On Moment Problems with Holonomic Functions

Florent Bréhard, Mioara Joldes, Jean-Bernard Lasserre
Moments of a measure

\[m_\alpha = \int_{\mathbb{R}^n} x^{\alpha} \, d\mu \quad \text{for} \quad \alpha \in \mathbb{N}^{n_a} \]

\[a\alpha = (\alpha_1, \ldots, \alpha_n), \quad x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \quad |\alpha| = \alpha_1 + \cdots + \alpha_n, \quad \mathbb{K}[x]_d = \text{polynomials of total degree at most } d \]
Moments of a mesure

\[m_\alpha = \int_{\mathbb{R}^n} x^\alpha \, d\mu = \int_G x^\alpha f(x) \, dx \quad \text{for} \quad \alpha \in \mathbb{N}^n \]

- \(G \) \(n \)-dim semi-algebraic set, with \(g \in \mathbb{K}[x] \) vanishing on \(\partial G \)
- \(f : \mathbb{R}^n \to \mathbb{R} \) D-finite = satisfies a “complete” system of PDEs

\[a_\alpha = (\alpha_1, \ldots, \alpha_n), \quad x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \quad |\alpha| = \alpha_1 + \cdots + \alpha_n, \quad \mathbb{K}[x]_d = \text{polynomials of total degree at most } d \]
Moments of a measure

\[m_\alpha = \int_{\mathbb{R}^n} x^\alpha \, d\mu = \int_G x^\alpha f(x) \, dx \quad \text{for} \quad \alpha \in \mathbb{N}^n_a \]

- \(G \) \(n \)-dim semi-algebraic set, with \(g \in K[x] \) vanishing on \(\partial G \)
- \(f : \mathbb{R}^n \to \mathbb{R} \) D-finite = satisfies a “complete” system of PDEs

\[^a\alpha = (\alpha_1, \ldots, \alpha_n), \quad x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \quad |\alpha| = \alpha_1 + \cdots + \alpha_n, \quad K[x]_d = \text{polynomials of total degree at most } d \]

→ Direct problem: knowing \(G \) and \(f \), find a complete system of recurrences for \((m_\alpha) \)

\(\leadsto \) Finite determinancy of such measures
\(\leadsto \) Solved with Creative Telescoping, e.g., [Oaku2013] + Takayama’s algorithm
Moments of a measure

\[m_\alpha = \int_{\mathbb{R}^n} x^\alpha \, d\mu = \int_G x^\alpha f(x) \, dx \quad \text{for} \quad \alpha \in \mathbb{N}^n \]

- \(G \) \(n \)-dim semi-algebraic set, with \(g \in \mathbb{K}[x] \) vanishing on \(\partial G \)
- \(f : \mathbb{R}^n \to \mathbb{R} \) D-finite = satisfies a “complete” system of PDEs

\(^a\alpha = (\alpha_1, \ldots, \alpha_n) \), \(x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \), \(|\alpha| = \alpha_1 + \cdots + \alpha_n \), \(\mathbb{K}[x]_d \) = polynomials of total degree at most \(d \)

→ **Direct problem:** knowing \(G \) and \(f \), find a complete system of recurrences for \((m_\alpha) \)

- Finite determinancy of such measures
- Solved with Creative Telescoping, e.g., [Oaku2013] + Takayama’s algorithm

→ **Inverse problem:** reconstruct \(G \) and/or \(f \), given finitely many moments \(m_\alpha \)

- Statistics
- Signal processing
- Medical imaging (MRI)
- Gravimetry
- Combinatorics
Inverse Problems

\[(m_\alpha)_{|\alpha| \leq N} \]

Measures

Reconstruction

On Moment Problems with Holonomic Functions — F. Bréhard, M. Joldes and J.-B. Lasserre
Inverse Problems

Measures

\[(m_\alpha)_{|\alpha| \leq N} \]

Reconstruction

Decision
Inverse Problems

Measures

$\left(m_\alpha \right)_{|\alpha| \leq N}$

Reconstruction

Decision or ?
→ Numerical methods, e.g.:
 ○ Convex polytopes: [GolubMilanfarVarah1999] [GravinLasserrePasechnikRobins2012]
 ○ Planar quadrature domains: [EbenfeltGustafssonKhavinsonPutinar2005]
 ○ Sublevel sets of homogeneous polynomials: [Lasserre2013]
→ Numerical methods, e.g.:

- Planar quadrature domains: [EbenfeltGustafssonKhavinsonPutinar2005]
- Sublevel sets of homogeneous polynomials: [Lasserre2013]

→ Symbolic/algebraic methods:

- A historical starting point: Prony’s method
 - reconstructing sparse exponential functions \(\sum_{\alpha \in I} \lambda_\alpha e^{\alpha x} \) from evaluations
 - link with moments of Dirac measures
- Multivariate extensions of Prony’s method, e.g., [Mourrain2018]
- Reconstructing univariate piecewise D-finite densities: [Batenkov2009]
Exact Support and/or Density Reconstruction

- Lasserre and Putinar's exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in \mathbb{K}[x]_d$, and $f(x) = \exp(p(x))$ with $p \in \mathbb{K}[x]_s$. Given p, degree d and moments m_α up to order $|\alpha| = 3d + s$, the coefficients of g can be exactly recovered.

- Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem
Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in K[x]^d$, and $f(x) = \exp(p(x))$ with $p \in K[x]^s$. Given p, degree d and moments m_α up to order $\alpha/\alpha = 3d + s$, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments + Stokes' Theorem

Our contribution: a computer algebra approach

- generalization in the framework of holonomic distributions
 - they satisfy (as a generalized function) a “complete” system of linear PDEs/ODEs with polynomial coefficients

- exact recovery of both support and Exponential-Polynomial density $f = \exp(p)$, with explicit bound on the required number of moments

- similar algorithm for D-finite density, but no a priori bound on the required number of moments
Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in K[x]^d$, and $f(x) = \exp(p(x))$ with $p \in K[x]^s$. Given p, degree d and moments m_α up to order $\alpha/d = 3d + s$, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments $+$ Stokes' Theorem

Our contribution: a computer algebra approach
- generalization in the framework of holonomic distributions
 \Rightarrow they satisfy (as a generalized function) a "complete" system of linear PDEs/ODEs with polynomial coefficients
- exact recovery of both support and Exponential-Polynomial density $f = \exp(p)$, with explicit bound on the required number of moments
- similar algorithm for D-finite density, but no a priori bound on the required number of moments
Exact Support and/or Density Reconstruction

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in K[x]^d$, and $f(x) = \exp(p(x))$ with $p \in K[x]^s$. Given p, degree d and moments m_α up to order $\divides \alpha \divides = 3d + s$, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments + Stokes' Theorem

Our contribution: a computer algebra approach
- generalization in the framework of holonomic distributions
 - they satisfy (as a generalized function) a "complete" system of linear PDEs/ODEs with polynomial coefficients
- exact recovery of both support and Exponential-Polynomial density $f = \exp(p)$, with explicit bound on the required number of moments
- similar algorithm for D-finite density, but no a priori bound on the required number of moments
Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in K[x]^d$, and $f(x) = \exp(p(x))$ with $p \in K[x]$. Given p, degree d and moments m_α up to order $\frac{\| \alpha \|}{\| \alpha \|} = 3d + s$, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments + Stokes' Theorem

Our contribution: a computer algebra approach

○ generalization in the framework of holonomic distributions
 ⇒ they satisfy (as a generalized function) a "complete" system of linear PDEs/ODEs with polynomial coefficients

○ exact recovery of both support and Exponential-Polynomial density $f = \exp(p)$, with explicit bound on the required number of moments

○ similar algorithm for D-finite density, but no a priori bound on the required number of moments
Lasserre and Putinar’s exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in \mathbb{K}[x]_d$, and $f(x) = \exp(p(x))$ with $p \in \mathbb{K}[x]_s$. Given p, degree d and moments m_α up to order $|\alpha| = 3d + s$, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem

Our contribution: a computer algebra approach

- generalization in the framework of holonomic distributions
 - they satisfy (as a generalized function) a “complete” system of linear PDEs/ODEs with polynomial coefficients
Lasserre and Putinar’s exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let $G \subset \mathbb{R}^n$, bounded open set, whose algebraic boundary is included in the zero set of a polynomial $g \in K[x]_d$, and $f(x) = \exp(p(x))$ with $p \in K[x]_s$. Given p, degree d and moments m_α up to order $|\alpha| = 3d + s$, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem

Our contribution: a computer algebra approach

- generalization in the framework of holonomic distributions
 - they satisfy (as a generalized function) a “complete” system of linear PDEs/ODEs with polynomial coefficients
- exact recovery of both support and Exponential-Polynomial density $f = \exp(p)$, with explicit bound on the required number of moments
- similar algorithm for D-finite density, but no a priori bound on the required number of moments
1 Introduction

2 Holonomic Distributions and Recurrences on Moments

3 Inverse Problem: Algorithms and Proofs
 - Exponential-Polynomial Densities
 - The General Case with D-Finite Densities

4 Limits and Perspectives
On Moment Problems with Holonomic Functions — F. Bréhard, M. Joldes and J.-B. Lasserre
1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by $x_1, \partial_{x_1}, \ldots, x_n, \partial_{x_n}$

\[
\partial_{x_i} f = f'_{x_i} \quad (x_i f)'_{x_i} = x_i f'_{x_i} + f \quad \Rightarrow \quad \partial_{x_i} x_i = x_i \partial_{x_i} + 1
\]
1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by $x_1, \partial_{x_1}, \ldots, x_n, \partial_{x_n}$

$$\partial_{x_i} f = f'_{x_i} \quad \quad (x_i f)'_{x_i} = x_i f'_{x_i} + f \quad \Rightarrow \quad \partial_{x_i} x_i = x_i \partial_{x_i} + 1$$

- $\mathbb{K}[x] \langle \partial_x \rangle$ polynomial Ore algebra
1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by $x_1, \partial x_1, \ldots, x_n, \partial x_n$

\[
\partial x_i f = f'_{x_i} \quad \quad (x_i f)'_{x_i} = x_i f'_{x_i} + f \quad \Rightarrow \quad \partial x_i x_i = x_i \partial x_i + 1
\]

- $\mathbb{K}[x]\langle \partial x \rangle$ polynomial Ore algebra \textit{vs} $\mathbb{K}(x)\langle \partial x \rangle$ rational Ore algebra
1. Differential Ore Algebras

- Differential operators: **non-commutative**, spanned by \(x_1, \partial x_1, \ldots, x_n, \partial x_n \)

\[
\begin{align*}
\partial x_i f &= f'_{x_i} \\
(x_i f)' &= x_i f' + f \\
\Rightarrow \quad \partial x_i x_i &= x_i \partial x_i + 1
\end{align*}
\]

- \(\mathbb{K}[x] \langle \partial_x \rangle \) polynomial Ore algebra \text{ vs } \(\mathbb{K}(x) \langle \partial_x \rangle \) rational Ore algebra

- \(\text{Ann}(f) = \{ L \in \mathbb{K}(x) \langle \partial_x \rangle \mid L f = 0 \} \) PDEs satisfied by density \(f \)
1. Differential Ore Algebras

- Differential operators: **non-commutative**, spanned by $x_1, \partial_{x_1}, \ldots, x_n, \partial_{x_n}$

\[
\partial_{x_i} f = f'_{x_i} \quad \quad (x_i f)'_{x_i} = x_i f'_x + f \quad \Rightarrow \quad \partial_{x_i} x_i = x_i \partial_{x_i} + 1
\]

- $\mathbb{K}[x](\partial_x)$ polynomial Ore algebra \text{ vs } $\mathbb{K}(x)(\partial_x)$ rational Ore algebra

- $\text{Ann}(f) = \{ L \in \mathbb{K}(x)(\partial_x) \mid L f = 0 \}$ PDEs satisfied by density f

\Rightarrow f is **D-finite** iff $\mathbb{K}(x)(\partial_x)/\text{Ann}(f)$ has finite dimension over the ∂_{x_i}
1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by $x_1, \partial x_1, \ldots, x_n, \partial x_n$

\[
\partial x_i f = f'_{x_i}, \quad (x_i f)'_{x_i} = x_i f'_{x_i} + f \quad \Rightarrow \quad \partial x_i x_i = x_i \partial x_i + 1
\]

- $\mathbb{K}[x]\langle \partial x \rangle$ polynomial Ore algebra vs $\mathbb{K}(x)\langle \partial x \rangle$ rational Ore algebra

- $\text{Ann}(f) = \{ L \in \mathbb{K}(x)\langle \partial x \rangle \mid L f = 0 \}$ PDEs satisfied by density f

$\Rightarrow f$ is D-finite iff $\mathbb{K}(x)\langle \partial x \rangle/\text{Ann}(f)$ has finite dimension over the ∂x_i

Example: Exponential-Polynomial Density

\[
f(x) = c \exp(p(x)) \quad \text{with} \quad p \in \mathbb{K}_s[x] \quad \text{(e.g., Gaussian distribution)}
\]

\[
f'_{x_i} - p'_{x_i} f = 0 \quad \Rightarrow \quad \text{Ann}(f) \text{ generated by the } \partial x_i - p'_{x_i} \quad \Rightarrow \quad f \text{ is D-finite}
\]
2. Difference Ore Algebras

- Difference operators: **non-commutative**, spanned by $\alpha_1, S\alpha_1, \ldots, \alpha_n, S\alpha_n$

\[
(\alpha_i u)_\alpha = \alpha_i u_{\alpha} \quad (S\alpha_i u)_\alpha = u_{\alpha_1, \ldots, \alpha_i+1, \ldots, \alpha_n} \quad S\alpha_i \alpha_i = (\alpha_i + 1)S\alpha_i
\]

- $\text{Ann}(u) = \{ R \in K[\alpha](S\alpha) \mid R u = 0 \}$ recurrences satisfied by u
2. Difference Ore Algebras

- Difference operators: non-commutative, spanned by $\alpha_1, S_{\alpha_1}, \ldots, \alpha_n, S_{\alpha_n}$

\[
\begin{align*}
(\alpha_i u)_{\alpha} &= \alpha_i u_{\alpha} \\
(S_{\alpha_i} u)_{\alpha} &= u_{\alpha_1, \ldots, \alpha_i+1, \ldots, \alpha_n} \\
S_{\alpha_i} \alpha_i &= (\alpha_i + 1)S_{\alpha_i}
\end{align*}
\]

- $\text{Ann}(u) = \{ R \in K[\alpha] \langle S_{\alpha} \rangle \mid R u = 0 \}$ recurrences satisfied by u

Goals

Recurrences for the moments $m_{\alpha} = \int_G x^{\alpha} f(x) \, dx$:

- **Direct problem:** $\mathcal{I} \subseteq \text{Ann}(f)$ \implies $\mathcal{J} \subseteq \text{Ann}(m_{\alpha})$

- **Inverse problem:** Reconstruct G and $\mathcal{I} \subseteq \text{Ann}(f)$ from sufficiently many m_{α}
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

 $\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$

- Action of Ore polynomials: $L\mu =$?
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle 1_G, \varphi \rangle = \int_{-1}^{1} \varphi(x)dx$$
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle \partial_x 1_G, \varphi \rangle$$
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle \partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x \varphi \rangle$$
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle \partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x \varphi \rangle = -\int_{-1}^{1} \varphi'(x)dx$$
Holonomic Measures

- Measure \(\mu = f \mathbf{1}_G \) as a linear functional:

\[
\langle f \mathbf{1}_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)\mathbf{1}_G(x)\,dx = \int_G \varphi(x)f(x)\,dx
\]

- Action of Ore polynomials: \(L \mu = ? \)

Example: Lebesgue measure over a segment

Let \(G = [-1, 1] \), \(f = 1 \), and \(\mu = \mathbf{1}_G \)

\[
\langle \partial_x \mathbf{1}_G, \varphi \rangle = \langle \mathbf{1}_G, -\partial_x \varphi \rangle = \varphi(-1) - \varphi(1)
\]
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle \partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x \varphi \rangle = \varphi(-1) - \varphi(1) \quad \Rightarrow \quad \partial_x 1_G = \delta_{-1} - \delta_1$$

On Moment Problems with Holonomic Functions — F. Bréhard, M. Joldes and J.-B. Lasserre
Holonomic Measures

- Measure $\mu = f 1_G$ as a linear functional:

$$\langle f 1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L \mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle \partial_x^2 1_G, \varphi \rangle = \langle 1_G, (-\partial_x)^2 \varphi \rangle = \varphi'(-1) - \varphi'(1)$$
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:
 \[
 \langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_{G} \varphi(x)f(x)dx
 \]

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

\[
\langle \partial_x^2 1_G, \varphi \rangle = \langle 1_G, (-\partial_x)^2 \varphi \rangle = \varphi'(-1) - \varphi'(1) \quad \Rightarrow \quad \partial_x^2 1_G = \delta'_{-1} - \delta'_{1}
\]
Holonomic Measures

- Measure $\mu = f 1_G$ as a linear functional:
\[
\langle f 1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)\,dx = \int_G \varphi(x)f(x)\,dx
\]

- Action of Ore polynomials: $L \mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

\[
\langle (x^2 - 1)\partial_x 1_G, \varphi \rangle
\]
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle (x^2 - 1)\partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x(x^2 - 1)\varphi \rangle$$
Holonomic Measures

- Measure \(\mu = f 1_G \) as a linear functional:

\[
\langle f 1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)\,dx = \int_G \varphi(x)f(x)\,dx
\]

- Action of Ore polynomials: \(L \mu = ? \)

Example: Lebesgue measure over a segment

Let \(G = [-1,1], \quad f = 1, \quad \text{and} \quad \mu = 1_G \)

\[
\langle (x^2 - 1)\partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x (x^2 - 1) \varphi \rangle = -\int_{-1}^{1} ((x^2-1)\varphi)'\,dx
\]
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

- Action of Ore polynomials: $L \mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle (x^2 - 1)\partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x(x^2 - 1)\varphi \rangle = [(1 - x^2)\varphi]_1^1 = 0$$
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

\[
\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx
\]

- Action of Ore polynomials: $L\mu = ?$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

\[
\langle (x^2 - 1)\partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x (x^2 - 1)\varphi \rangle = [(1 - x^2)\varphi]_1^{-1} = 0 \Rightarrow (x^2 - 1)\partial_x 1_G = 0
\]
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:

$$\langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx$$

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

$$\langle (x^2 - 1)\partial_x 1_G, \varphi \rangle = \langle 1_G, -\partial_x(x^2 - 1)\varphi \rangle = \left[(1 - x^2)\varphi\right]_{-1}^{1} = 0 \Rightarrow (x^2 - 1)\partial_x 1_G = 0$$

- Ore polynomials acting on distributions: $\langle L \ T, \varphi \rangle = \langle T, L^* \varphi \rangle$

 $$x_i^* = x_i \quad \partial^*_{x_i} = -\partial_{x_i} \quad (L_1L_2)^* = L_2^*L_1^*$$
Holonomic Measures

- Measure $\mu = f1_G$ as a linear functional:
 \[
 \langle f1_G, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)f(x)1_G(x)dx = \int_G \varphi(x)f(x)dx
 \]

Example: Lebesgue measure over a segment

Let $G = [-1, 1]$, $f = 1$, and $\mu = 1_G$

\[
\langle (x^2 - 1)\partial_x1_G, \varphi \rangle = \langle 1_G, -\partial_x(x^2 - 1)\varphi \rangle = \left[(1 - x^2)\varphi\right]_1^{-1} = 0 \quad \Rightarrow \quad (x^2 - 1)\partial_x1_G = 0
\]

- Ore polynomials acting on distributions: $\langle L\ T, \varphi \rangle = \langle T, L^*\ \varphi \rangle$
 \[
 x_i^* = x_i \quad \partial_{x_i}^* = -\partial_{x_i} \quad (L_1L_2)^* = L_2^*L_1^*
 \]

- $\text{Ann}(T)$ in $\mathbb{K}[x]\langle \partial_x \rangle$ \quad \Rightarrow \quad holonomic instead of D-finite
Again, with $G = [-1, 1]$, and using $\varphi = x^k$:

$$0 = \langle (1 - x^2) \partial_x 1_G, x^k \rangle$$
– Again, with $G = [-1, 1]$, and using $\varphi = x^k$:

\[
0 = \langle (1 - x^2) \partial_x 1_G, x^k \rangle = \langle 1_G, \partial_x (x^2 - 1)x^k \rangle = \int_{-1}^{1} ((k + 2)x^{k+1} - kx^{k-1}) \, dx
\]
Again, with $G = [-1, 1]$, and using $\varphi = x^k$:

$$0 = \langle (1 - x^2) \partial_x 1_G, x^k \rangle = \langle 1_G, \partial_x (x^2 - 1)x^k \rangle = \int_{-1}^{1} ((k + 2)x^{k+1} - kx^{k-1}) \, dx$$

\Rightarrow Recurrence satisfied by the moments (m_k):

$$(k + 2)m_{k+1} - km_{k-1} = 0$$

This is indeed true...

$$m_k = \int_{-1}^{1} x^k \, dx = \begin{cases} \frac{2}{k+1} & \text{if } k \text{ even} \\ 0 & \text{if } k \text{ odd} \end{cases}$$
Using Integration by Parts

\[\mu = f 1_G \text{ with } G = [-1, 1] \text{ and } f(x) = \exp(-x^2): \]

\[\langle \mu, \varphi \rangle = \int_{-1}^{1} \varphi f \, dx \]
Using Integration by Parts

\[\mu = f 1_G \text{ with } G = [-1,1] \text{ and } f(x) = \exp(-x^2) : \]

\[\int_{-1}^{1} \varphi (\partial_x - 2x)f \, dx \]
Using Integration by Parts

\[- \mu = f 1_G \text{ with } G = [-1, 1] \text{ and } f(x) = \exp(-x^2) : \]

\[
0 = \int_{-1}^{1} \varphi \left(\partial_x - 2x \right) f \, dx
\]
Using Integration by Parts

\[\mu = f 1_G \text{ with } G = [-1, 1] \text{ and } f(x) = \exp(-x^2): \]

\[
0 = \int_{-1}^{1} \varphi \left(\partial_x - 2x \right) f \, dx = \int_{-1}^{1} (-\partial_x - 2x) \varphi \, f \, dx + [\varphi f]_{-1}^{1}
\]
Using Integration by Parts

\[\mu = f \mathbf{1}_G \text{ with } G = [-1, 1] \text{ and } f(x) = \exp(-x^2): \]

\[0 = \int_{-1}^{1} \varphi \left(1 - x^2 \right) (\partial_x - 2x) f \, dx = 0 \]
Using Integration by Parts

\[\mu = f 1_G \text{ with } G = [-1, 1] \text{ and } f(x) = \exp(-x^2): \]

\[0 = \int_{-1}^{1} \varphi \left(1 - x^2 \right) \left(\partial_x - 2x \right) f \, dx = \int_{-1}^{1} \left(\partial_x + 2x \right) \left(x^2 - 1 \right) \varphi \ f \, dx + \left[(x^2 - 1) \varphi f \right]_{-1}^{1} = 0 \]
Using Integration by Parts

\[\mu = f \mathbf{1}_G \text{ with } G = [-1, 1] \text{ and } f(x) = \exp(-x^2) : \]

\[0 = \int_{-1}^{1} \varphi \left(1 - x^2 \right) \left(\partial_x - 2x \right) f \, dx = \int_{-1}^{1} \left(\partial_x + 2x \right) (x^2 - 1) \varphi \ f \, dx + \left[(x^2 - 1) \varphi f \right]_{-1}^{1} = 0 \]

\[\Rightarrow (1 - x^2)(\partial_x - 2x) \in \text{Ann}(\mu) \]
Using Integration by Parts

− \(\mu = f \mathbf{1}_G \) with \(G = [-1, 1] \) and \(f(x) = \exp(-x^2) \):

\[
0 = \int_{-1}^{1} \varphi \left(1 - x^2 \right) \left(\partial_x - 2x \right) f \, dx = \int_{-1}^{1} \left(\partial_x + 2x \right) (x^2 - 1) \varphi \, f \, dx + \left[(x^2 - 1) \varphi f \right]_{-1}^{1} = 0
\]

\Rightarrow (1 - x^2)(\partial_x - 2x) \in \text{Ann}(\mu)

− replace \(\varphi = x^k \) to obtain a recurrence

\[
\int_{-1}^{1} (\partial_x + 2x)(x^2 - 1) x^k \, f(x) \, dx = 0
\]
Using Integration by Parts

\(- \mu = f \mathbf{1}_G \) with \(G = [-1, 1] \) and \(f(x) = \exp(-x^2) \):

\[
0 = \int_{-1}^{1} \varphi \left(1 - x^2 \right) \left(\partial_x - 2x \right) f \, dx = \int_{-1}^{1} \left(\partial_x + 2x \right) (x^2 - 1) \varphi \, f \, dx + \left[(x^2 - 1) \varphi f \right]_{-1}^{1} = 0
\]

\(\Rightarrow (1 - x^2)(\partial_x - 2x) \in \text{Ann}(\mu) \)

- replace \(\varphi = x^k \) to obtain a recurrence

\[
\int_{-1}^{1} \left(2x^{k+3} + kx^{k+1} - kx^{k-1} \right) f(x) \, dx = 0
\]
Using Integration by Parts

− \(\mu = f 1_G\) with \(G = [-1, 1]\) and \(f(x) = \exp(-x^2)\):

\[
0 = \int_{-1}^{1} \varphi \left(1 - x^2\right)(\partial_x - 2x)f \, dx = \int_{-1}^{1} (\partial_x + 2x)(x^2 - 1)\varphi \, f \, dx + \left[(x^2 - 1)\varphi f\right]_{-1}^{1} \quad = 0
\]

⇒ \((1 - x^2)(\partial_x - 2x) \in \text{Ann}(\mu)\)

− replace \(\varphi = x^k\) to obtain a recurrence

\[
\int_{-1}^{1} \left(2x^{k+3} + kx^{k+1} - kx^{k-1}\right) f(x) \, dx = 0
\]

⇒ Recurrence for the \(m_k\):

\[
2m_{k+3} + km_{k+1} - km_{k-1} = 0
\]
The General Case

\[\mu = f \mathbf{1}_G, \quad L \in K[x] \langle \partial_x \rangle \text{ of order } r, \]

- Use Lagrange identity:

\[\varphi (Lf) - (L^* \varphi) f = \partial_x \mathcal{L}_L (f, \varphi) \]

\[\rightarrow \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]
The General Case

\[\mu = f \mathbf{1}_G, \quad L \in \mathbb{K}[x]\langle \partial_x \rangle \text{ of order } r, \quad x = (x_1, \ldots, x_n) \]

- Use **Lagrange identity**:

\[\varphi (Lf) - (L^* \varphi) f = \nabla \cdot \mathcal{L}_L(f, \varphi) \]

\[\rightarrow \quad \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]
The General Case

\[\mu = f \mathbf{1}_G, \quad L \in \mathbb{K}[x]\langle \partial_x \rangle \text{ of order } r, \quad x = (x_1, \ldots, x_n) \]

- Use Lagrange identity:

\[\varphi (L f) - (L^* \varphi) f = \nabla \cdot \mathcal{L}_L(f, \varphi) \]

\[\rightarrow \quad \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]

\[\int_G \varphi (L f) \, dx - \int_G (L^* \varphi) f \, dx = \int_G \nabla \cdot \mathcal{L}_L(f, \varphi) \, dx \]
The General Case

\[\mu = f1_G, \quad L \in K[x] \langle \partial_x \rangle \text{ of order } r, \quad x = (x_1, \ldots, x_n) \]

- Use Lagrange identity:

\[\varphi (Lf) - (L^* \varphi) f = \nabla \cdot \mathcal{L}_L(f, \varphi) \]

\[\Rightarrow \quad \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]

\[\int_G \varphi (Lf) \, dx - \int_G (L^* \varphi) f \, dx = \int_G \nabla \cdot \mathcal{L}_L(f, \varphi) \, dx \]
The General Case

\[\mu = f_{1_G}, \quad L \in \mathbb{K}[x] \langle \partial_x \rangle \text{ of order } r, \quad x = (x_1, \ldots, x_n) \]

- Use Lagrange identity:

\[\varphi (Lf) - (L^* \varphi) f = \nabla \cdot \mathcal{L}_L(f, \varphi) \]

\[\Rightarrow \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]

\[- \int_G \varphi (Lf) \, dx = \int_G (L^* \varphi) f \, dx = \int_G \nabla \cdot \mathcal{L}_L(f, \varphi) \, dx = \int_{\partial G} \mathcal{L}_L(f, \varphi) \cdot \hat{n} \, dS \]

\[\Rightarrow \text{ use Stokes' theorem} \]
The General Case

\[\mu = f1_G, \quad L \in K[x, \partial_x] \text{ of order } r, \quad x = (x_1, \ldots, x_n) \]

- Use Lagrange identity:

\[\varphi (L f) - (L^* \varphi) f = \nabla \cdot \mathcal{L}_L (f, \varphi) \]

\[\rightarrow \quad \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]

\[- \int_G g^r \varphi (L f) \, dx - \int_G (L^* g^r \varphi) f \, dx = \int_G \nabla \cdot \mathcal{L}_L (f, g^r \varphi) \, dx = \int_{\partial G} \mathcal{L}_L (f, g^r \varphi) \cdot \vec{n} \, dS \]

\[\rightarrow \quad \text{where } g = 0 \text{ on } \partial G \quad \rightarrow \quad \text{use Stokes' theorem} \]
The General Case

\[\mu = f \chi_G, \quad L \in K[x](\partial_x) \text{ of order } r, \quad x = (x_1, \ldots, x_n) \]

- Use Lagrange identity:

\[\varphi (Lf) - (L^* \varphi) f = \nabla \cdot \mathcal{L}_L(f, \varphi) \]

\[\Rightarrow \mathcal{L}_L \text{ bilinear concomitant in } f, \varphi \text{ with derivatives of order } \leq r - 1 \]

\[= 0 \]

\[\int_G g^r \varphi(Lf) \, dx - \int_G (L^* g^r \varphi) f \, dx = \int_G \nabla \cdot \mathcal{L}_L(f, g^r \varphi) \, dx = \int_{\partial G} \mathcal{L}_L(f, g^r \varphi) \cdot \bar{n} \, dS \]

\[\Rightarrow \text{ if } L \in \text{Ann}(f) \quad \Rightarrow \text{ where } g = 0 \text{ on } \partial G \quad \Rightarrow \text{ use Stokes’ theorem} \]

\[\Rightarrow \overline{L} = g^r L \in \text{Ann}(\mu) \]
Translate \(\bar{L} = g^r L \in \text{Ann}(\mu) \) into a recurrence on \((m_\alpha)\):

\[
\begin{align*}
 x_i & \rightarrow S_{\alpha_i} \\
 \partial_{x_i} & \rightarrow -\alpha_i S_{\alpha_i}^{-1}
\end{align*}
\]
Translate $\overline{L} = g^r L \in \mathcal{A}nn(\mu)$ into a recurrence on (m_{α}):

\[
\begin{align*}
 x_i &\rightarrow S_{\alpha_i} \\
 \partial x_i &\rightarrow -\alpha_i S_{\alpha_i}^{-1}
\end{align*}
\]

Direct Problem

1. $\{L_1, \ldots, L_k\} \subseteq \mathcal{A}nn(f)$ D-finite
2. $\{\overline{L}_1, \ldots, \overline{L}_k\} \subseteq \mathcal{A}nn(\mu)$
3. Translate into $\{R_1, \ldots, R_k\} \subseteq \mathcal{A}nn(m_{\alpha})$
4. Gröbner basis algo on $\{R_1, \ldots, R_k\}$
Translate $\bar{L} = g^r L \in \mathcal{A}nn(\mu)$ into a recurrence on (m_α):

$$
\begin{align*}
 x_i & \rightarrow S_{\alpha_i} \\
 \partial x_i & \rightarrow -\alpha_i S_{\alpha_i}^{-1}
\end{align*}
$$

Direct Problem

1. $\{L_1, \ldots, L_k\} \subseteq \mathcal{A}nn(f)$ D-finite
2. $\{\bar{L}_1, \ldots, \bar{L}_k\} \subseteq \mathcal{A}nn(\mu)$
3. Translate into $\{R_1, \ldots, R_k\} \subseteq \mathcal{A}nn(m_\alpha)$
4. Gröbner basis algo on $\{R_1, \ldots, R_k\}$

Theorem

If $f(x) = \exp(p(x))$ and $g = 0$ on ∂G s.t.

$$
\{x \in \mathbb{C}^n \mid g(x) = 0 \text{ and } \nabla g(x) = 0\} = \emptyset,
$$

then the recurrences system is holonomic.

\Rightarrow Conjecture for the general case?
Translate $\bar{L} = g^r L \in \text{Ann}(\mu)$ into a recurrence on (m_α):

$\begin{align*}
\text{Direct Problem} & \\
\forall i & : \ x_i \to S_{\alpha_i} \\
\forall i & : \ \partial x_i \to -\alpha_i S_{\alpha_i}^{-1}
\end{align*}$

$\begin{align*}
\text{Inverse Problem} & \\
\text{1.} & : \ \{L_1, \ldots, L_k\} \subseteq \text{Ann}(f) \text{ D-finite} \\
\text{2.} & : \ \{\bar{L}_1, \ldots, \bar{L}_k\} \subseteq \text{Ann}(\mu) \\
\text{3.} & : \ \text{Translate into } \{R_1, \ldots, R_k\} \subseteq \text{Ann}(m_\alpha) \\
\text{4.} & : \ \text{Gröbner basis algo on } \{R_1, \ldots, R_k\}
\end{align*}$

Theorem

If $f(x) = \exp(p(x))$ and $g = 0$ on ∂G s.t.
$
\{x \in C^n \mid g(x) = 0 \text{ and } \nabla g(x) = 0\} = \emptyset,
$
then the recurrences system is holonomic.

⇒ Conjecture for the general case?

⇒ Reconstruct \bar{L}_i, then g and L_i from the given moments m_α

⇒ Translation $\bar{L}_i \leftrightarrow R_i$ is linear

⇒ Holonomicity not needed
1 Introduction

2 Holonomic Distributions and Recurrences on Moments

3 Inverse Problem: Algorithms and Proofs
 - Exponential-Polynomial Densities
 - The General Case with D-Finite Densities

4 Limits and Perspectives
To reconstruct g vanishing on ∂G and $L \in \text{Ann}(f)$ of order r:

1. Make an ansatz \tilde{L} for $\bar{L} = g^r L \in \text{Ann}(\mu)$

2. Find the coefficients of \tilde{L} by solving the linear system:

$$
\langle \tilde{L} \mu, x^\alpha \rangle = \langle \mu, \tilde{L}^* x^\alpha \rangle = \int_G (\tilde{L}^* x^\alpha) f(x) \, dx = 0, \quad |\alpha| \leq N \quad (LS_N)
$$

requiring moments m_α for $|\alpha| \leq N + \ldots$

3. Extract g and L from \tilde{L} using (numerical) GCDs
Inverse Problem — Roadmap and Issues

- To reconstruct g vanishing on ∂G and $L \in \text{Ann}(f)$ of order r:

 1. Make an ansatz \tilde{L} for $L = g^r L \in \text{Ann}(\mu)$
 2. Find the coefficients of \tilde{L} by solving the linear system:

\[
\langle \tilde{L} \mu, x^\alpha \rangle = \langle \mu, \tilde{L}^* x^\alpha \rangle = \int_G (\tilde{L}^* x^\alpha) f(x) \, dx = 0, \quad |\alpha| \leq N \quad (LS_N)
\]

 requiring moments m_α for $|\alpha| \leq N + \ldots$

 3. Extract g and L from \tilde{L} using (numerical) GCDs

- Issues to be handled:

 ○ **False** solutions in (LS_N): $\tilde{L} \notin \text{Ann}(\mu)$?
 ○ How many moments m_α: a priori bounds on N?
 ○ Can g and L be always extracted from $\tilde{L} \in \text{Ann}(\mu)$?
Outline

1 Introduction

2 Holonomic Distributions and Recurrences on Moments

3 Inverse Problem: Algorithms and Proofs
 - Exponential-Polynomial Densities
 - The General Case with D-Finite Densities

4 Limits and Perspectives
Reconstruction of Exp-Poly Densities

\[\mu = f1_G \text{ with } f(x) = \exp(p(x)) \text{ for } p \in \mathbb{K}[x]_s \text{ and } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G \]

\[\overline{L}_i = g(\partial x_i - p'_{x_i}) \in \text{Ann}(\mu) \]
Reconstruction of Exp-Poly Densities

\[\mu = f \mathbf{1}_G \] with \(f(x) = \exp(p(x)) \) for \(p \in \mathbb{K}[x]_s \) and \(g \in \mathbb{K}[x]_d \) vanishing on \(\partial G \)

\[\overline{L}_i = g \partial x_i - gp'_{x_i} \in \text{Ann}(\mu) \]
Reconstruction of Exp-Poly Densities

\[\mu = f_1 \mathbf{1}_G \] with \(f(x) = \exp(p(x)) \) for \(p \in \mathbb{K}[x]_s \) and \(g \in \mathbb{K}[x]_d \) vanishing on \(\partial G \)

\[\overline{L}_i = g \partial x_i - \underbrace{g p'_{x_i}}_{h_i} \in \text{Ann}(\mu) \]

Algorithm RECONSTRUCTEXPPOLY

Input: Moments \(m_{\alpha} \) of \(\mu \) for \(|\alpha| \leq N + d + s - 1 \)

Output: Polynomials \(\widetilde{g} \) and \(\widetilde{p} \)
Reconstruction of Exp-Poly Densities

\[- \mu = f \mathbf{1}_G \text{ with } f(x) = \exp(p(x)) \text{ for } p \in \mathbb{K}[x]_s \text{ and } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G \]

\[\bar{L}_i = g \partial x_i - g p'_{x_i} \in \text{Ann}(\mu) \]

Algorithm \textsc{ReconstructExpPoly}

Input: Moments \(m_\alpha \) of \(\mu \) for \(|\alpha| \leq N + d + s - 1 \)

Output: Polynomials \(\bar{g} \) and \(\bar{p} \)

1. Build ansatz \(\bar{L}_i = \bar{g} \partial x_i - \bar{h}_i \) for \(1 \leq i \leq n \)

2. Compute coefficients of \(\bar{g}, \bar{h}_i \) with nontrivial solution of

\[\langle \mu, \bar{L}_i^* x^\alpha \rangle = 0, \quad 1 \leq i \leq n, \quad |\alpha| \leq N \quad (LS_N) \]

3. \(\bar{p} \leftarrow \sum_{i=1}^{n} \int_0^{x_i} \bar{p}_i(0, \ldots, t_i, x_{i+1}, \ldots, x_n) \, dt_i \quad \text{where} \quad \bar{p}_i = \bar{h}_i / \bar{g} \)
Reconstruction of Exp-Poly Densities

\[\mu = f \mathbf{1}_G \text{ with } f(x) = \exp(p(x)) \text{ for } p \in \mathbb{K}[x]_s \text{ and } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G \]

\[\overline{L}_i = g \partial_{x_i} - g p'_{x_i} \in \text{Ann}(\mu) \]

Algorithm RECONSTRUCTEXP POLY

Input: Moments \(m_\alpha \) of \(\mu \) for \(|\alpha| \leq N + d + s - 1 \)
Output: Polynomials \(\tilde{g} \) and \(\tilde{p} \)

1. Build ansatz \(\tilde{L}_i = \tilde{g} \partial_{x_i} - \tilde{h}_i \) for \(1 \leq i \leq n \)
2. Compute coefficients of \(\tilde{g}, \tilde{h}_i \) with nontrivial solution of

\[\langle \mu, \tilde{L}_i x^\alpha \rangle = 0, \quad 1 \leq i \leq n, \quad |\alpha| \leq N \]

(LS\(_N\))

3. \(\tilde{p} \leftarrow \sum_{i=1}^{n} \int_{0}^{x_i} \tilde{p}_i(0, \ldots, t_i, x_{i+1}, \ldots, x_n) \, dt_i \) where \(\tilde{p}_i = \tilde{h}_i/\tilde{g} \)

Theorem — Correctness of RECONSTRUCTEXP POLY

If \(N \geq 3d + s - 1 \), then RECONSTRUCTEXP POLY computes:

- \(\tilde{g} = \lambda g \) with \(\lambda \neq 0 \)
- \(\tilde{p} = p - p(0) \)
Theorem — Correctness of \textsc{ReconstructExpPoly}

If $N \geq ???$, then \textsc{ReconstructExpPoly} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.
Theorem — Correctness of \texttt{RECONSTRUCTExpPoly}

If $N \geq \text{???}$, then \texttt{RECONSTRUCTExpPoly} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.
1. Reconstruction of p

2. Reconstruction of g
If $N \geq ???$, then RECONSTRUCT_EXP_POLY computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p

 For all $\varphi \in \mathbb{K}[x]_N$:

 $$0 = \langle \tilde{L}\mu, \varphi \rangle$$

2. Reconstruction of g
Theorem — Correctness of $\text{ReconstructExpPoly}$

If $N \geq ???$, then $\text{ReconstructExpPoly}$ computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p

 For all $\varphi \in \mathbb{K}[x]_N$:

 $$0 = \langle L\mu, \varphi \rangle = \int_G \varphi (\tilde{g} \partial x_i - \tilde{h}_i) f \, dx + \int_{\partial G} \tilde{g} \varphi f \, \tilde{e}_i \cdot \tilde{n} \, dS$$

2. Reconstruction of g
Theorem — Correctness of \textsc{ReconstructExpPoly}

If $N \geq \ldots$, then \textsc{ReconstructExpPoly} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p for all $\varphi \in \mathbb{K}[x]_N$:

$$0 = \langle \mathcal{L}_\mu, \varphi \rangle = \int_G \varphi (\tilde{g} p'_{x_i} - \tilde{h}_i) f \, dx + \int_{\partial G} \tilde{g} \varphi f \, \vec{e}_i \cdot \vec{n} \, dS$$

2. Reconstruction of g
Theorem — Correctness of \textsc{ReconstructExpPoly}

If $N \geq 3d + s - 1$, then \textsc{ReconstructExpPoly} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p

 For all $\varphi \in \mathbb{K}[x]_N$:

 $$0 = \langle \mathcal{L}_\mu, \varphi \rangle = \int_G \varphi (\tilde{g} p'_x - \tilde{h}_i) f \, dx + \int_{\partial G} \tilde{g} \varphi f \, \bar{e}_i \cdot \bar{n} \, dS$$

 $$= 0$$

 Take $\varphi = (\tilde{g} p'_x - \tilde{h}_i) g^2$ of degree $3d + s - 1$

2. Reconstruction of g
Theorem — Correctness of \textsc{ReconstructExpPoly}

If $N \geq 3d + s - 1$, then \textsc{ReconstructExpPoly} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p

 For all $\varphi \in \mathbb{K}[x]_N$:

 $$0 = \langle \mathcal{L}_\mu, \varphi \rangle = \int_G \varphi (\tilde{g} p_x' - \tilde{h}_i) f \, dx + \int_{\partial G} \tilde{g} \varphi f \, \vec{e}_i \cdot \vec{n} \, dS$$

 \[=\]

 \[
 \Rightarrow \text{Take } \varphi = (\tilde{g} p_x' - \tilde{h}_i) g^2 \text{ of degree } 3d + s - 1
 \]

 \[
 \Rightarrow \text{Hence } (\star) = 0 \Rightarrow g^2 (\tilde{g} p_x' - \tilde{h}_i)^2 f = 0 \text{ on } G \Rightarrow p_x' = \tilde{h}_i / \tilde{g}
 \]

2. Reconstruction of g
Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If $N \geq 3d + s - 1$, then $\text{RECONSTRUCTEXPPOLY}$ computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p for all $\varphi \in K[X]_N$:

 $$0 = \langle \tilde{L}_\mu, \varphi \rangle = \int_G \varphi (\tilde{g} p'_x - \tilde{h}_i) f \, dx + \int_{\partial G} \tilde{g} \varphi f \vec{e}_i \cdot \vec{n} \, dS$$

 \[(\ast)\]

 \[\Rightarrow\ T\ake \ \varphi = (\tilde{g} p'_x - \tilde{h}_i) g^2 \text{ of degree } 3d + s - 1\]

 \[\Rightarrow\ Henc\e \ (\ast) = 0 \quad \Rightarrow \quad g^2 (\tilde{g} p'_x - \tilde{h}_i)^2 f = 0 \text{ on } G \quad \Rightarrow \quad p'_x = \tilde{h}_i / \tilde{g}\]

2. Reconstruction of g
Theorem — Correctness of \textsc{ReconstructExpPoly}

If \(N \geq 3d + s - 1 \), then \textsc{ReconstructExpPoly} computes:

- \(\tilde{g} = \lambda g \) with \(\lambda \neq 0 \)
- \(\tilde{p} = p - p(0) \)

Proof.

1. Reconstruction of \(p \)

 For all \(\varphi \in \mathbb{K}[x]_N \):

 \[
 0 = \langle \tilde{L}_\mu, \varphi \rangle = \left(\int_G \varphi (\tilde{g} p'_{x_i} - \tilde{h}_i) f \, dx \right) + \int_{\partial G} \tilde{g} \varphi f \, \tilde{e}_i \cdot \tilde{n} \, dS = 0
 \]

 \(\Rightarrow \) Take \(\varphi = (\tilde{g} p'_{x_i} - \tilde{h}_i) g^2 \) of degree \(3d + s - 1 \)

 \(\Rightarrow \) Hence \((*) = 0 \) \(\Rightarrow \) \(g^2(\tilde{g} p'_{x_i} - \tilde{h}_i)^2 f = 0 \) on \(G \) \(\Rightarrow \) \(p'_{x_i} = \tilde{h}_i/\tilde{g} \)

2. Reconstruction of \(g \)

 For all \(\varphi \in \mathbb{K}[x]_N \):

 \[
 \int_{\partial G} \tilde{g} \varphi f \, \tilde{e}_i \cdot \tilde{n} \, dS = 0
 \]
Theorem — Correctness of \texttt{RECONSTRUCT_EXP_POLY}

If $N \geq 3d + s - 1$, then \texttt{RECONSTRUCT_EXP_POLY} computes:

\begin{itemize}
 \item $\tilde{g} = \lambda g$ with $\lambda \neq 0$
 \item $\tilde{p} = p - p(0)$
\end{itemize}

Proof.

1. Reconstruction of p

\begin{equation}
0 = \langle \tilde{L}_\mu, \varphi \rangle = \int_G \varphi (\tilde{g} p'_{x_i} - \tilde{h}_i) f \, dx + \int_{\partial G} \tilde{g} \varphi f \, \hat{e}_i \cdot \hat{n} \, dS
\end{equation}

\begin{itemize}
 \item Take $\varphi = (\tilde{g} p'_{x_i} - \tilde{h}_i) g^2$ of degree $3d + s - 1$
 \item Hence $(\ast) = 0 \Rightarrow g^2 (\tilde{g} p'_{x_i} - \tilde{h}_i)^2 f = 0 \text{ on } G \Rightarrow p'_{x_i} = \tilde{h}_i / \tilde{g}$
\end{itemize}

2. Reconstruction of g

\begin{equation}
\int_{\partial G} \tilde{g} \varphi f \, \hat{e}_i \cdot \hat{n} \, dS = 0
\end{equation}

\begin{itemize}
 \item $g'_{x_i} / \| \nabla g \|$
Theorem — Correctness of \textsc{reconstructExpPoly}

If $N \geq 3d + s - 1$, then \textsc{reconstructExpPoly} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p

 for all $\varphi \in \mathbb{K}[x]_N$:

 \[0 = \langle \mathcal{L}_\mu, \varphi \rangle = \int_G \varphi \left(\tilde{g} p'_x - \tilde{h}_i \right) f \, dx + \int_{\partial G} \tilde{g} \varphi f \, \hat{e}_i \cdot \hat{n} \, dS \]

 $\hspace{1cm} (\ast) \hspace{1cm}$

 \Rightarrow Take $\varphi = (\tilde{g} p'_x - \tilde{h}_i) g^2$ of degree $3d + s - 1$

 \Rightarrow Hence $(\ast) = 0$ \Rightarrow $g^2 (\tilde{g} p'_x - \tilde{h}_i)^2 f = 0$ on G \Rightarrow $p'_x = \tilde{h}_i / \tilde{g}$

2. Reconstruction of g

 for all $\varphi \in \mathbb{K}[x]_N$:

 \[\int_{\partial G} \tilde{g} \varphi f \, \hat{e}_i \cdot \hat{n} \, dS = 0 \]

 $\hspace{1cm} = g'_x / \| \nabla g \|

 \Rightarrow Take $\varphi = \tilde{g} g'_x$ of degree $2d - 1$
Theorem — Correctness of \texttt{RECONSTRUCTEXP\textsc{POLY}}

If $N \geq 3d + s - 1$, then \texttt{RECONSTRUCTEXP\textsc{POLY}} computes:

- $\tilde{g} = \lambda g$ with $\lambda \neq 0$
- $\tilde{p} = p - p(0)$

Proof.

1. Reconstruction of p

 For all $\varphi \in K[x]_N$:

 $$0 = (\tilde{L}_\mu, \varphi) = \int_G \varphi \left((\tilde{g} p'_{x_i} - \tilde{h}_i) f dx \right) + \int_{\partial G} \tilde{g} \varphi f \mathbf{e}_i \cdot \mathbf{n} dS$$

 (\ast)

 \[\Rightarrow \text{Take } \varphi = (\tilde{g} p'_{x_i} - \tilde{h}_i) g^2 \text{ of degree } 3d + s - 1 \]

 \[\Rightarrow \text{Hence } (\ast) = 0 \Rightarrow g^2 (\tilde{g} p'_{x_i} - \tilde{h}_i)^2 f = 0 \text{ on } G \Rightarrow p'_{x_i} = \tilde{h}_i / \tilde{g} \]

2. Reconstruction of g

 For all $\varphi \in K[x]_N$:

 $$\int_{\partial G} \tilde{g} \varphi f \mathbf{e}_i \cdot \mathbf{n} dS = 0$$

 \[= \frac{g'_{x_i}}{\| \nabla g \|} \] \(\ast\)

 \[\Rightarrow \text{Take } \varphi = \tilde{g} g'_{x_i} \text{ of degree } 2d - 1 \Rightarrow \tilde{g}^2 g'_{x_i} \frac{f}{\| \nabla g \|} = 0 \text{ on } \partial G \Rightarrow \tilde{g} = 0 \text{ on } \partial G \]
Example — Algebraic Support, Gaussian Measure

→ Reconstruction of:

\[f(x, y) = \exp(-x^2 + xy - y^2/2) \quad \text{and} \quad g(x, y) = (x^2 - 9/10)^2 + (y^2 - 11/10)^2 - 1 \]

Moments \((m_{ij})_{i+j\leq18}\) with 10 digits of accuracy
Reconstruction of:

\[f(x, y) = \exp(-x^2 + xy - y^2/2) \quad \text{and} \quad g(x, y) = (x^2 - 9/10)^2 + (y^2 - 11/10)^2 - 1 \]

Moments \((m_{ij})_{i+j \leq 18}\) with 4, 6, 8 digits of accuracy
Reconstruction of:

\[f(x, y) = \exp(-x^2 + xy - y^2/2) \quad \text{and} \quad g(x, y) = (x^2 - 9/10)^2 + (y^2 - 11/10)^2 - 1 \]

Moments \((m_{ij})_{i+j \leq 18}\) with 8 digits of accuracy
Outline

1 Introduction

2 Holonomic Distributions and Recurrences on Moments
 - Exponential-Polynomial Densities
 - The General Case with D-Finite Densities

3 Inverse Problem: Algorithms and Proofs

4 Limits and Perspectives
\[\mu = f 1_G \text{ with } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G, \text{ and } \{L_1, \ldots, L_n\} \text{ rectangular system for } f:\]

\[L_i = q_{i_1} \partial_{x_i}^{r_i} + \cdots + q_{i_1} \partial_{x_i} + q_{i_0} \in \text{Ann}(f) \cap \mathbb{K}[x] \langle \partial_{x_i} \rangle \]
\[\mu = f \mathbf{1}_G \text{ with } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G, \text{ and } \{L_1, \ldots, L_n\} \text{ rectangular system for } f: \]

\[L_i = g^{r_i}(q_{i1} \partial_{x_i} + \cdots + q_{i1} \partial_{x_i} + q_{i0}) \in \text{Ann}(\mu) \cap \mathbb{K}[x](\partial_{x_i}) \quad h_{ij} = g^{r_i} q_{ij} \in \mathbb{K}[x]_s \]
\[\mu = f 1_G \text{ with } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G, \text{ and } \{ L_1, \ldots, L_n \} \text{ rectangular system for } f: \]
\[\bar{L}_i = g^{r_i} (q_{ir_i} \partial_{x_i}^{r_i} + \cdots + q_{i1} \partial_{x_i} + q_{i0}) \in \text{Ann}(\mu) \cap \mathbb{K}[x] \langle \partial_{x_i} \rangle \quad h_{ij} = g^{r_i} q_{ij} \in \mathbb{K}[x]_s \]

Algorithm **ReconstructDensity**

Input: Moments \(m_\alpha \) of \(\mu \) for \(|\alpha| \leq N + s \)

Output: A rectangular system \(\{ \bar{L}_1, \ldots, \bar{L}_n \} \) for \(f \)
Density and Support Reconstruction in the General Case

\[\mu = f 1_G \text{ with } g \in \mathbb{K}[x]_d \text{ vanishing on } \partial G, \text{ and } \{L_1, \ldots, L_n\} \text{ rectangular system for } f:\]

\[L_i = g^{r_i}(q_{i_1} x_i + \cdots + q_{i_1} x_i + q_{i_0}) \in \text{Ann}(\mu) \cap \mathbb{K}[x] (\partial x_i) \quad h_{ij} = g^{r_i} q_{ij} \in \mathbb{K}[x] s \]

Algorithm \textsc{ReconstructDensity}

Input: Moments \(m_{\alpha} \) of \(\mu \) for \(|\alpha| \leq N + s\)

Output: A rectangular system \(\{\widetilde{L}_1, \ldots, \widetilde{L}_n\} \) for \(f \)

1. Build ansatz \(\widetilde{L}_i = h_{i_1} x_{i_1} + \cdots + h_{i_0} \) for \(1 \leq i \leq n \)

2. Compute coefficients of \(\widetilde{h}_{ij} \) with nontrivial solution of

\[\langle \mu, \widetilde{L}_i^{*} x^\alpha \rangle = 0, \quad 1 \leq i \leq n, \quad |\alpha| \leq N \]

3. Extract (numerical) GCD polynomial factor in \(\widetilde{L}_i \)
\[\mu = f1_G \text{ with } g \in K[x]_d \text{ vanishing on } \partial G, \text{ and } \{L_1, \ldots, L_n\} \text{ rectangular system for } f: \]
\[\bar{L}_i = g^{r_i}(q_{i1}\partial_{x_i} + \cdots + q_{i0}) \in \text{Ann}(\mu) \cap K[x] \langle \partial x_i \rangle \quad h_{ij} = g^{r_i} q_{ij} \in K[x]_s \]

Algorithm ReconstructDensity

Input: Moments \(m_{\alpha} \) of \(\mu \) for \(|\alpha| \leq N + s \)

Output: A rectangular system \(\{\bar{L}_1, \ldots, \bar{L}_n\} \) for \(f \)

1. Build ansatz \(\bar{L}_i = \bar{h}_{ir_i} \partial_{x_i} + \cdots + \bar{h}_{i0} \) for \(1 \leq i \leq n \)
2. Compute coefficients of \(\bar{h}_{ij} \) with nontrivial solution of
 \[\langle \mu, \bar{L}_i^* x^\alpha \rangle = 0, \quad 1 \leq i \leq n, \quad |\alpha| \leq N \]
3. Extract (numerical) GCD polynomial factor in \(\bar{L}_i \)

Algorithm ReconstructSupport

Input: Rectangular \(\{L_1, \ldots, L_n\} \) and \(m_{\alpha} \) for \(|\alpha| \leq N + dr + \max_{ij} \{\deg(q_{ij}) - j\} \)

Output: Polynomial \(\bar{g} \in K[x]_d \)
Density and Support Reconstruction in the General Case

- \(\mu = f 1_G \) with \(g \in \mathbb{K}[x]_d \) vanishing on \(\partial G \), and \(\{L_1, \ldots, L_n\} \) rectangular system for \(f \):

\[
\overline{L}_i = g^{r_i}(q_{ir_i} \partial_{x_i}^{r_i} + \cdots + q_{i1} \partial_{x_i} + q_{i0}) \in \text{Ann}(\mu) \cap \mathbb{K}[x] \langle \partial_{x_i} \rangle \quad h_{ij} = g^{r_i} q_{ij} \in \mathbb{K}[x]
\]

Algorithm \texttt{RECONSTRUCTDENSITY}

\begin{itemize}
 \item \textbf{Input:} Moments \(m_{\alpha} \) of \(\mu \) for \(|\alpha| \leq N + s \)
 \item \textbf{Output:} A rectangular system \(\{\overline{L}_1, \ldots, \overline{L}_n\} \) for \(f \)
\end{itemize}

1. Build ansatz \(\overline{L}_i = \overline{h}_{ir_i} \partial_{x_i}^{r_i} + \cdots + \overline{h}_{i0} \) for \(1 \leq i \leq n \)
2. Compute coefficients of \(\overline{h}_{ij} \) with nontrivial solution of
 \[
 \langle \mu, (\overline{L}_i)^* x^\alpha \rangle = 0, \quad 1 \leq i \leq n, \quad |\alpha| \leq N
 \]
3. Extract (numerical) GCD polynomial factor in \(\overline{L}_i \)

Algorithm \texttt{RECONSTRUCTSUPPORT}

\begin{itemize}
 \item \textbf{Input:} Rectangular \(\{L_1, \ldots, L_n\} \) and \(m_{\alpha} \) for \(|\alpha| \leq N + dr + \max_{ij}\{\deg(q_{ij}) - j\} \)
 \item \textbf{Output:} Polynomial \(\overline{g} \in \mathbb{K}[x]_d \)
\end{itemize}

1. Compute coefficients of ansatz \(\overline{h} \in \mathbb{K}[x]_{dr} \) with nontrivial solution of
 \[
 \langle \mu, (\overline{h} L_i)^* x^\alpha \rangle = 0, \quad 1 \leq i \leq n, \quad |\alpha| \leq N
 \]
2. \(\overline{g} \leftarrow \) (numerical) GCD of \(\{\overline{h}, \overline{h}_{x_1}', \ldots, \overline{h}_{x_n}'\} \)
Density and Support Reconstruction in the General Case

Theorem — Correctness of \(\text{ReconstructDensity} \)

For \(N \) large enough, the rectangular system \(\{\tilde{L}_1, \ldots, \tilde{L}_n\} \) computed by \(\text{ReconstructDensity} \) is in \(\text{Ann}(f) \).
Theorem — Correctness of \texttt{ReconstructDensity}

For \(N \) large enough, the rectangular system \(\{\tilde{L}_1, \ldots, \tilde{L}_n\} \) computed by \texttt{ReconstructDensity} is in \(\text{Ann}(f) \).

Theorem — Correctness of \texttt{ReconstructSupport}

\texttt{ReconstructSupport} computes \(\tilde{g} = \lambda g \) with \(\lambda \neq 0 \) whenever \(q_{ir} \neq 0 \) on \(\partial G \) and \(N \geq (2r - 1)d + (d - 1)b + s \) where:

- \(r = \max_{1 \leq i \leq n} r_i \), orders of the \(L_i \)
- \(b = r \mod 2 \)
- \(s = \max_{1 \leq i \leq n} \{\deg(q_{ir})\} \) maximal degree of the head coefficients
Theorem — Correctness of \texttt{RECONSTRUCT_SUPPORT}

\texttt{RECONSTRUCT_SUPPORT} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

\begin{align*}
N / \text{uni2A7E} & (2r-1)d + (d-1)b + s \\
\circ q_{ir} & \neq 0 \text{ on } \partial G
\end{align*}

Proof.

\Rightarrow Contradiction: $\tilde{h}_0 = 0$ on ∂G, hence $g / \text{divides.alt0}$ h_0.

\begin{align*}
\text{Proof.} \quad & \\
\text{Take } \phi = q_{ir} h_0 g^{r-1-k} g' x_i b \text{ of deg } \text{uni2A7D} (2r-1)d + (d-1)b + s, \text{ so that } g^{r-1} / \text{divides.alt0} \tilde{h} \phi \Rightarrow 0 = \text{integral.disp} \partial G \partial r-1 x_i (q_{ir} \tilde{h} \phi) g' x_i / \text{parallel.alt1} \nabla g / \text{parallel.alt1} f dS = (r-1)! / \text{integral.disp} \partial G / \text{parenleft.alt3} g' x_i r+b 2q_{ir} h_0 / \text{parenright.alt3} 2f / \text{parallel.alt1} \nabla g / \text{parallel.alt1} dS
\end{align*}
Theorem — Correctness of \textsc{ReconstructSupport}

\textsc{ReconstructSupport} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

Proof.
\begin{itemize}
 \item $0 = \langle \tilde{h} L_i \mu, \varphi \rangle$
 \item $\text{for } \varphi \in K[x]^N$
\end{itemize}
Theorem — Correctness of \texttt{ReconstructSupport}

\texttt{ReconstructSupport} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

\[\text{Suppose for contradiction that } \tilde{h} = gh \text{ with } g \neq 0 \text{ and } k < r \]

\[= \int_G \varphi \tilde{h}(L_i f) dx - \int_{\partial G} \mathcal{L}_{L_i}(f, \tilde{h}) \tilde{e}_i \cdot \tilde{n} dS \quad \text{for } \varphi \in K[x]_N \]
Theorem — Correctness of \textsc{ReconstructSupport}

\textsc{ReconstructSupport} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

$$N / \text{uni2A7E} (2r - 1)d + (d - 1)b + s \neq 0 \text{ on } \partial G$$

Proof. \quad $0 = \langle \tilde{h} L_i \mu, \varphi \rangle = \int_G \varphi \tilde{h}(L_i f) dx - \int_{\partial G} \mathcal{L}_i (f, \tilde{h} \varphi) \hat{e}_i \cdot \hat{n} dS \quad \text{for } \varphi \in \mathbb{K}[x]_N$
Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes \(\tilde{g} = \lambda g \) with \(\lambda \neq 0 \) whenever:

\[
\text{Proof.} \quad 0 = \langle \tilde{h} L_i \mu, \varphi \rangle = \int_G \varphi \tilde{h} (L_i f) \, dx - \int_{\partial G} \mathcal{L}_i (f, \tilde{h} \varphi) \bar{e}_i \cdot \bar{n} \, dS \quad \text{for } \varphi \in K[x]_N
\]

\[- \text{ Suppose for contradiction that } \tilde{h} = g^k h_0 \text{ with } g \nmid h_0 \text{ and } k < r \]
Theorem — Correctness of \textsc{ReconstructSupport}

\textsc{ReconstructSupport} computes \(\tilde{g} = \lambda g \) with \(\lambda \neq 0 \) whenever:

\[
0 = \langle \tilde{h} L_i \mu, \varphi \rangle = \int_G \varphi \tilde{h}(L_i f) \, dx - \int_{\partial G} \mathcal{L}_{L_i}(f, \tilde{h} \varphi) \, \tilde{e}_i \cdot \tilde{n} \, dS \quad \text{for } \varphi \in K[x]_N
\]

Proof.

- Suppose for contradiction that \(\tilde{h} = g^k h_0 \) with \(g \nmid h_0 \) and \(k < r \)

\[
\mathcal{L}_{L_i}(f, \tilde{h} \varphi) = f \left[q_{i_1} \tilde{h} \varphi - \partial_{x_i}(q_{i_2} \tilde{h} \varphi) + \cdots + (-1)^{r-1} \partial_{x_i}^{r-1}(q_{i_r} \tilde{h} \varphi) \right]
+ \partial_{x_i}(f) \left[q_{i_2} \tilde{h} \varphi - \partial_{x_i}(q_{i_3} \tilde{h} \varphi) + \cdots + (-1)^{r-2} \partial_{x_i}^{r-2}(q_{i_r} \tilde{h} \varphi) \right]
+ \cdots
+ \partial_{x_i}^{r-1}(f) q_{i_r} \tilde{h} \varphi.
\]
Theorem — Correctness of \textsc{ReconstructSupport}

\textsc{ReconstructSupport} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

- $N \geq (2r - 1)d + (d - 1)b + s$

Proof.

- $0 = \langle \tilde{h} L_i \mu, \varphi \rangle = \int_G \varphi \tilde{h}(L_i f) dx - \int_{\partial G} \mathcal{L}_{L_i}(f, \tilde{h}\varphi) \bar{e}_i \cdot \vec{n} dS$ for $\varphi \in K[x]_N$

- Suppose for contradiction that $\tilde{h} = g^k h_0$ with $g \not| h_0$ and $k < r$

\[
\mathcal{L}_{L_i}(f, \tilde{h}\varphi) = f \left[q_{i1} \tilde{h}\varphi - \partial_{x_i}(q_{i2} \tilde{h}\varphi) + \ldots + (-1)^{r-1} \partial_{x_i}^{r-1}(q_{ir} \tilde{h}\varphi) \right] \\
+ \partial_{x_i}(f) \left[q_{i2} \tilde{h}\varphi - \partial_{x_i}(q_{i3} \tilde{h}\varphi) + \ldots + (-1)^{r-2} \partial_{x_i}^{r-2}(q_{ir} \tilde{h}\varphi) \right] \\
+ \ldots \\
+ \partial_{x_i}^{r-1}(f) \ q_{ir} \tilde{h}\varphi.
\]

\rightarrow Take $\varphi = q_{ir} h_0 g^{r-1-k} g_{x_i}^l b$ of deg $\leq (2r - 1)d + (d - 1)b + s$, so that $g^{r-1} | \tilde{h}\varphi$
Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

- $N \geq (2r - 1)d + (d - 1)b + s$

Proof.

- $0 = \langle \tilde{h}L_i\mu, \varphi \rangle = \int_G \varphi \tilde{h}(L_i f) \, dx - \int_{\partial G} \mathcal{L}_{L_i}(f, \tilde{h}\varphi) \tilde{e}_i \cdot \tilde{n} \, dS$ for $\varphi \in K[x]_N$

- Suppose for contradiction that $\tilde{h} = g^k h_0$ with $g \nmid h_0$ and $k < r$

\[
\mathcal{L}_{L_i}(f, \tilde{h}\varphi) = f \left[q_{i1} \tilde{h}\varphi - \partial_{x_i}(q_{i2} \tilde{h}\varphi) + \cdots + (-1)^{r-1} \partial_{x_i}^{r-1}(q_{ir} \tilde{h}\varphi) \right] \\
+ \partial_{x_i}(f) \left[q_{i2} \tilde{h}\varphi - \partial_{x_i}(q_{i3} \tilde{h}\varphi) + \cdots + (-1)^{r-2} \partial_{x_i}^{r-2}(q_{ir} \tilde{h}\varphi) \right] \\
+ \cdots \\
+ \partial_{x_i}^{r-1}(f) q_{ir} \tilde{h}\varphi.
\]

\rightarrow Take $\varphi = q_{ir} h_0 g^{r-1-k} g'_{x_i} b$ of deg $\leq (2r - 1)d + (d - 1)b + s$, so that $g^{r-1} \mid \tilde{h}\varphi$

$\rightarrow 0 = \int_{\partial G} \partial_{x_i}^{r-1}(q_{ir} \tilde{h}\varphi) \frac{g'_{x_i}}{\|\nabla g\|} f \, dS$
Theorem — Correctness of \textsc{ReconstructSupport}

\textsc{ReconstructSupport} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

- $N \geq (2r - 1)d + (d - 1)b + s$

Proof.

$0 = \langle hL_{i}\mu, \varphi \rangle = \int_{G} \varphi \tilde{h}(L_{i}f)dx - \int_{\partial G} L_{L_{i}}(f, \tilde{h}\varphi)\bar{e}_{i} \cdot \bar{n}dS$

for $\varphi \in K[x]_{N}$

- Suppose for contradiction that $\tilde{h} = g^{k}h_{0}$ with $g \nmid h_{0}$ and $k < r$

$$\mathcal{L}_{L_{i}}(f, \tilde{h}\varphi) = f\left[q_{i1}\tilde{h}\varphi - \partial_{x_{i}}(q_{i2}\tilde{h}\varphi) + \cdots + (-1)^{r-1}\partial_{x_{i}}^{r-1}(q_{ir}\tilde{h}\varphi)\right] + \partial_{x_{i}}(f)\left[q_{i2}\tilde{h}\varphi - \partial_{x_{i}}(q_{i3}\tilde{h}\varphi) + \cdots + (-1)^{r-2}\partial_{x_{i}}^{r-2}(q_{ir}\tilde{h}\varphi)\right] + \cdots + \partial_{x_{i}}^{r-1}(f)q_{ir}\tilde{h}\varphi.$$

Take $\varphi = q_{ir}h_{0}g^{r-1-k}g'_{x_{i}}^{b}$ of deg $\leq (2r - 1)d + (d - 1)b + s$, so that $g^{r-1} \mid \tilde{h}\varphi$

$$0 = \int_{\partial G} \partial_{x_{i}}^{r-1}(q_{ir}\tilde{h}\varphi)\frac{g'_{x_{i}}}{\|\nabla g\|}f dS = (r - 1)! \int_{\partial G} \left(g'_{x_{i}}\frac{r+b}{2} q_{ir}h_{0}\right)^{2} \frac{f}{\|\nabla g\|} dS$$
Theorem — Correctness of \texttt{RECONSTRUCTSUPPORT}

\texttt{RECONSTRUCTSUPPORT} computes $\tilde{g} = \lambda g$ with $\lambda \neq 0$ whenever:

- $N \geq (2r - 1)d + (d - 1)b + s$
- $q_{ir} \neq 0$ on ∂G

Proof.

- $0 = \langle \tilde{h}L_i \mu, \varphi \rangle = \int_G \varphi \tilde{h}(L_i f) \, dx - \int_{\partial G} \mathcal{L}_{L_i}(f, \tilde{h}\varphi) \bar{e}_i \cdot \tilde{n} \, dS$ for $\varphi \in K[x]_N$

- Suppose for contradiction that $\tilde{h} = g^k h_0$ with $g \notdivides h_0$ and $k < r$

\[
\mathcal{L}_{L_i}(f, \tilde{h}\varphi) = f \left[q_{i1} \tilde{h}\varphi - \partial_{x_i}(q_{i2} \tilde{h}\varphi) + \cdots + (-1)^{r-1} \partial_{x_i}^{r-1}(q_{ir} \tilde{h}\varphi) \right] \\
+ \partial_{x_i}(f) \left[q_{i2} \tilde{h}\varphi - \partial_{x_i}(q_{i3} \tilde{h}\varphi) + \cdots + (-1)^{r-2} \partial_{x_i}^{r-2}(q_{ir} \tilde{h}\varphi) \right] \\
+ \cdots \\
+ \partial_{x_i}^{r-1}(f) q_{ir} \tilde{h}\varphi.
\]

\rightarrow Take $\varphi = q_{ir} h_0 g^{r-1-k} g'_{x_i} \bar{b}$ of deg $\leq (2r - 1)d + (d - 1)b + s$, so that $g^{r-1} \mid \tilde{h}\varphi$

$\rightarrow 0 = \int_{\partial G} \partial_{x_i}^{r-1}(q_{ir} \tilde{h}\varphi) \frac{g'_{x_i}}{\| \nabla g \|} f \, dS = (r - 1)! \int_{\partial G} \left(g'_{x_i} \frac{r+b}{2} q_{ir} h_0 \right)^2 \frac{f}{\| \nabla g \|} \, dS$

\Rightarrow **Contradiction:** $h_0 = 0$ on ∂G, hence $g \mid h_0$
Express Catalan numbers as moments of a measure μ:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \int_I x^n f(x) \, dx$$
Express **Catalan numbers** as moments of a measure μ:

$$ C_n = \frac{1}{n+1} \binom{2n}{n} = \int x^n f(x) \, dx $$

$$(n + 2) C_{n+1} - (4n + 2) C_n = 0$$
→ Express **Catalan numbers** as moments of a measure \(\mu \):

\[
C_n = \frac{1}{n+1} \binom{2n}{n} = \int_{I} x^n f(x) \, dx
\]

\[
(n + 2) C_{n+1} - (4n + 2) C_n = 0
\]

→ Reverse translation \(x \leftarrow S_n \) and \(\partial x \leftarrow -S_n^{-1}(n + 1) \):

\[
(n + 2) S_n - (4n + 2)
\]
Express **Catalan numbers** as moments of a measure μ:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \int_I x^n f(x) \, dx$$

$$(n + 2)C_{n+1} - (4n + 2)C_n = 0$$

Reverse translation $x \leftrightarrow S_n$ and $\partial x \leftrightarrow -S_n^{-1}(n + 1)$:

$$S_n(n + 1) - 4(n + 1) + 2$$
Express **Catalan numbers** as moments of a measure \(\mu \):

\[
C_n = \frac{1}{n+1} \binom{2n}{n} = \int_I x^n f(x) \, dx
\]

\[(n + 2) C_{n+1} - (4n + 2) C_n = 0\]

Reverse translation \(x \leftrightarrow S_n \) and \(\partial_x \leftrightarrow -S_n^{-1}(n + 1) \):

\[
S_n^2 S_n^{-1}(n + 1) - 4S_n S_n^{-1}(n + 1) + 2
\]
Express **Catalan numbers** as moments of a measure μ:

$$C_n = \frac{1}{n+1} \binom{2n}{n} \overset{?}{=} \int_I x^n f(x) \, dx$$

$$(n + 2)C_{n+1} - (4n + 2)C_n = 0$$

Reverse translation $x \leftarrow S_n$ and $\partial_x \leftarrow -S_n^{-1}(n + 1)$:

$$\underbrace{S_n^2}_{x^2} \underbrace{S_n^{-1}(n + 1)}_{-\partial_x} - 4 \underbrace{S_n}_{x} \underbrace{S_n^{-1}(n + 1)}_{-\partial_x} + 2$$
→ Express **Catalan numbers** as moments of a measure μ:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \int_I x^n f(x) \, dx$$

$$(n + 2) C_{n+1} - (4n + 2) C_n = 0$$

- Reverse translation $x \leftarrow S_n$ and $\partial_x \leftarrow -S^{-1}_n(n + 1)$:

$$S^2_n S^{-1}_n(n + 1) - 4 S_n S^{-1}_n(n + 1) + 2$$

$$\Rightarrow (4x - x^2) \partial_x + 2 \in \text{Ann}(\mu)$$
Express Catalan numbers as moments of a measure μ:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \int_{I} x^n f(x) dx$$

$$(n + 2)C_{n+1} - (4n + 2)C_n = 0$$

Reverse translation $x \mapsto S_n$ and $\partial_x \mapsto -S_{n}^{-1}(n + 1)$:

$$\begin{align*}
S_n^2 - \underbrace{S_{n}^{-1}(n + 1) - 4 S_n S_{n}^{-1}(n + 1)}_{x^2 - \partial_x} + 2 \\
\underbrace{x}_{x^2} - \underbrace{\partial_x}_{-\partial_x}
\end{align*}$$

$$\Rightarrow \quad (4x - x^2) \partial_x + 2 \in \text{Ann}(\mu) \quad g = 1 ?$$

$$C_n = \lambda \int_{-\infty}^{+\infty} x^n \sqrt{\frac{4-x}{x}} dx$$
→ Express **Catalan numbers** as moments of a measure μ:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \int x^n f(x) \, dx$$

$$(n+2)C_{n+1} - (4n+2)C_n = 0$$

← Reverse translation $x \leftarrow S_n$ and $\partial_x \leftarrow -S_n^{-1}(n+1)$:

$$S_n^2 S_n^{-1}(n+1) - 4 S_n S_n^{-1}(n+1) + 2$$

$$+2 \quad +2 \quad \binom{2n}{n}$$

$$\Rightarrow (4x - x^2) \partial_x + 2 \in \text{Ann}(\mu) \quad \text{?}$$

$$C_n = \frac{1}{2\pi} \int_0^4 x^n \sqrt{\frac{4-x}{x}} \, dx \quad ?$$
Outline

1 Introduction

2 Holonomic Distributions and Recurrences on Moments

3 Inverse Problem: Algorithms and Proofs
 ■ Exponential-Polynomial Densities
 ■ The General Case with D-Finite Densities

4 Limits and Perspectives
Some Limits and Perspectives

- A priori bounds for N in the general case with unknown D-finite density?

- Full determination of the density, including initial conditions

- Extracting the component of $V(g)$ corresponding to ∂G
Is there an explicit bound N_0 on N s.t. for ansatz \widetilde{L} of $\overline{L} = g' L$:

$$\langle \overline{L} \mu, \varphi \rangle = 0 \quad \text{for all } \varphi \in \mathbb{K}[x]_N \quad \Rightarrow \quad \widetilde{L} \mu = 0 \quad \text{when } N \geq N_0$$?
Is there an explicit bound N_0 on N s.t. for ansatz \tilde{L} of $L = g' L$:

$$\langle \tilde{L} \mu, \varphi \rangle = 0 \quad \text{for all } \varphi \in \mathbb{K}[x]_N \quad \Rightarrow \quad \tilde{L} \mu = 0 \quad \text{when } N \geq N_0$$

The proof of the Exp-Poly density case doesn’t generalize:

$$\langle \tilde{L} \mu, \varphi \rangle = \int_G \varphi (\tilde{L} f) \, dx - \int_{\partial G} L \tilde{L} (f, \varphi) \cdot \tilde{n} \, dS$$
Is there an explicit bound N_0 on N s.t. for ansatz \tilde{L} of $\bar{L} = g^r L$:

$$\langle \tilde{L} \mu, \varphi \rangle = 0 \quad \text{for all} \quad \varphi \in \mathbb{K}[x]_N \quad \Rightarrow \quad \tilde{L} \mu = 0 \quad \text{when} \quad N \geq N_0$$

The proof of the Exp-Poly density case doesn’t generalize:

$$\langle \tilde{L} \mu, \varphi \rangle = \int_G \varphi(\bar{L} f) \, dx - \int_{\partial G} L_{\bar{L}}(f, \varphi) \cdot \tilde{n} \, dS$$
Is there an explicit bound N_0 on N s.t. for ansatz $\tilde{\mathcal{L}}$ of $\mathcal{L} = g^r L$:

\[
\langle \mathcal{L} \mu, \phi \rangle = 0 \quad \text{for all } \phi \in \mathbb{K}[x]_N \quad \Rightarrow \quad \mathcal{L} \mu = 0 \quad \text{when } N \geq N_0 \quad ?
\]

The proof of the Exp-Poly density case doesn’t generalize:

\[
\langle \tilde{\mathcal{L}} \mu, \phi \rangle = \int_G \phi(\mathcal{L} f) \, dx - \int_{\partial G} \mathcal{L} \tilde{\mathcal{L}}(f, \phi) \cdot \vec{n} \, dS
\]

Such a bound N_0 depending only on the structure of $\tilde{\mathcal{L}}$ cannot exist:

Example [Batenkov2009] — Legendre Polynomials P_n over $[-1, 1]$

$P_n(x)$ annihilated by $L_n = \partial_x \left((1 - x^2) \partial_x \right) + n(n + 1) \quad \Rightarrow \quad$ common ansatz $\tilde{\mathcal{L}}$

but $m_k^{(n)} = \int_{-1}^{1} x^k P_n(x) \, dx = 0 \quad \text{for } k < n \quad \text{and} \quad m_n^{(n)} > 0$

→ Explicit bounds depending on upper bounds on the coefficients of $\tilde{\mathcal{L}}$?
Algorithm \textsc{ReconstructDensity} only computes a system \(\mathcal{I} = \{ \mathcal{L}_1, \ldots, \mathcal{L}_n \} \) but not the initial conditions that fully characterize \(f \).
Reconstructing Initial Conditions of the Density

\[f(x, y) = \lambda_1 e^{p_1(x, y)} \]

\[p_1 = -\frac{1}{2} \begin{pmatrix} x - \mu_{x1} \\ y - \mu_{y1} \end{pmatrix}^T \Sigma_1^{-1} \begin{pmatrix} x - \mu_{x1} \\ y - \mu_{y1} \end{pmatrix} \]
Reconstructing Initial Conditions of the Density

\[f(x, y) = \lambda_1 e^{p_1(x, y)} \]

\[
p_1 = -\frac{1}{2} \begin{pmatrix} x - \mu_{x1} \\ y - \mu_{y1} \end{pmatrix}^T \Sigma_1^{-1} \begin{pmatrix} x - \mu_{x1} \\ y - \mu_{y1} \end{pmatrix}
\]

\[
\lambda_1 = \frac{1}{2\pi\sqrt{|\Sigma|}}
\]
Reconstructing Initial Conditions of the Density

\[f(x, y) = \lambda_1 e^{p_1(x,y)} + \lambda_2 e^{p_2(x,y)} + \lambda_3 e^{p_3(x,y)} \]

\[p_i = -\frac{1}{2} \begin{pmatrix} x - \mu_{xi} \\ y - \mu_{yi} \end{pmatrix}^T \Sigma_i^{-1} \begin{pmatrix} x - \mu_{xi} \\ y - \mu_{yi} \end{pmatrix} \]
Reconstructing Initial Conditions of the Density

\[f(x, y) = \lambda_1 e^{p_1(x,y)} + \lambda_2 e^{p_2(x,y)} + \lambda_3 e^{p_3(x,y)} \]

\[p_i = -\frac{1}{2} \begin{pmatrix} x - \mu_{xi} \\ y - \mu_{yi} \end{pmatrix}^T \Sigma_i^{-1} \begin{pmatrix} x - \mu_{xi} \\ y - \mu_{yi} \end{pmatrix} \quad \lambda_i = ??? \]
Algorithm \textsc{ReconstructDensity} only computes a system \(\mathcal{I} = \{ \tilde{L}_1, \ldots, \tilde{L}_n \} \) but not the initial conditions that fully characterize \(f \)

Solution: compute initial moments for a basis of solution densities of \(\mathcal{I} \)

- Optimization techniques, e.g., [HenrionLasserreSavorgnan2009]
- Computer algebra, e.g., [LairezMezzarobbaElDin2019]
Isolation of the Topological Boundary

\[I(\partial G) = g(x, y) \]

where \(g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x - 2)^2 + y^2 - 1)(x^2 + (y - 2)^2 - 1) \).
Isolation of the Topological Boundary

\[I(\partial G) = (g) \quad \text{with} \quad g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x-2)^2 + y^2 - 1)(x^2 + (y-2)^2 - 1) \]
\(I(\partial G) = (g) \) with
\[
g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x-2)^2 + y^2 - 1)(x^2 + (y-2)^2 - 1)
\]

\(\tilde{g} \) reconstructed using 6 digits accuracy for the moments \((m_\alpha) \)
Isolation of the Topological Boundary

\[
I(\partial G) = (g) \quad \text{with} \quad g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x - 2)^2 + y^2 - 1)(x^2 + (y - 2)^2 - 1)
\]

\(\tilde{g}\) reconstructed using 4 digits accuracy for the moments \(m_{\alpha}\)
Isolation of the Topological Boundary

\[I(\partial G) = (g) \quad \text{with} \quad g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x - 2)^2 + y^2 - 1)(x^2 + (y - 2)^2 - 1) \]

\(\tilde{g} \) reconstructed using 2 digits accuracy for the moments \((m_\alpha)\)
\(l(\partial G) = (g) \) with \(g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x - 2)^2 + y^2 - 1)(x^2 + (y - 2)^2 - 1) \)

\(\widetilde{g} \) reconstructed using 1 digit accuracy for the moments \((m_\alpha) \)
Isolation of the Topological Boundary

\[I(\partial G) = (g) \quad \text{with} \quad g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x - 2)^2 + y^2 - 1)(x^2 + (y - 2)^2 - 1) \]

\(\tilde{g} \) reconstructed using 2 digits accuracy for the moments \((m_\alpha) \)
Isolation of the Topological Boundary

\[I(\partial G) = (g) \quad \text{with} \quad g(x, y) = (x^2 + y^2 - 9)(x^2 + y^2 - 1)((x-2)^2 + y^2 - 1)(x^2 + (y-2)^2 - 1) \]

\[\partial G \approx \{ (x, y) \mid g(x, y) = 0 \quad \text{and} \quad \mathbb{E}[\tilde{g}(x, y)^2] \leq \epsilon \} , \quad \tilde{g} \leftarrow \text{randomly perturbed} \ (\tilde{m}_\alpha) \]
Conclusion and Perspectives

Contributions:

- Extension of [LasserrePutinar2015] to reconstruction of unknown Exp-Poly density and unknown semi-algebraic support
 → Explicit bound for the number N of required moments
- Reconstruction algorithm for unknown holonomic density and unknown semi-algebraic support
- Numerical experiments using least-squares approximation when approximate moments are known

Future work:

- Generic bounds for N depending on the magnitude of the coefficients
- Numerical aspects: robustness w.r.t. approximate moments, or nonpolynomial boundary
- Isolation of the topological boundary via perturbation techniques
- Application to problems involving combinatorial sequences
Thanks!