + 1) (X^3 + 34 X^2 + 181 X + 144) ; \]

7! \(P_7 (X) = X (X^6 + 63 X^5 + 1225 X^4 + 9345 X^3
+ 28294 X^2 + 30912 X + 5760) \)
\[= X (X + 8) (3 + X) (X + 2) (X^3 + 50 X^2 + 529 X + 120) ; \]

8! \(P_8 (X) = X (X^7 + 84 X^6 + 2338 X^5 + 27720 X^4 + 147889 X^3
+ 340116 X^2 + 293292 X + 75600) \)
\[= X (X + 6) (3 + X) (X + 1)
(X^4 + 74 X^3 + 1571 X^2 + 9994 X + 4200) ; \]

9! \(P_9 (X) = X^9 + 108 X^8 + 4074 X^7 + 69552 X^6 + 579369 X^5
+ 2341332 X^4 + 4335596 X^3 + 3032208 X^2 + 524160 X
+ 1857513 \)
\[= (X + 14) (X + 26) (X + 4) (3 + X) (X + 1)
(X^3 + 60 X^2 + 491 X + 120) ; \]

10! \(P_{10} (X) = X^{10} + 135 X^9 + 6630 X^8 + 154350 X^7 + 1857513 X^6
+ 11744775 X^5 + 38049920 X^4 + 57773700 X^3
+ 36290736 X^2 + 6531840 X \)
\[= X (X + 1) \ R(X). \]
In the last example, \(R(X) \) is an irreducible polynomial given by
\[
R(x) = X^8 + 134X^7 + 6496X^6 + 147854X^5 + 1709659X^4 \\
+ 10035116X^3 + 28014804X^2 + 29758896X + 6531840.
\]

The initial motivation for this work was the following question:

Question

Does there exist \(m \geq 0 \), such that \(P_m(i) = 0 \)?

Considering \(i \) as a root of unity, what about the values \(P_m(\zeta) \) for root of unities \(\zeta \) of general order \(N \)? Note that in the case \(N = 2 \) due to Euler we already have that

\[
(X + 1) \mid P_m(X) \text{ for infinitely many } m.
\]

Note also that the Lehmer’s conjecture is equivalent to

\[
P_m(-24) \neq 0 \quad \text{for all } m \geq 0.
\]
Let N be a natural number. Let $\Phi_N(X)$ be the N-th cyclotomic polynomial:

$$\Phi_N(X) := \prod_{1 \leq k \leq N \atop (k, N) = 1} (X - e^{2\pi ik/N})$$

The polynomial $\Phi_N(X)$ is irreducible of degree $\varphi(N)$.

The following result was obtained jointly with Heim and Neuhauser while we were all guests at the Max Planck Institute for Mathematics in 2017:

Theorem

*There is no pair of positive integers (N, m) with $N \geq 3$ such that $\Phi_N(X) \mid P_m(X)$.***

The paper was accepted by *The Ramanujan Journal*.
The theorem is equivalent to $P_m(\zeta) \neq 0$ for any root of unity ζ of order $N \geq 3$.

It may be worth to mention, that although the proof does not reveal much about the distribution of the roots of $P_m(X)$ in the complex plane, it reveals a very interesting property of these roots modulo p for every prime number p. Namely, it shows that if $m = p\ell + r$, where $\ell = \lfloor m/p \rfloor$ and $r = m - p\lfloor m/p \rfloor \in \{0, 1, \ldots, p - 1\}$, then

$$A_m(X) \equiv Q_{r,p}(X)(X(X^{p-1} - 1))^{\ell} \pmod{p},$$

where $Q_{r,p}(X)$ is a polynomial of degree r. In particular, the roots of $A_m(X)$ modulo p are always among the roots of

$$X(X^{p-1} - 1) \prod_{1 \leq r \leq p-1} Q_r(X)$$

a polynomial of bounded degree $p(p + 1)/2$. Furthermore, the splitting field of $A_m(X)$ over the finite field \mathbb{F}_p with p elements is of degree at most $p - 1$ no matter how large m is. This is surprising and we do not have an explanation for it.

Florian Luca

Cyclotomic factors of Serre polynomials
The polynomials $Q_{r,p}(X)$ play an important role in our proof. Our proof proceeds to show that if there is $N \geq 3$ such that $P_m(\zeta) = 0$ for some root of unity ζ of order N, then N must be even. Then a multiple of 3. Then of 5. And so on, which of course is impossible. The proof proceeds by induction. For the induction step, we need to show that if p is a prime and $q \mid N$ for all primes $q < p$, then also $p \mid N$. For this, we show that none of the polynomials $Q_{r,p}(X) \pmod{p}$ has an irreducible factor of degree d such that $p^d - 1$ is a multiple of N. When p is small ($p \leq 11$), we show this by computing all polynomials $Q_{r,p}(X)$ and their irreducible factors modulo p. For $p \geq 13$, we appeal to general methods of analytic number theory (for $p \geq 2 \times 10^{12}$). Finally a computation for p in the intermediary range $[13, 2 \times 10^{12}]$ proves our theorem.
The work-horse lemma

From now on, $N \geq 3$ is an integer and ζ is a root of unity of order N. Throughout the paper p and q are prime numbers.

Lemma

Let $Q(X) \in \mathbb{Z}[X]$. Let p be a prime and ζ be a root of unity of order $N \geq 3$. Assume that k, a, M_1, \ldots, M_k are positive integers, such that:

(i) $p \nmid N$;

(ii) $N \nmid M_i$ for $i = 1, \ldots, k$;

(iii) Modulo p we have $Q(X) \mid (X(X^{M_1} - 1) \cdots (X^{M_k} - 1))^a$.

Then, $Q(\zeta) \neq 0$.

Condition (iii) tells us that

\[\left(X(X^{M_1} - 1) \cdots (X^{M_k} - 1) \right)^a = Q(X)R(X) + pS(X) \tag{5} \]

for some polynomials \(R(X), S(X) \in \mathbb{Z}[X] \). Assuming that \(Q(\zeta) = 0 \), we evaluate equation (5) in \(X = \zeta \) getting

\[(\zeta(\zeta^{M_1} - 1) \cdots (\zeta^{M_k} - 1))^a = pS(\zeta). \tag{6} \]

The algebraic integer \(\zeta_i := \zeta^{M_i} \) is a root of unity of order

\[N_i = \frac{N}{\gcd(N, M_i)} > 1 \]

for \(i = 1, \ldots, k \) by condition (ii). Taking norms over \(K = \mathbb{Q}(\zeta) \), we get

\[(N_{K/Q}(\zeta))^a \prod_{i=1}^{k} (N_{K/Q}(\zeta_i - 1))^a = N_{K/Q}(pS(\zeta)). \tag{7} \]
In the left–hand side of (7), we have $N_{K/Q}(\zeta) = \pm 1$, and

$$N_{K/Q}(\zeta_i - 1) = \pm (\Phi_{N_i}(1))^{\varphi(N)/\varphi(N_i)}, \quad \text{for} \quad i = 1, \ldots, k.$$

Hence, we get

$$\pm \prod_{i=1}^{k} \Phi_{N_i}(1)^{a_i} = p^{\varphi(N)} S,$$ \hspace{1cm} (8)

where $a_i = a \varphi(N)/\varphi(N_i)$ for $i = 1, \ldots, k$ and $S = N_{K/Q}(S(\zeta))$ is an integer. The above relation is impossible since the left–hand side is divisible only by primes dividing N_i for $i = 1, \ldots, k$; hence, N, whereas by (i), p is not a factor of N. Here, we used the well-known fact that for every integer $m > 1$, $\Phi_m(1)$ is an integer whose prime factors divide m.
Further we need the following fact.

Lemma

If \(p \geq 2 \) is prime, then

\[
p! P_p(X) \equiv X(X^{p-1} - 1) \pmod{p}.
\]

Proof.

Note that \(P_m(x) \) is an integer valued polynomial. Hence,

\[
p! P_p(k) \equiv 0 \pmod{p}
\]

for all \(k \in \mathbb{Z} \). It follows that the polynomial \(p! P_p(X) \) has roots modulo \(p \) at all positive integers \(k \). Hence, all residue classes modulo \(p \) are roots of \(p! P_p(X) \). Since \(p! P_p(X) \) is monic of degree \(p \), it follows that

\[
p! P_p(X) \equiv \prod_{k=0}^{p-1} (X - k) \equiv X(X^{p-1} - 1) \pmod{p}.
\]
The strategy of the proof

Let $A_m(X) = m! P_m(X)$, then $A_0(X) = 1$, $A_1(X) = X$, and

$$A_m(X) = X \left(\sum_{k=1}^{m} \sigma(k)(m - 1) \cdots (m - k + 1)A_{m-k}(X) \right), \quad m \geq 2.$$

In particular, $A_m(X) \in \mathbb{Z}[X]$.
Let us look at $A_m(X)$ modulo 2. Since $\sigma(2) = 3 \equiv 1 \pmod{2}$ and $2 \mid m(m - 1)$ for all $m \geq 1$, we only have the recurrence

$$A_m(X) \equiv X (A_{m-1}(X) + (m - 1)A_{m-2}(X)) \quad \text{for all} \quad m \geq 1.$$

In particular, if m is odd then $2 \mid m - 1$ and

$$A_m(X) \equiv XA_{m-1}(X) \pmod{2},$$

while if m is even then

$$A_m(X) \equiv X(A_{m-1}(X) + A_{m-2}(X)) \equiv X(X - 1)A_{m-2}(X) \pmod{2}.$$

In particular, writing $m = 2\ell + r$, $\ell = \lfloor m/2 \rfloor$, $r = m - 2\lfloor m/2 \rfloor$, and putting $Q_0(X) := 1$, $Q_1(X) := X$, we get that

$$A_m(X) \equiv A_{2\ell + r}(X) \equiv Q_r(X)A_{2\ell}(X)$$

$$\equiv Q_r(X)(X(X - 1))A_{2(\ell - 1)}(X) \equiv \cdots$$

$$\equiv Q_r(X)(X(X - 1))^\ell A_0(X) \equiv X^{r + \lfloor m/2 \rfloor}(X - 1)^{\lfloor m/2 \rfloor} \pmod{2}.$$

Assume now that $P_m(\zeta) = 0$ for some root of unity ζ of order $N > 1$. Then $A_m(\zeta) = 0$. Assuming that N is odd, we have that $N \geq 3$. Lemma 3 gives a contradiction. Hence, $2 \mid N$.

Florian Luca

Cyclotomic factors of Serre polynomials
Let us record this.

Lemma

If $P_m(\zeta) = 0$ for some $m \geq 1$ and root of unity ζ of order $N \geq 3$, then N is even.
There is nothing mysterious about the prime \(p = 2 \) in the above argument.

Let’s try the prime \(p = 3 \). That is, we reduce the recurrence for the sequence of general term \(A_m(X) \) modulo 3. Since \(3 = \sigma(2) \), and \(3 \mid (m - 1)(m - 2)(m - 3) \) for all \(m \geq 3 \), we get that

\[
A_m(X) \equiv X(A_{m-1}(X) + 4(m-1)(m-2)A_{m-3}(X)) \pmod{3}, \quad m \geq 2.
\]

In particular,

\[
A_m(X) \equiv \begin{cases}
XA_{m-1}(X) & \pmod{3} \quad m \not\equiv 0 \pmod{3}, \\
X(A_{m-1}(X) + 2A_{m-3}(X)) & \pmod{3} \quad m \equiv 0 \pmod{3}.
\end{cases}
\]

We then get

\[
A_{3\ell+1}(X) \equiv XA_{3\ell}(X) \pmod{3},
\]

\[
A_{3\ell+2}(X) \equiv XA_{3\ell+1}(X) \equiv X^2A_{3\ell}(X) \pmod{3},
\]

\[
A_{3\ell+3}(X) \equiv X(A_{3\ell+2}(X) + 2A_{3\ell}(X)) \pmod{3}
\]

\[
\equiv X(X^2 - 1)A_{3\ell}(X) \pmod{3}.
\]
Recursively, we get that if we put
\(Q_0(X) := 1, \ Q_1(X) := X, \ Q_2(X) := X^2, \ m = 3\ell + r, \)
\(\ell = \lfloor m/3 \rfloor, \ r = m - 3\lfloor m/3 \rfloor \in \{0, 1, 2\}, \) then

\[
A_m(X) \equiv Q_r(X)A_{3\ell}(X) \equiv Q_r(X)(X(X^2 - 1))^2A_{3\ell-3}(X) \equiv \cdots \\
\equiv Q_r(X)(X(X^2 - 1))^\ell \pmod{3}.
\]

Hence,

\[
A_m(X) \equiv X^{r + \lfloor m/3 \rfloor}(X^2 - 1)^{\lfloor m/3 \rfloor} \pmod{3}. \quad (9)
\]

Assume now that \(P_m(\zeta) = 0 \) for some root of unity \(\zeta \) of order \(N \). Then \(A_m(\zeta) = 0 \). Assume \(3 \nmid N \). Lemma 3 with \(Q(X) = A_m(X), \)
\(p = 3, \ a = r + \lfloor m/3 \rfloor, \ k = 1, \ M_1 = 2 \) gives a contradiction.
Note that \(N \nmid M_1 \) because \(N \geq 4 \) (since \(N \geq 3 \) is even). This contradiction shows that \(3 \mid N \).
Let us record what we proved.

Lemma

If \(P_m(\zeta) = 0 \) for some \(m \geq 1 \) and root of unity \(\zeta \) of order \(N \geq 3 \), then \(3 \mid N \).
Let us continue for a few more steps. We now take $p = 5$ and consider the recurrence for $A_m(X)$ modulo 5. As before, we obtain the recursion formula:

$$A_m(X) \equiv X (A_{m-1}(X) + 3 (m - 1) A_{m-2}(X) + 4 (m - 1) (m - 2) A_{m-3}(X) + 7 (m - 1) (m - 2) (m - 3) A_{m-4}(X) + 6 (m - 1) (m - 2) (m - 3) (m - 4) A_{m-5}(X)) \pmod{5}.$$
Treating the cases $m = 5\ell + r$, $r \in \{1, 2, 3, 4, 5\}$, we get

\begin{align*}
A_{5\ell+1}(X) &\equiv XA_{5\ell}(X) \pmod{5}; \\
A_{5\ell+2}(X) &\equiv (X^2 + 3X) A_{5\ell}(X) \equiv X(X + 3) A_{5\ell}(X) \pmod{5}; \\
A_{5\ell+3}(X) &\equiv X(X^3 + 4X^2 + 3X) A_{5\ell}(X) \\
&\equiv X(X + 1)(X + 3) A_{5\ell}(X) \pmod{5}; \\
A_{5\ell+4}(X) &\equiv X(X^3 + 3X^2 + 4X + 2) A_{5\ell}(X) \\
&\equiv X(X + 1)(X + 3)(X + 4) A_{5\ell}(X) \pmod{5}; \\
A_{5\ell+5}(X) &\equiv (X(X^4 - 1)) A_{5\ell}(X) \pmod{5}.
\end{align*}
Thus, putting

\[Q_0(X) = 1, \quad Q_1(X) = X, \quad Q_2(X) = X(X + 3), \]
\[Q_3(X) = X(X + 1)(X + 3), \quad Q_4(X) = X(X + 1)(X + 3)(X + 4), \]

we have that if we write

\[r = m - 5\left\lfloor \frac{m}{5} \right\rfloor \in \{0, 1, 2, 3, 4\}, \]

then

\[A_m(X) \equiv Q_r(X)(X(X^4 - 1))^{\left\lfloor \frac{m}{5} \right\rfloor} \pmod{5}. \]

Note that \(Q_r(X) \mid X(X^4 - 1) \). Assume now that \(5 \nmid N \). We then apply Lemma 1 with \(Q(X) = A_m(X) \),
\(p = 5, \ a = \left\lfloor \frac{m}{5} \right\rfloor + 1, \ k = 1, \ M_1 = 4 \) and note that \(N \nmid M_1 \) since \(N \geq 6 \) (because \(N \) is a multiple of 6), and we obtain a contradiction.
Let us record what we proved.

Lemma

If $P_m(\zeta) = 0$ for some $m \geq 1$ and root of unity ζ of order N, then $5 \mid N$.

Florian Luca
Cyclotomic factors of Serre polynomials
We apply the same program for $p = 7$. We skip the details and only show the results. For $r \in \{0, 1, 2, 3, 4, 5, 6\}$, we get

$Q_0(X) = 1,$

$Q_1(X) = X,$ $Q_2(X) = X(X + 3), \quad Q_3(X) = X(X + 1)^2,$

$Q_4(X) = X^2(X + 1)(X + 3), \quad Q_5(X) = X(X + 3)(X + 6)(X^2 + 1),$

$Q_6(X) = X(X + 1)(X + 3)(X^3 + 6X^2 + 6X + 4),$

where the factors shown above are irreducible modulo 7. Since $X^2 + 1 \mid X^4 - 1$ and $X^3 + 6X^2 + 6X + 4 \mid X^{7^3-1} - 1$, and every root of $Q_r(X)$ is of multiplicity at most 2, it follows that

$$Q_r(X) \mid \left(X(X^6 - 1)(X^4 - 1)(X^{342} - 1) \right)^2.$$

Further, writing $m = 7\ell + r$, where $\ell = \lfloor m/7 \rfloor$ and $r = m - 7\lfloor m/7 \rfloor$, we get that

$$A_m(X) \equiv Q_r(X) \left(X(X^6 - 1) \right)^{\lfloor m/7 \rfloor} \pmod{7}. $$
Thus, modulo 7,

\[A_m(X) \mid \left(X(X^4 - 1)(X^6 - 1)(X^{342} - 1) \right)^a, \]

where \(a = \lfloor m/7 \rfloor + 2 \). Assume now that \(7 \nmid N \). We apply Lemma 1 with \(Q(X) = A_m(X) \),

\(p = 7, \ a = \lfloor m/7 \rfloor + 2, \ k = 3, \ M_1 = 4, \ M_2 = 6, \ M_3 = 342 \).

Since \(30 \mid N \), it follows that \(N \nmid M_i \) for \(i = 1, 2, 3 \). Lemma 1 gives a contradiction.
Thus, we proved the following.

Lemma

If \(P_m(\zeta) = 0 \) for some \(m \geq 1 \) and root of unity \(\zeta \) of order \(N \geq 3 \), then \(7 \mid N \).
For $p = 11$, we have

\[
Q_0(X) = 1, \quad Q_1(X) = X, \quad Q_2(X) = X(X + 3), \\
Q_3(X) = X(X + 1)(X + 8), \quad Q_4(X) = X(X + 1)(X + 3)^2, \\
Q_5(X) = X(X + 3)(X + 6)(X^2 + 10X + 8), \quad Q_6(X) = X(X + 1)(X + 10)(X^3 + X^2 + 5X + 1), \\
Q_7(X) = X(X + 2)(X + 3)(X + 8)(X + 9)(X^2 + 8X + 6), \quad Q_8(X) = X(X + 1)(X + 3)(X + 6)(X + 10)(X^3 + 9X^2 + 7X + 2), \\
Q_9(X) = X(X + 1)(X + 3)^2(X + 4)^2(X + 10)(X^2 + 6X + 1), \quad Q_{10}(X) = X(X + 1)(X + 8)(X^7 + 5X^6 + 10X^5 + 6X^3 + 10X^2 + X - 1).
\]

All factors shown are irreducible modulo 11. We note that the multiplicity of any root of $Q_r(X)$ is at most 2. Further, the irreducible factors of the above polynomials which are not linear are of of degrees 2, 3, or 7 over \mathbb{F}_{11}.
Hence,

\[Q_r(X) \mid \left(X(X^{11} - 1)(X^{11^2} - 1)(X^{11^3} - 1)(X^{11^7} - 1) \right)^2. \]

Writing \(m = 11\ell + r \) with \(r \in \{0, 1, \ldots, 10\} \), where \(\ell = \lfloor m/11 \rfloor \), we get that

\[A_m(X) \equiv Q_r(X) \left(X(X^{10} - 1) \right)^{\lfloor m/11 \rfloor} \pmod{11}, \]

so modulo 11, \(A_m(X) \) divides

\[\left(X(X^{10} - 1)(X^{11^2} - 1)(X^{11^3} - 1)(X^{11^7} - 1) \right)^a, \]

where \(a = \lfloor m/11 \rfloor + 2 \). Assume now that \(11 \nmid N \). Then we apply Lemma 3 with \(Q(X) = A_m(X) \), \(p = 11 \), \(a = \lfloor m/11 \rfloor + 2 \), \(k = 4 \), \(M_1 = 11 - 1 = 10 \), \(M_2 = 11^2 - 1 = 120 \), \(M_3 = 11^3 - 1 = 1330 \), \(M_4 = 11^7 - 1 = 19487170 \). Since \(2 \cdot 3 \cdot 5 \cdot 7 \mid N \), we get that \(N \nmid M_i \) for \(i = 1, 2, 3, 4 \). Now Lemma 1 yields to a contradiction.
Thus, we record what we proved.

Lemma

If \(P_m(\zeta) = 0 \) for some \(m \geq 1 \) and root of unity \(\zeta \) of order \(N \geq 3 \), then \(11 \mid N \).
The case of the general prime p

Assume now that $p \geq 13$ and that we proved that $q \mid N$ holds for all primes $q < p$. We would like to prove that $p \mid N$. For this, we compute for $r \in \{0, \ldots, p-1\}$,

$$Q_r(X) \equiv \prod_{i=1}^{s_r} Q_{r,i}(X)^{\alpha_{r,i}} \pmod p,$$

where $Q_{r,i}(X)$ are distinct irreducible factors of $Q_r(X)$ modulo p. Assume $Q_{r,i}(X)$ is of degree $d_{r,i}$. Let

$$D_p = \left\{ d_{r,i} : 1 \leq i \leq s_r, 1 \leq r \leq p-1 \right\}.$$

Let $\alpha = \max \{ \alpha_{r,i} : 1 \leq i \leq s_r, 1 \leq r \leq p-1 \}.$
Then, writing \(m = p^\ell + r \) with \(r \in \{0, 1, \ldots, p - 1\} \), we have

\[
A_m(X) \equiv Q_r(X) (A_p(X))^\ell \pmod{p}.
\]

This follows by induction from the recursion formula

\[
A_{p^\ell + r}(X) \equiv X \left(\sum_{k=1}^{r} \sigma(k) (p^\ell + r - 1) \cdots (p^\ell + r - k + 1) A_{p^\ell + r - k}(X) \right) \equiv X \left(\sum_{k=1}^{r} \sigma(k) (r - 1) \cdots (r - k + 1) A_{r - k}(X) \right) (A_p(X))^\ell \equiv A_r(X) (A_p(X))^\ell \pmod{p}.
\]
By using Lemma 2 we thus get that

\[A_m(X) \equiv Q_r(X) \left(X(X^{p-1} - 1) \right)^{[m/p]} \pmod{p}. \]

Hence modulo \(p \), \(A_m(X) \) divides

\[\left(X \prod_{d \in D_p} (X^{p^d} - 1)^{d} \right)^a, \]

where we can take \(a := \lfloor m/p \rfloor + \alpha \).
Assume that \(p \nmid N \). We can then apply Lemma 1 with \(Q(X) = A_m(X) \), the prime \(p \), the number \(a \), \(k = \#D_p \) and \(M_j = p^{d_j} - 1 \) for \(j = 1, \ldots, k \), where \(D_p = \{ d_1, \ldots, d_k \} \). We need to ensure that \(N \nmid M_j \) for all \(j = 1, \ldots, k \). We know that \(\prod_{q \leq p} q \mid N \). Thus, it suffices to show that \(\prod_{q \leq p} q \) is not a divisor of \(M_j \) for any \(j = 1, \ldots, k \). Until now, namely for the primes \(p \in \{ 2, 3, 5, 7, 11 \} \), we checked that this was case by case. To complete the induction, it suffices to show the following lemma.

Lemma

If \(p \geq 13 \), *there does not exist a positive integer* \(1 \leq d \leq p - 1 \) *such that*

\[
p^d - 1 \equiv 0 \pmod{\prod_{q \leq p} q}.
\]

For \(p = 11 \), this is not true since

\[
11^6 - 1 \equiv 0 \pmod{2 \cdot 3 \cdot 5 \cdot 7}.
\]
Assume that we proved the lemma. The above argument shows that if $q \mid N$ for all $q < p$ and $p \geq 13$, then $p \mid N$. Replacing p by the next prime, we get, by induction, that N is divisible by all possible primes, which is a contradiction. So, it suffices to prove Lemma 10. This will be proven by analytic methods.
The case of the large prime p

Assume $p \geq 13$ and for some $d \leq p - 1$, we have $q \mid p^d - 1$ for all primes $q < p$. Then d is divisible by the $o_q(p)$, which is the order of p modulo q. We split $q < p$ into two subsets:

$Q_1 = \{ q < p : o_q(p) \leq p^{1/2} \}$, \quad $Q_2 = \{ q < p : o_q(p) > p^{1/2} \}$.

For Q_1, we have

$$\prod_{q \in Q_1} q \mid \prod_{e \mid d, \, e \leq p^{1/2}} (p^e - 1).$$

The above leads to

$$\sum_{q \in Q_1} \log q < \sum_{e \mid d, \, e \leq p^{1/2}} \log(p^e - 1) < \log p \sum_{e \mid d, \, e \leq p^{1/2}} e \leq p^{1/2} \tau_1(d) \log p.$$
Here and in what follows we use $\tau_1(d)$ for the number of divisors of d which are $\leq p^{1/2}$. For Q_2, let $e \mid d$ with $e > p^{1/2}$ and assume that $q \leq p - 1$ is such that $o_p(q) = e$. Then $e \mid q - 1$. Thus, $q \equiv 1 \pmod{e}$. Since $q \leq p - 1$, it then follows, by counting the number of positive integers less than or equal to $p - 1$ which are larger than 1 in the arithmetic progression $1 \pmod{e}$ and even ignoring the information that they should also be prime, it follows that the number of choices for such q is at most $(p - 1)/e < p^{1/2}$. This was for a fixed divisor e of d which exceeds $p^{1/2}$. Thus,

$$\sum_{q \in Q_2} \log q \leq p^{1/2} \left(\sum_{e \mid d, e > p^{1/2}} 1 \right) \log p < p^{1/2} \tau_2(d) \log p,$$

where $\tau_2(d)$ is the number of divisors of d which are $> p^{1/2}$.
Thus letting θ be the Chebyshev function, we get

$$\theta(p) := \sum_{q \leq p} \log q \leq p^{1/2} \tau(d) \log p + \log p,$$

where $\tau(d) = \tau_1(d) + \tau_2(d)$ is the total number of divisors of d. Assume now that $p > 10^9$. A theorem of Rosser, Schoenfeld shows that

$$\sum_{q \leq p} \log q > 0.99 p.$$

Further,

$$\frac{\tau(d)}{d^{1/3}} = \prod_{q^\alpha q \mid d} \left(\frac{\alpha q + 1}{q^{\alpha q/3}} \right).$$

The factors on the right above are all < 1 if $q \geq 11$, just because in that case $q^\alpha \geq 11^\alpha \geq (\alpha + 1)^3$ for all $\alpha \geq 1$.
For \(q \in \{2, 3, 5, 7\} \) and positive integers \(\alpha \), we have that

\[
\frac{\alpha + 1}{2^{\alpha/3}} \leq 2, \quad \frac{\alpha + 1}{3^{\alpha/3}} < 1.45, \quad \frac{\alpha + 1}{5^{\alpha/3}} < 1.17, \quad \frac{\alpha + 1}{7^{\alpha/3}} < 1.05.
\]

This analysis and the fact that \(2 \times 1.45 \times 1.17 \times 1.05 < 3.6 \) shows that

\[
\tau(d) < 3.6 d^{1/3} < 3.6 p^{1/3}.
\]

We thus get that

\[
0.99 p < \sum_{q \leq p} \log q \leq (p^{1/2} \tau(d) + 1) \log p < (3.6 p^{5/6} + 1) \log p,
\]

and inequality which implies that \(p < 2 \cdot 10^{12} \). So, we have obtained the following result.

Lemma

Lemma 10 holds for \(p > 2 \cdot 10^{12} \).
It remains to cover the range \([13, 2 \cdot 10^{12}]\) for \(p\). In a few minutes with Mathematica we compute for all \(p \in [13, 30000]\), that

\[
lcm[\sigma_p(q) : q < p] > p,
\]

so we may assume that \(p > 30000\). In the interval \([100, 1000]\) there are 27 primes numbers \(q\) such that \(2q + 1\) is also prime. They are the following:

\[
\]

Let \(p > 30000\) and consider one of the primes \(2q + 1\) with \(q\) in the above set. The order of \(p\) modulo \(2q + 1\) is a divisor of \(2q\), so it is 1, 2 or a multiple of \(q\). If it is 1 or 2, then \(q\) divides \(p - 1\) or \(p + 1\). Since \(q > 100\) and \(p < 2 \times 10^{12}\), there are at most six values of \(q\) for which it can be a divisor of \(p - 1\) and at most six values of \(q\) for which it can be a divisor of \(p + 1\). Thus,

\[
lcm[\sigma_p(q) : q < p] > 100^{15} = 10^{30} > 2 \times 10^{12} > p,
\]

which finishes the proof.

Florian Luca

Cyclotomic factors of Serre polynomials
THANK YOU!