Periods
Numerical computation and applications

Pierre Lairez
Inria Saclay

Séminaire de lancement ANR « De rerum natura »
24 février 2020, Palaiseau
What is a period?

A period is the integral on a closed path of a rational function in one or several variables with rational coefficients.

“Rational coefficients” may mean

- coefficients in \mathbb{Q}
- coefficients in $\mathbb{C}(t)$, the period is a function of t.
What is a period?

A **period** is the integral on a closed path of a rational function in one or several variables with *rational* coefficients.

“Rational coefficients” may mean

- coefficients in \mathbb{Q}
- coefficients in $\mathbb{C}(t)$, the period is a function of t.

Etymology
What is a period?

A **period** is the integral on a closed path of a rational function in one or several variables with rational coefficients.

“Rational coefficients” may mean

- coefficients in \(\mathbb{Q} \)
- coefficients in \(\mathbb{C}(t) \), the period is a function of \(t \).

Etymology

- \(2\pi \) is a **period** of the sine.
What is a period?

A **period** is the integral on a closed path of a rational function in one or several variables with *rational* coefficients.

“Rational coefficients” may mean

- coefficients in \(\mathbb{Q} \)
- coefficients in \(\mathbb{C}(t) \), the period is a function of \(t \).

Etymology

- \(2\pi \) is a **period** of the sine.
- \(\arcsin(z) = \int_0^z \frac{dx}{\sqrt{1 - x^2}} \)
What is a period?

A **period** is the integral on a closed path of a rational function in one or several variables with *rational* coefficients.

“Rational coefficients” may mean

- coefficients in \mathbb{Q}
- coefficients in $\mathbb{C}(t)$, **the period is a function of** t.

Etymology

- 2π is a **period** of the sine.
- $\arcsin(z) = \int_{0}^{z} \frac{dx}{\sqrt{1-x^2}}$
- $2\pi = \int_{-\infty}^{1} \frac{dx}{\sqrt{1-x^2}}$
What is a period?

A **period** is the integral on a closed path of a rational function in one or several variables with *rational* coefficients.

“Rational coefficients” may mean

- coefficients in \(\mathbb{Q} \)
- coefficients in \(\mathbb{C}(t) \), the period is a function of \(t \).

Etymology

- \(2\pi \) is a **period** of the sine.
- \(\arcsin(z) = \int_0^z \frac{dx}{\sqrt{1-x^2}} \)
- \(2\pi = \int_{\infty}^{-1} \frac{dx}{\sqrt{1-x^2}} = \frac{1}{\pi i} \oint \frac{dx dy}{y^2 - (1-x^2)} \)
Periods with a parameter

Complete elliptic integral
Periods with a parameter

Complete elliptic integral

An ellipse

- eccentricity \(t \)
- major radius 1
- perimeter \(E(t) \)

\[
\text{Euler (one.pnum/seven.pnum/three.pnum/three.pnum)} = \left(t - t^3\right)E'' + \left(1 - t^2\right)E' + tE = 0
\]

\[
\text{Liouville (one.pnum/eight.pnum/three.pnum/four.pnum)} \text{ not expressible in terms of elementary functions}
\]

Many applications in algebraic geometry, geometry of the cycles \(\leftrightarrow \) analytic properties of the periods
Periods with a parameter

An ellipse

- eccentricity t
- major radius 1
- perimeter $E(t)$

$$E(t) = 2 \int_{-1}^{1} \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx$$
Periods with a parameter

Complete elliptic integral

An ellipse
- eccentricity \(t \)
- major radius \(1 \)
- perimeter \(E(t) \)

\[
E(t) = \int_{\infty}^{\infty} \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx
\]
An ellipse

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eccentricity</td>
<td>t</td>
</tr>
<tr>
<td>Major radius</td>
<td>1</td>
</tr>
<tr>
<td>Perimeter</td>
<td>$E(t)$</td>
</tr>
</tbody>
</table>

Complete elliptic integral

$$E(t) = \int_{\infty}^{1} \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx$$

Euler (1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$
An ellipse

- **eccentricity**: \(t \)
- **major radius**: \(1 \)
- **perimeter**: \(E(t) \)

\[
E(t) = \int_{\infty}^{1} \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx
\]

Euler (1733) \((t - t^3)E'' + (1 - t^2)E' + tE = 0 \)

Liouville (1834) Not expressible in terms of elementary functions
Periods with a parameter

Complete elliptic integral

An ellipse

- eccentricity \(t \)
- major radius \(1 \)
- perimeter \(E(t) \)

\[
E(t) = \int_{\infty}^{1} \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx
\]

Euler (1733) \((t - t^3)E'' + (1 - t^2)E' + tE = 0\)

Liouville (1834) Not expressible in terms of elementary functions

since then Many applications in algebraic geometry

gallery of the cycles ↔ analytic properties of the periods
Content

Computing periods with a parameter

Volume of semialgebraic sets

Picard rank of K3 surfaces

Perspectives
Computing periods with a parameter
Differential equations as a data structure

Representation of algebraic numbers

- explicit: \(\sqrt{5} + 2 \cdot p^6 \) (also \(p^2 + p^3 \))
- implicit: \(x^4 - 10x^2 + 1 = 0 \) (with root location)

Representation of D-finite functions

An example by Bostan, Chyzak, van Hoeij, and Pech:

- explicit: \(1 + 6 \cdot \int_0^t 2^F_{\frac{1}{3} \frac{2}{3}}(\frac{27}{2}w^{2-3w})(1-4w)(1-64w)(1-576t^3-801t^2-108t+74)y''' + 4(576t^3-801t^2-108t+74)y' = 0 \) (with initial condition)
Differential equations as a data structure

Representation of algebraic numbers

Explicit representation:
\[\sqrt{5} + 2p + \sqrt{3}(2 + 3p) \]

Implicit representation:
\[x^4 - 10x^2 + 1 = 0 \] (root location)

Representation of D-finite functions
An example by Bostan, Chyzak, van Hoeij, and Pech:

Explicit representation:
\[1 + 6 \cdot \int_0^t 2F_1(\frac{1}{3}, \frac{2}{3} \left| \frac{27w(2-3w)}{(1-4w)(1-64w)} \right)^3 (1-4w)(1-64w) \) \]

Implicit representation:
\[t(y'''' + (4608t^4 - 6372t^3 + 813t^2 + 514t - 4)y'' + 4(576t^3 - 801t^2 - 108t + 74)y') = 0 \] (init. cond.)
Representation of algebraic numbers

<table>
<thead>
<tr>
<th>explicit</th>
<th>$\sqrt{5} + 2\sqrt{6}$</th>
<th>(also $\sqrt{2} + \sqrt{3}$)</th>
</tr>
</thead>
</table>
Representation of algebraic numbers

explicit \(\sqrt{5} + 2\sqrt{6} \) (also \(\sqrt{2} + \sqrt{3} \))

implicit \(x^4 - 10x^2 + 1 = 0 \) (+ root location)
Representation of algebraic numbers

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit</td>
<td>$\sqrt{5} + 2\sqrt{6}$ (also $\sqrt{2} + \sqrt{3}$)</td>
<td></td>
</tr>
<tr>
<td>implicit</td>
<td>$x^4 - 10x^2 + 1 = 0$ (+ root location)</td>
<td></td>
</tr>
</tbody>
</table>
Differential equations as a data structure

Representation of algebraic numbers

<table>
<thead>
<tr>
<th>explicit</th>
<th>$\sqrt{5} + 2\sqrt{6}$ (also $\sqrt{2} + \sqrt{3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>implicit</td>
<td>$x^4 - 10x^2 + 1 = 0$ (+ root location)</td>
</tr>
</tbody>
</table>

Representation of D-finite functions

An example by Bostan, Chyzak, van Hoeij, and Pech (2011)
Differential equations as a data structure

Representation of algebraic numbers

explicit \(\sqrt{5 + 2\sqrt{6}} \) \((\text{also } \sqrt{2} + \sqrt{3})\)

implicit \(x^4 - 10x^2 + 1 = 0 \) \((+ \text{ root location})\)

Representation of D-finite functions

An example by Bostan, Chyzak, van Hoeij, and Pech (2011)

explicit \(1 + 6 \cdot \int_0^t \frac{t \, _2F_1\left(\frac{1}{3}, \frac{2}{3} \mid \frac{27w(2-3w)}{(1-4w)^3}\right)}{(1 - 4w)(1 - 64w)} \, dw \)
Differential equations as a data structure

Representation of algebraic numbers

- **explicit** \(\sqrt{5 + 2\sqrt{6}} \) (also \(\sqrt{2} + \sqrt{3} \))
- **implicit** \(x^4 - 10x^2 + 1 = 0 \) (+ root location)

Representation of D-finite functions

An example by Bostan, Chyzak, van Hoeij, and Pech (2011)

- **explicit** \(1 + 6 \cdot \int_0^t \frac{2F_1 \left(\frac{1}{3}, \frac{2}{3} ; 2 \right) \left(\frac{27w(2-3w)}{(1-4w)^3} \right)}{(1 - 4w)(1 - 64w)} \, dw \)

- **implicit** \(t(t - 1)(64t - 1)(3t - 2)(6t + 1)y''' + (4608t^4 - 6372t^3 + 813t^2 + 514t - 4)y''
+ 4(576t^3 - 801t^2 - 108t + 74)y' = 0 \) (+ init. cond.)
What can we compute?

- addition, multiplication, composition with algebraic functions
- power series expansion
- equality testing, given differential equations and initial conditions
- numerical analytic continuation with certified precision (D. V. Chudnovsky and G. V. Chudnovsky, van der Hoeven, Mezzarobba)

More on this later.
What can we compute?

- addition, multiplication, composition with algebraic functions
Differential equations as a data structure

What can we compute?

- addition, multiplication, composition with algebraic functions
- power series expansion

More on this later.
What can we compute?

- addition, multiplication, composition with algebraic functions
- power series expansion
- **equality testing**, given differential equations and initial conditions
What can we compute?

- addition, multiplication, composition with algebraic functions
- power series expansion
- equality testing, given differential equations and initial conditions
- numerical analytic continuation with certified precision (D. V. Chudnovsky and G. V. Chudnovsky 1990; van der Hoeven 1999; Mezzarobba 2010)

More on this later.
The Picard-Fuchs equation

\[R(t, x_1, \ldots, x_n) \] a rational function
The Picard-Fuchs equation

\(R(t, x_1, \ldots, x_n) \) a rational function

\(\gamma \subset \mathbb{C}^n \) a \(n \)-cycle (\(n \)-dim. compact submanifold) which avoids the poles of \(R \), for \(t \in U \subset \mathbb{C} \)
The Picard-Fuchs equation

\[R(t, x_1, \ldots, x_n) \] a rational function

\[\gamma \subset \mathbb{C}^n \] a \(n \)-cycle (\(n \)-dim. compact submanifold) which avoids the poles of \(R \), for \(t \in U \subset \mathbb{C} \)

define \(y(t) \triangleq \oint_{\gamma} R(t, x_1, \ldots, x_n) dx_1 \cdots dx_n \), for \(t \in U \)
The Picard-Fuchs equation

\(R(t, x_1, \ldots, x_n) \) a rational function

\(\gamma \subset \mathbb{C}^n \) a \(n \)-cycle (\(n \)-dim. compact submanifold) which avoids the poles of \(R \), for \(t \in U \subset \mathbb{C} \)

define \(y(t) \triangleq \int_\gamma R(t, x_1, \ldots, x_n) dx_1 \cdots dx_n \), for \(t \in U \)

wanted a differential equation \(a_r(t)y^{(r)} + \cdots + a_1(t)y' + a_0(t)y = 0 \), with polynomial coefficients
The Picard-Fuchs equation

\[R(t, x_1, \ldots, x_n) \text{ a rational function} \]

\[\gamma \subset \mathbb{C}^n \text{ a } n\text{-cycle (}n\text{-dim. compact submanifold) which avoids the poles of } R, \text{ for } t \in U \subset \mathbb{C} \]

define \[y(t) \triangleq \oint_{\gamma} R(t, x_1, \ldots, x_n) dx_1 \cdots dx_n, \text{ for } t \in U \]

wanted a differential equation \[a_r(t)y^{(r)} + \cdots + a_1(t)y' + a_0(t)y = 0, \]
with polynomial coefficients

One equation fits all cycles, the **Picard-Fuchs equation**.
A computational handle

Perimeter of an ellipse

\[E(t) = \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx = \frac{1}{2\pi i} \oint \frac{1}{1 - \frac{1-t^2 x^2}{(1-x^2)y^2}} \, dx \, dy \]

Picard-Fuchs equation \((t - t^3)E'' + (1 - t^2)E' + tE = 0 \)
A computational handle

Perimeter of an ellipse

recall \(E(t) = \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} \, dx = \frac{1}{2 \pi i} \oint \frac{1}{1 - \frac{1-t^2 x^2}{(1-x^2)y^2}} \, dx \, dy \)

Picard-Fuchs equation \((t - t^3) E'' + (1 - t^2) E' + t E = 0\)

Computational proof

\[
(t - t^3) \frac{\partial^2 R}{\partial t^2} + (1 - t^2) \frac{\partial R}{\partial t} + t R = \\
\frac{\partial}{\partial x} \left(-\frac{t(-1-x+x^2+x^3)y^2(-3+2x+y^2+x^2(-2+3t^2-y^2))}{(-1+y^2+x^2(t^2-y^2))^2} \right) + \frac{\partial}{\partial y} \left(\frac{2t(-1+t^2)x(1+x^3)y^3}{(-1+y^2+x^2(t^2-y^2))^2} \right)
\]
given \(R(t, x_1, \ldots, x_n) \), a rational function
given \(R(t, x_1, \ldots, x_n) \), a rational function

find \(a_0, \ldots, a_r \in \mathbb{Q}[t] \), with \(a_r \neq 0 \) and \(r \) minimal

\(C_1, \ldots, C_n \in \mathbb{Q}(t, x_1, \ldots, x_n) \) with \(\text{poles}(C_i) \subseteq \text{poles}(R) \),
given \(R(t, x_1, \ldots, x_n) \), a rational function

find \(a_0, \ldots, a_r \in \mathbb{Q}[t] \), with \(a_r \neq 0 \) and \(r \) minimal

\(C_1, \ldots, C_n \in \mathbb{Q}(t, x_1, \ldots, x_n) \) with \(\text{poles}(C_i) \subseteq \text{poles}(R) \),

such that

\[
a_r(t) \frac{\partial^r R}{\partial t^r} + \cdots + a_1(t) \frac{\partial R}{\partial t} + a_0(t) R = \sum_{i=1}^{n} \frac{\partial C_i}{\partial x_i}.
\]
given \(R(t, x_1, \ldots, x_n) \), a rational function

find \(a_0, \ldots, a_r \in \mathbb{Q}[t] \), with \(a_r \neq 0 \) and \(r \) minimal

\(C_1, \ldots, C_n \in \mathbb{Q}(t, x_1, \ldots, x_n) \) with \(\text{poles}(C_i) \subseteq \text{poles}(R) \),

such that \(a_r(t) \frac{\partial^r R}{\partial t^r} + \cdots + a_1(t) \frac{\partial R}{\partial t} + a_0(t) R = \sum_{i=1}^{n} \frac{\partial C_i}{\partial x_i} \).

existence Grothendieck (1966), Monsky (1972), etc.

see also Picard (1902) for \(n \leq 3 \)
given $R(t, x_1, \ldots, x_n)$, a rational function

find $a_0, \ldots, a_r \in \mathbb{Q}[t]$, with $a_r \neq 0$ and r minimal

$C_1, \ldots, C_n \in \mathbb{Q}(t, x_1, \ldots, x_n)$ with $\text{poles}(C_i) \subseteq \text{poles}(R)$,

such that $a_r(t) \frac{\partial^r R}{\partial t^r} + \cdots + a_1(t) \frac{\partial R}{\partial t} + a_0(t) R = \sum_{i=1}^{n} \frac{\partial C_i}{\partial x_i}$.

existence Grothendieck (1966), Monsky (1972), etc.

see also Picard (1902) for $n \leq 3$

algorithms Almkvist, Apagodu, Bostan, Chen, Christol, Chyzak, van Hoeij, Kauers, Koutschan, Lairez, Lipshitz, Movasati, Nakayama, Nishiyama, Oaku, Salvy, Singer, Takayama, Wilf, Zeilberger, etc.

(People who wrote a paper that solves the problem.)
given \(R(t, x_1, \ldots, x_n) \), a rational function

find \(a_0, \ldots, a_r \in \mathbb{Q}[t] \), with \(a_r \neq 0 \) and \(r \) minimal

\(C_1, \ldots, C_n \in \mathbb{Q}(t, x_1, \ldots, x_n) \) with \(\text{poles}(C_i) \subseteq \text{poles}(R) \),

such that

\[
a_r(t) \frac{\partial^r R}{\partial t^r} + \cdots + a_1(t) \frac{\partial R}{\partial t} + a_0(t) R = \sum_{i=1}^{n} \frac{\partial C_i}{\partial x_i}.
\]

existence Grothendieck (1966), Monsky (1972), etc.

see also Picard (1902) for \(n \leq 3 \)

algorithms Almkvist, Apagodu, Bostan, Chen, Christol, Chyzak, van Hoeij, Kauers, Koutschan, Lairez, Lipshitz, Movasati, Nakayama, Nishiyama, Oaku, Salvy, Singer, Takayama, Wilf, Zeilberger, etc.

(People who wrote a paper that solves the problem.)

Problem (mostly) solved!
Computing binomial sums with periods

Example

\[\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = ? \]
Computing binomial sums with periods

Example

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = ?
\]

basic block
\[
\binom{n}{k} = \left(\frac{1}{2\pi i} \oint \frac{(1 + x)^n}{x^{k+1}} \, dx \right)
\]
Computing binomial sums with periods

Example

\[\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = ?\]

Basic block
\[
\binom{n}{k} = \frac{1}{2\pi i} \oint \frac{(1 + x)^n}{x^k} \frac{dx}{x}
\]

Product
\[
\binom{2n}{k}^3 = \frac{1}{(2\pi i)^3} \oint \frac{(1 + x_1)^{2n}}{x_1^k} \frac{(1 + x_2)^{2n}}{x_2^k} \frac{(1 + x_3)^{2n}}{x_3^k} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{dx_3}{x_3}
\]

Generating functions of binomial sums are periods!
Computing binomial sums with periods

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = ?
\]

Example

basic block
\[
\binom{n}{k} = \frac{1}{2\pi i} \oint \frac{(1 + x)^n}{x^k} \frac{dx}{x}
\]

product
\[
\binom{2n}{k}^3 = \frac{1}{(2\pi i)^3} \oint \frac{(1 + x_1)^{2n}}{x_1^k} \frac{(1 + x_2)^{2n}}{x_2^k} \frac{(1 + x_3)^{2n}}{x_3^k} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{dx_3}{x_3}
\]

summation
\[
y(t) = \frac{1}{(2\pi i)^3} \oint \frac{\left(x_1 x_2 x_3 - t \prod_{i=1}^{3} (1 + x_i)^2\right) dx_1 dx_2 dx_3}{\left(x_1^2 x_2^2 x_3^2 - t \prod_{i=1}^{3} (1 + x_i)^2 \prod_{i=1}^{3} (1 + x_i)^2\right)}
\]

where \(y(t)\) is the generating function of the l.h.s.
Computing binomial sums with periods

Example

\[\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = ? \]

Basic block

\[\binom{n}{k} = \frac{1}{2\pi i} \oint \frac{(1 + x)^n}{x^k} \frac{dx}{x} \]

Product

\[\binom{2n}{k}^3 = \frac{1}{(2\pi i)^3} \oint \frac{(1 + x_1)^{2n}}{x_1^k} \frac{(1 + x_2)^{2n}}{x_2^k} \frac{(1 + x_3)^{2n}}{x_3^k} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{dx_3}{x_3} \]

Summation

\[y(t) = \frac{1}{(2\pi i)^3} \oint \frac{(x_1 x_2 x_3 - t \prod_{i=1}^{3} (1 + x_i)^2) dx_1 dx_2 dx_3}{(x_1^2 x_2^2 x_3^2 - t \prod_{i=1}^{3} (1 + x_i)^2)(1 - t \prod_{i=1}^{3} (1 + x_i)^2)} \]

where \(y(t) \) is the generating function of the l.h.s.

Simplification

\[y(t) = \frac{1}{(2\pi i)^2} \oint \frac{x_1 x_2 dx_1 dx_2}{x_1^2 x_2^2 - t (1 + x_1)^2 (1 + x_2)^2 (1 - x_1 x_2)^2} \]
Computing binomial sums with periods

Example

\[\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = (-1)^n \frac{(3n)!}{n^3}\]

Basic block

\[\binom{n}{k} = \frac{1}{2\pi i} \oint \frac{(1+x)^n}{x^k} \frac{dx}{x}\]

Product

\[\binom{2n}{k}^3 = \frac{1}{(2\pi i)^3} \oint \frac{(1+x_1)^{2n}}{x_1^k} \frac{(1+x_2)^{2n}}{x_2^k} \frac{(1+x_3)^{2n}}{x_3^k} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{dx_3}{x_3}\]

Summation

\[y(t) = \frac{1}{(2\pi i)^3} \oint \frac{(x_1 x_2 x_3 - t \prod_{i=1}^{3} (1 + x_i)^2)}{(x_1^2 x_2^2 x_3^2 - t \prod_{i=1}^{3} (1 + x_i)^2) (1 - t \prod_{i=1}^{3} (1 + x_i)^2)} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{dx_3}{x_3}\]

where \(y(t)\) is the generating function of the l.h.s.

Simplification

\[y(t) = \frac{1}{(2\pi i)^2} \oint \frac{x_1 x_2 dx_1 dx_2}{x_1^2 x_2^2 - t (1 + x_1)^2 (1 + x_2)^2 (1 - x_1 x_2)^2}\]

Integration

\[t(27t + 1) y'' + (54t + 1) y' + 6y = 0, \text{ i.e. } 3(3n + 2)(3n + 1) u_n + (n + 1)^2 u_{n+1} = 0\]

Generating functions of binomial sums are periods!
Computing binomial sums with periods

Example

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = (-1)^n \frac{(3n)!}{n^3}
\]

Basic block:

\[
\binom{n}{k} = \frac{1}{2\pi i} \oint \frac{(1 + x)^n}{x^k} \frac{dx}{x}
\]

Product:

\[
\binom{2n}{k}^3 = \frac{1}{(2\pi i)^3} \oint \frac{(1 + x_1)^{2n}}{x_1^k} \frac{(1 + x_2)^{2n}}{x_2^k} \frac{(1 + x_3)^{2n}}{x_3^k} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{dx_3}{x_3}
\]

Summation:

\[
y(t) = \frac{1}{(2i\pi)^3} \oint \frac{(x_1 x_2 x_3 - t \prod_{i=1}^{3} (1 + x_i)^2) dx_1 dx_2 dx_3}{(x_1^2 x_2^2 x_3^2 - t \prod_{i=1}^{3} (1 + x_i)^2) \left(1 - t \prod_{i=1}^{3} (1 + x_i)^2\right)}
\]

where \(y(t) \) is the generating function of the l.h.s.

Simplification:

\[
y(t) = \frac{1}{(2i\pi)^2} \oint \frac{x_1 x_2 dx_1 dx_2}{x_1^2 x_2^2 - t(1 + x_1)^2 (1 + x_2)^2 (1 - x_1 x_2)^2}
\]

Integration:

\[
t(27t + 1) y'' + (54t + 1) y' + 6y = 0, \text{ i.e. } 3(3n+2)(3n+1) u_n + (n+1)^2 u_{n+1} = 0
\]

Conclusion: Generating functions of binomial sums are periods!
Theorem + Algorithm (Bostan, Lairez, and Salvy 2016)

One can decide the equality between binomial sums.
Theorem + Algorithm (Bostan, Lairez, and Salvy 2016)
One can decide the equality between binomial sums.
Computing binomial sums with periods

Theorem + Algorithm (Bostan, Lairez, and Salvy 2016)

One can decide the equality between binominal sums.

Theorem (Bostan, Lairez, and Salvy 2016)

$(u_n)_{n \geq 0}$ is a binomial sum **if and only if** $u_n = a_n$,..., n, for some rational power series $\sum_I a_I x^I$.
Volume of semialgebraic sets

joint work with Mezzarobba and Safey El Din
Numerical analytic continuation

input A linear differential equation $L(f) = 0$
Initial conditions at a point $a \in \mathbb{C}$
Another point $b \in \mathbb{C}$
$\varepsilon > 0$

```
sage: from ore_algebra import *
sage: dop = (z^2+1)*Dz^2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])
[0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])
[3.9269908169872415 +/- 4.81e-17] + [ +/- 4.63e-21]*I
```
Numerical analytic continuation

input A linear differential equation $L(f) = 0$
- Initial conditions at a point $a \in \mathbb{C}$
- Another point $b \in \mathbb{C}$
- $\varepsilon > 0$

output The value of f at $b, \pm \varepsilon$

```python
from ore_algebra import *
sage: dop = (zˆ2+1)*Dzˆ2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])
[0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])
[3.9269908169872415 +/- 4.81e-17] + [+/- 4.63e-21]*I
```
Numerical analytic continuation

input A linear differential equation $L(f) = 0$
Initial conditions at a point $a \in \mathbb{C}$
Another point $b \in \mathbb{C}$
$\epsilon > 0$

output The value of f at b, $\pm \epsilon$

complexity Quasilinear in $\log \frac{1}{\epsilon}$

```
sage: dop = (zˆ2+1)*Dzˆ2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])
[0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])
[3.9269908169872415 +/- 4.81e-17] + [ +/- 4.63e-21]*I
```
Numerical analytic continuation

input
A linear differential equation $L(f) = 0$
Initial conditions at a point $a \in \mathbb{C}$
Another point $b \in \mathbb{C}$
$\epsilon > 0$

output
The value of f at b, $\pm \epsilon$

complexity
Quasilinear in $\log \frac{1}{\epsilon}$

implementation
Package `ore_algebra-analytic` by Mezzarobba

```python
sage: from ore_algebra import *
sage: dop = (z^2+1)*Dz^2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])
[0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])
[3.9269908169872415 +/- 4.81e-17] + [ +/- 4.63e-21]*I
```
A numeric integral

\[\{ x^2 + y^2 + z^2 \leq 1 - 2^{10} (x^2 y^2 + y^2 z^2 + z^2 x^2) \} \]

What is the volume of this shape?
A numeric integral

\[\{ x^2 + y^2 + z^2 \leq 1 - 2^{10} (x^2 y^2 + y^2 z^2 + z^2 x^2) \} \]

What is the volume of this shape?

- Basic question
A numeric integral

\[\{ x^2 + y^2 + z^2 \leq 1 - 2^{10} (x^2 y^2 + y^2 z^2 + z^2 x^2) \} \]

What is the volume of this shape?

- Basic question
- Few algorithms
 - Monte-Carlo
A numeric integral

\[
\{ x^2 + y^2 + z^2 \leq 1 - 2^{10} \left(x^2 y^2 + y^2 z^2 + z^2 x^2 \right) \}
\]

What is the volume of this shape?

- Basic question
- Few algorithms
 - Monte-Carlo
- Exponential complexity with respect to precision
A numeric integral

\[\{ x^2 + y^2 + z^2 \leq 1 - 2^{10} (x^2 y^2 + y^2 z^2 + z^2 x^2) \} \]

What is the volume of this shape?

- Basic question
- Few algorithms
 - Monte-Carlo
- Exponential complexity with respect to precision
- Difficult certification on precision
Proposition

For any generic $f \in \mathbb{R}[x_1, \ldots, x_n]$,

$$
\text{vol}\{f \leq 0\} \triangleq \int_{\{f \leq 0\}} dx_1 \cdots dx_n = \frac{1}{2\pi i} \oint \text{Tube}\{f=0\} \frac{x_1}{f} \frac{\partial f}{\partial x_1} dx_1 \cdots dx_n.
$$

NB. $\text{vol}\{f \leq 0\} = \int_{-\infty}^{\infty} \text{vol}\{f \leq 0\} \cap \{x_n = t\} dt$
Proposition

For any generic $f \in \mathbb{R}[x_1, \ldots, x_n],$

$$\text{vol}\{f \leq 0\} \triangleq \int_{\{f \leq 0\}} dx_1 \cdots dx_n = \frac{1}{2\pi i} \oint_{\text{Tube}\{f = 0\}} x_1 \frac{\partial f}{\partial x_1} dx_1 \cdots dx_n.$$

proof Stokes formula + Leray tube map
Volumes are periods

Proposition

For any generic \(f \in \mathbb{R}[x_1, \ldots, x_n] \),

\[
\operatorname{vol}\{f \leq 0\} \triangleq \int_{\{f \leq 0\}} dx_1 \cdots dx_n = \frac{1}{2\pi i} \oint_{\text{Tube}\{f=0\}} x_1 \frac{\partial f}{\partial x_1} dx_1 \cdots dx_n.
\]

proof Stokes formula + Leray tube map

not so useful There is no parameter.
Proposition

For any generic \(f \in \mathbb{R}[x_1, \ldots, x_n] \),

\[
\text{vol} \{ f \leq 0 \} \triangleq \int_{\{ f \leq 0 \}} dx_1 \cdots dx_n = \frac{1}{2\pi i} \oint_{\text{Tube}\{ f = 0 \}} x_1 \frac{\partial f}{\partial x_1} dx_1 \cdots dx_n.
\]

proof Stokes formula + Leray tube map

not so useful There is no parameter.

better say For a generic \(t \),

\[
\text{vol} \{ f \leq 0 \} \cap \{ x_n = t \} = \frac{1}{2\pi i} \oint x_1 \left. \frac{\partial f}{\partial x_1} \right|_{x_n = t} dx_1 \cdots dx_{n-1}
\]

satisfies a Picard-Fuchs equation!
Volumes are periods

Proposition

For any generic $f \in \mathbb{R}[x_1, \ldots, x_n]$,

$$\text{vol} \{ f \leq 0 \} \triangleq \int_{\{ f \leq 0 \}} dx_1 \cdots dx_n = \frac{1}{2\pi i} \oint_{\text{Tube} \{ f = 0 \}} \frac{x_1}{f} \frac{\partial f}{\partial x_1} dx_1 \cdots dx_n.$$

proof Stokes formula + Leray tube map

not so useful There is no parameter.

better say For a generic t,

$$\text{vol} \{ f \leq 0 \} \cap \{ x_n = t \} = \frac{1}{2\pi i} \oint_{f_{|x_n=t}} \frac{x_1}{f_{|x_n=t}} \frac{\partial f_{|x_n=t}}{\partial x_1} dx_1 \cdots dx_{n-1}$$

satisfies a Picard-Fuchs equation!

NB. $\text{vol} \{ f \leq 0 \} = \int_{-\infty}^{\infty} \text{vol} \{ f \leq 0 \} \cap \{ x_n = t \} dt$
The “volume of a slice” function

\(\{y_1, y_2\} \), basis of the solution space of the Picard-Fuchs equation

\[
\[0 \cdot y_1 + 0 \cdot y_2 \\
1.0792353 \ldots \cdot y_1 - 40.100605 \ldots \cdot y_2 \\
0 \cdot y_1 + 0 \cdot y_2
\]

volume of the slice

\(z \) coordinate

\(-1 \)

\(1 \)
An algorithm for computing volumes

input \(f \in \mathbb{R}[x_1, \ldots, x_n] \) generic
An algorithm for computing volumes

\textbf{input} \quad f \in \mathbb{R}[x_1, \ldots, x_n] \text{ generic}

\textbf{symbolic integration} \quad \text{Compute a differential equation for } y(t) \triangleq \text{vol}\{ f \leq 0 \} \cap \{ x_n = t \}.
An algorithm for computing volumes

input \(f \in \mathbb{R}[x_1, \ldots, x_n] \) generic

symbolic integration Compute a differential equation for \(y(t) \triangleq \text{vol} \{ f \leq 0 \} \cap \{ x_n = t \} \).

bifurcations Spot singular points where \(y(t) \) may not be analytic.
An algorithm for computing volumes

input \(f \in \mathbb{R}[x_1, \ldots, x_n] \) generic

symbolic integration Compute a differential equation for \(y(t) \triangleq \text{vol}\{f \leq 0\} \cap \{x_n = t\} \).

bifurcations Spot singular points where \(y(t) \) may not be analytic.

numerical integration On each maximal interval \(I \subset \mathbb{R} \) where \(y(t) \) is analytic,
An algorithm for computing volumes

input $f \in \mathbb{R}[x_1, \ldots, x_n]$ generic

symbolic integration Compute a differential equation for $y(t) \triangleq \text{vol}\{f \leq 0\} \cap \{x_n = t\}$.

bifurcations Spot singular points where $y(t)$ may not be analytic.

numerical integration On each maximal interval $I \subset \mathbb{R}$ where $y(t)$ is analytic,

 • identify $y|_I$ in the solution space of the PF equation,
An algorithm for computing volumes

input \(f \in \mathbb{R}[x_1, \ldots, x_n] \) generic

symbolic integration Compute a differential equation for \(y(t) \triangleq \text{vol} \{ f \leq 0 \} \cap \{ x_n = t \} \).

bifurcations Spot singular points where \(y(t) \) may not be analytic.

numerical integration On each maximal interval \(I \subset \mathbb{R} \) where \(y(t) \) is analytic,

- identify \(y|_I \) in the solution space of the PF equation,
- compute \(\int_I y(t) \).

The complexity is quasi-linear with respect to the precision! (To get twice as many digits, you need only twice as much time.)
An algorithm for computing volumes

input \(f \in \mathbb{R}[x_1, \ldots, x_n] \) generic

symbolic integration Compute a differential equation for \(y(t) \triangleq \text{vol}\{f \leq 0\} \cap \{x_n = t\} \).

bifurcations Spot singular points where \(y(t) \) may not be analytic.

numerical integration On each maximal interval \(I \subset \mathbb{R} \) where \(y(t) \) is analytic,

- identify \(y|_I \) in the solution space of the PF equation,
- compute \(\int_I y(t) \).

return \(\text{vol}\{f \leq 0\} = \sum_I \int_I y(t) \).

The complexity is quasi-linear with respect to the precision! (To get twice as many digits, you need only twice as much time.)
An algorithm for computing volumes

\textbf{input} \quad f \in \mathbb{R}[x_1, \ldots, x_n] \text{ generic}

\textbf{symbolic integration} \quad \text{Compute a differential equation for } y(t) \triangleq \text{vol}\{f \leq 0\} \cap \{x_n = t\}.

\textbf{bifurcations} \quad \text{Spot singular points where } y(t) \text{ may not be analytic.}

\textbf{numerical integration} \quad \text{On each maximal interval } I \subset \mathbb{R} \text{ where } y(t) \text{ is analytic,}

\quad \text{• identify } y|_I \text{ in the solution space of the PF equation,}

\quad \text{• compute } \int_I y(t).

\textbf{return} \quad \text{vol}\{f \leq 0\} = \sum_I \int_I y(t).

\textit{The complexity is quasi-linear with respect to the precision!}

(To get twice as many digits, you need only twice as much time.)
A hundred digits (within a minute)

\[
\text{vol} \left(\begin{array}{c} \text{\textbullet} \\ \text{\textbullet} \\ \text{\textbullet} \end{array} \right) = 0.1085754214603609377395033959942076198109178744466074754444758229932853606730329281949434744140640661366242346279598087781034932346781568...
\]

Computation of the Picard group of quartic surfaces

joint work with Emre Sertöz
The Picard group

quartic surface \(X = V(f) \subseteq \mathbb{P}^3 \) smooth, where \(f \in \mathbb{C}[w, x, y, z] \) is homogeneous of degree 4.

Picard group \(\text{Pic} \, X = \{ [\gamma] \mid \gamma \text{ algebraic curve} \} \subset H_2(X, \mathbb{Z}) \cong \mathbb{Z}^{22} \)

example 1 \(\text{Pic(very generic quartic surface)} = \mathbb{Z} \cdot (\text{hyperplane section}) \)

example 2 \(\text{Pic} \, V(w^4 + x^4 + y^4 + z^4) \cong \mathbb{Z}^{20}, \text{generated by the 48 lines} \)

How to compute it? Symbolic approach is difficult because computing elements of \(\text{Pic} \, X \) explicitly involves solving huge polynomial systems. And we do not even have an *a priori* degree bound.
Lefschetz (1,1)-theorem

\[X = V(f) \subset \mathbb{P}^3 \text{ smooth quartic surface} \]

periods \(\gamma_1, \ldots, \gamma_{22} \) basis of \(H_2(X, \mathbb{Z}) \)

\[\eta_i = \oint_{\text{tube}(\gamma_i)} \frac{dx dy dz}{f(1, x, y, z)} \in \mathbb{C} \]

Efficiently computable at high precision thanks to Picard-Fuchs equations and numerical analytic continuation!

theorem \(\text{Pic} X = \{(a_1, \ldots, a_{22}) \in \mathbb{Z}^{22} \mid a_1 \eta_1 + \cdots + a_{22} \eta_{22} = 0\} \)

The Picard group is the lattice of integer relations between the periods of the quartic surface.

algorithm Compute the periods with high precision (typically 1000 digits). Use LLL to recover \(\text{Pic} X \).
How to certify the computation?

goal For $M > 0$, compute $\epsilon_M > 0$ such that for all $a \in \mathbb{Z}^r$,

$$\|a\| \leq M \text{ and } \left| \sum a_i \eta_i \right| < \epsilon_M \Rightarrow \sum a_i \eta_i = 0.$$

For contradiction assume that $0 < \left| \sum a_i \eta_i \right| \ll 1$.

perturbation There exists \tilde{f} near f such that the periods $\tilde{\eta}_i$ of $V(\tilde{f})$ satisfy $\sum_i a_i \tilde{\eta}_i = 0$.

Lefschetz Then $V(\tilde{f})$ contains an algebraic curve of a certain type whereas $V(f)$ does not.

algebraic condition There is an explicit polynomial with integer coefficients such that $P(f) \neq 0$ and $P(\tilde{f}) = 0$.

separation If f has integer coefficients, then $|P(f)| \geq 1$ so \tilde{f} cannot be too close to f.

Perspectives
Quelques objectifs liés à ces questions

T21 *Calcul des périodes et des volumes*
Plus efficace, plus général

T22 *Calcul symbolique des intégrales à bord*
Elles interviennent dans le calcul des volumes et en arithmétique

T23 *Calcul efficaces de bases de Gröbner différentielles*
Outil important pour l’analyse algébrique