Multiplication algorithms

Svyatoslav Covanov
Team CARAMBA

February 25, 2018

T UNIVERSITE
2LA— DE LORRAINE

Asymptotic multiplication
Bilinear rank

Conclusion

2/44

Asymptotic multiplication

3/44

Naive multiplication

How to multiply two N-bit integers a and b 7

4/ 44

Naive multiplication

How to multiply two N-bit integers a and b 7
Schoolbook multiplication: O(N?) bit complexity.

Karatsuba:
» O(N'e23) bit complexity.
» Transformation of integers into polynomials.

4/ 44

Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.
Output: 2 polynomials A=Y, a;x" and B =", bix' of
degree n — 1.

a=ag+2"x a1+ - +a,q x 2 Hk= A(25)
b=by+ 2% x by + - + b,y x 20"~ Vk= B(2¥)

5/ 44

Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.

Output: 2 polynomials A=Y, a;x" and B =", bix' of
degree n — 1.

a=ag+2"x ay+ -+ ap_1 x 2 Vk= A(2K)
b=by+ 2% x by + - + b,y x 20"~ Vk= B(2¥)
» R is a commutative ring.
L A—Ac R[x]
B— BeR[x]
» C — C = A- B is injective:
J
Vi lgl =1> ai-bi| < (j+1)-2% <n-2%
i=0

5/ 44

» We choose 2n — 1 distinct points w; of R.
» Computation of A(w;) and B(w;): equivalent to the
product

do
Alw,
I w ...owgt : (0)
1w ... owt :
1 1 ano—l _ A(W,)
1 wo,o1 ... W22::11)
0 A(Wzn—l)

» Pointwise products A(w;) - B(w;) = C(w;).
» Lagrange interpolation of C from the 2n points
A(w;) - B(w;):

1w ...owg! - A(we)B(wo)
1w .owi! 0_ 0

2:n—1 A(WZn—l)B(WZn—l)

1 Wopn—1 ... Wo, 1 6/ 44

Evaluation-Interpolation scheme

Pointwise
product

[xoy0, - - - x2p—1Y2n—1]

'

Interpolation

7/ 44

Discrete Fourier Transform (DFT)

If R is a ring containing a 2n-th principal root of unity w:

let
1 1 . 1
1 w . w21
Mz”(w) - : :
1 agkfl (agnAi)2nfl
For A € RI[x],
A(1)
Aw)
A(w2n—1)

is the discrete Fourier transform of A.

8/ 44

Definition
Let R be a ring containing a 2n-th root of unity w. The root
w is said to be a 2n-th principal root of unity if

2n—1
Vie[l,2n-1],> wi=0.
j=0
Weaker notion: primitive root of unity if

Vi€ [1,2n - 1], 0" # 1.

Primitive and principal is the same thing on a field.

9/ 44

If R contains a 2n-th principal root of unity w, then

1
Mgn(W)_l = EMQn(w_l).

= An efficient algorithm for the evaluation gives an efficient
algorithm for the interpolation...

10/ 44

FFT(A w, 2n)

if n =2 then
return Ag + A1 + X(Ao — Al)
end if
Aeven < (A2i)i
Aodd (Azit1)i

~

Aeven — FFT(Aeven: W2: n) > AAeven = Zie[O,n—l] Aeven(wzi)xi

A

Add < FFT(Aodd, w2, n) > Aodd = Yo n-1] Aodd (W)X

A Aogd(X) + Acven(wX) + X" (Aoda(X) — Aeven(wX))
return A

11/ 44

Choice of the ring

1. N: # bits of the integers that we multiply
2. n— 1: degree of the polynomials A and B used to
represent a and b

3. k: # bits used to encode the coefficients of A and B:
a=A(%), b=B(2")and n- k = N.

12/ 44

Choice of the ring

1. N: # bits of the integers that we multiply

2. n— 1: degree of the polynomials A and B used to
represent a and b

3. k: # bits used to encode the coefficients of A and B:
a=A(%), b=B(2")and n- k = N.

Examples: (Schénhage-Strassen algorithms)

» R =C: w=exp(im/n), provided that we allow enough
precision.

» R=7/(2°+1)Z: w =2 is a 2e/j-th principal root of
unity.

12/ 44

Qo
Q1
Q2
Qs
Qs
Qs
Qe
Q7
Qs
Qo
Q10
Q11
Q12
Q13
Q14
Q15

= 2n = 16 points, log(2n) = 4 levels, n(log(2n) — 1) = 24
multiplications.

13 /44

Some remarks

Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglog N - --200g™N)
Z/(2¢ +1)Z O(V'N) cheap O(VN) N log N loglog N

In C, computing an FFT in {1,—1,/, —i} is quite easy. But
less obvious for superior orders...

14 /44

Asymptotic multiplication

Firer

15/ 44

Cooley-Tukey

» 2n-point DFT computed with radix-2 FFT:
2 - DFT(n) + Twiddle factors + n- DFT(2).
» 2n-point DFT computed with radix-4 FFT:
4. DFT(n/2) + Twiddle factors + n/2 - DFT(4).

» 2n-point DFT computed with radix-2m FFT (2m divides
2n):

2m - DFT(n/m) + Twiddle factors + n/m - DFT(2m).

DFT(mn) = m- DFT(n) + Twiddle factors + n- DFT(m).

16 / 44

Se gz

X
NG

X0
&

3

4. DFT(4):

>,
O
~
=
o
>
e
(@)
O
)
N
X
5
(%)
o

>,
O
~
=
o
>
e
(@)
O
)
N
X
5
(%)
o

[N

ox oy
TN T g

%
O

K
C %

s
z(
X\

Vo

S8
£

5K

An example in Complex Field: radix-2 FFT

19/ 44

An example in Complex Field: radix-4 FFT

02
X
&
&
&
&
&
2
o ®
&
&
&
&
&
02
&

20/ 44

Fiirer's algorithm

» R is the ring R = C[x]/(x” + 1) (P divides 2n).
= There exists a 2n-th root of unity p such that p"/* = x.

» Computation of 2n-point DFT with radix-2P FFT.
» log,p 2n levels of recursion:

log,p(2n)- 2n, - Mz

nb. of levels Mult. perlevel cost of a mult. in R

expensive multiplications.

21/ 44

Fiirer's algorithm

» R is the ring R = C[x]/(x” + 1) (P divides 2n).
= There exists a 2n-th root of unity p such that p"/* = x.

» Computation of 2n-point DFT with radix-2P FFT.
» log,p 2n levels of recursion:

log,p(2n)- 2n, - Mz

nb. of levels Mult. perlevel cost of a mult. in R

expensive multiplications.

Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglog N - - - 20(ee™ V)
Z/)(2¢+1)Z O(V'N) cheap O(V/'N) N log N loglog N
C[x]/(x" +1) | O(N/log? N) it depends O(log? N) N log N 200og™ N)

21 /44

Asymptotic multiplication

Using generalized Fermat primes

22 /44

Number-theoretic transform

1. N: # bits of the integers that we multiply

2. n—1: degree of the polynomials A and B used to
represent a and b

3. k: # bits used to encode the coefficients of A and B:
a = A(2%) and b = B(2¥)

Instead of computing FFT over C, we can choose R = Z/qZ.
The prime g must satisy 2n | ¢ — 1 (there exists a 2n-th

principal root of unity).
A choice of g such that log g = O(log N) is optimal.

23 /44

Number-theoretic transform

1. N: # bits of the integers that we multiply

2. n—1: degree of the polynomials A and B used to
represent a and b

3. k: # bits used to encode the coefficients of A and B:
a = A(2%) and b = B(2¥)

Instead of computing FFT over C, we can choose R = Z/qZ.
The prime g must satisy 2n | ¢ — 1 (there exists a 2n-th
principal root of unity).

A choice of g such that log g = O(log N) is optimal.

We cut the N-bit integers in pieces of size k ~ 1 log g:
logn+ 2k <loggq.

= M%S > Mzk.

23 /44

A Firer-like number theoretic transform

» q is chosen such that g = r + 1 : this is a generalized
Fermat prime.
Conjecturally, there exists r such that r < P - (log P)? =
log, g =~ P log P.

» Let p be a 2n-th root of unity in Z/qZ such that
n/P __
P =r.

24 /44

A Firer-like number theoretic transform

» q is chosen such that g = r + 1 : this is a generalized
Fermat prime.

Conjecturally, there exists r such that r < P - (log P)? =
log, g =~ P log P.

» Let p be a 2n-th root of unity in Z/qZ such that
n/P __
P =r.

Working in radix r is like working with "polynomials" of
degree P whose coefficients are bounded by r:

Mzr < Mz, x-

24 /44

Steps of the algorithm

» Find a prime g = r'°eN 4 1 sufficiently large for

multiplying integers of size N.

v

Cut the integers a and b into pieces of size
k = O(log N loglog N), that are the coefficients of A and
B.

Represent the pieces as elements of Z/qZ in radix r.

v

v

Compute the FFT, the componentwise product, the
inverse FFT.

Switch from radix r to the regular representation of
elements of Z/qZ.

Transform the polynomial C = A- B into an integer ¢ by
evaluating it at 2.

v

v

25 /44

Comparison of complexities

Using generalized Fermat primes we get the following data:

Case Degree Mult. by a root Recursion Complexity
[O(N/log N) expensive 0O(log N) N log N loglog N - --200&™ W)
Z/(2¢ +1)Z O(V'N) cheap O(v/N) N log N log log N
C[x]/(x" +1) O(N/log” N) it depends 0O(log” N) N log N 16¢ ¥
Mersenne prime and Bluestein | O(N/(log N'°8™8 V) it depends O(log N'&8T V) N log N 48N
Z/(rP +1)Z O(N/(log N loglog N)) it depends O(log N loglog N) N log N 48"V

26 / 44

Bilinear rank

27 /44

Short product example

How to multiply two polynomials A = ag + a1 X + a,X? and
B = by + by X + byX? modulo X3 ?

28 / 44

Short product example

How to multiply two polynomials A = ag + a1 X + a,X? and
B = by + b1 X + b,X? modulo X3 ?

A-B= aobo + (albo + aobl)X + (32b0 + a1b1 + aobz)Xz
1. Naive multiplication:
» mo = agbg, ™1 = a1bg, m2 = agby, m3 = a1by,
T4 = azbl and s = a1b2.
» We have A- B = g + (71 + m2)X + (73 + 74 + 75) X2.

2. Optimal formula:
» mo = agbg, ™1 = a1by, ™ = azby,
73 = (ag + a1)(bo + b1) and
74 = (ag + a2)(bg + by).
» We have
A-B=my+ (13 —m — m1)X + (71 + 74 — Mo — m2) X2
The bilinear rank is equal to 5.

28 / 44

Matrix formalism

Cop = (ao di 22) .

G = (ao di 32) .

o=1(a a a)-

o O

= O O O = O

o O

O = O O O =

o O

OO = o O O

= agby

= albo + aobl

= apybg + a1b1 + agb,

29 / 44

Matrix representation of formulae:

100 0 00 0 00 110 1 01
000,10 10 0 00 110 0 00
0 00 0 00 00 1 0 00 1 01
ag;o 81;1 a;Zz (ao+al;zbo+b1) (ao+32;zb0+b2)
Decomposition with rank-one matrices:
010 110 100 0 00
1 00]=(110]—=100O0]=(0 10
0 00 0 00 0 00 0 00
C1
0 01 0 00 101 1 00 0 0O
01 0)=101O0])+(00O0]=10O0O0f=(0 00
100 000 101 000 001

30/44

Problem to be solved

Let K be a finite field. Let T (the target) be a subspace of
M., »(K) of dimension ¢.

Let G be the set of matrices of rank one in M, ,(K).
Problem to be solved: Find all free families 7 C G of
minimal size such that T C Span(F).

Definition
Let r > 0 and n > 0. We denote by ., the set of all

subspaces V C M, , such that there exists {go,...,g—1} a
free family of G satisfying V = Span(go, - .., &gr—1)-

Restatement:
1. Find minimal r such that ., contains subspaces V s.t.
TCV,
2. Enumerate the bases of rank-one matrices for subspaces
Vedst. TCV.

31/44

Short Product Example

For the short product modulo X3, we have
1 00 010 0 0 1
T=Span| |0 0 0], [100],[010]],
0 0O 0 00 1 00

K=TF,, {=n=3and r =5.

32/44

Bilinear rank

Existing algorithms

33/44

Naive algorithm

Enumerate all subspaces V' € .7, and keep those which
contain T.

Complexity: #., < (#rg> For / =3 and K = IF,, we have

49
#.75 = 157,535 <« 1,906, 884 = (5)

34 /44

Incomplete basis improvement

Theorem

Let T be a subspace of dimension { of M, ,, let r > { be an
integer. For any V € .7, such that T C V, there exists
W e .7 _,suchthat T W = V.

Incomplete basis improvement: compute all the vector spaces
V=T+W for W e .%_, and keep those which are in .7,.

#G

Complexity: #.7,_, < ay

#. = 980 < 157,535.

. For ¢ =3,

35 /44

Automorphisms

We consider the action of pairs (P, Q) (P and Q in GL,) on
Me M,
Mo(P,Q)=P"-M-Q.

Let Stab(T) be the group of (P, Q) such that
VMeT, Mo(P,Q)eT.

The group action can be used with all the previous algorithms:
we compute .,/ Stab(T) or .#,_;/ Stab(T).

36 /44

Bilinear rank

Contribution

37 /44

Intermediate strategies

The two previous strategies are two extreme cases of a mixed
strategy.

Let k > 0. For all W € ., such that dim(W N T) = k,
compute the vector spaces V = T + W and keep those which
are in .%,.

Notation

For an integer d > 0 and a subspace F C M, ,, we denote by
Cq(F) the set of subspaces W € .#4 such that F C W.

38 /44

Intermediate strategies

The two previous strategies are two extreme cases of a mixed
strategy.

Let k > 0. For all W € ., such that dim(W N T) = k,
compute the vector spaces V = T + W and keep those which
are in .%,.

Notation

For an integer d > 0 and a subspace F C M, ,, we denote by
Cq(F) the set of subspaces W € .#4 such that F C W.

» Naive algorithm: compute C,(0);

» Incomplete basis improvement: compute C,_,(0);

» General case: given g subspaces Fy, ..., Fy_q of T of
dimensions ko, . .., kg_1, compute

Crttko(Fo), -+ Crotgny_y (Fg—1).

38 /44

Example for the short product

Notation
For an integer { > 0 , we denote by T, the subspace of M,
such that T, = Span(cy, ..., ci_1), where the ¢;'s are the

coefficients of the short product modulo X*.

Theorem

Let V € ., containing T,. There exist o € Stab(T,) and
W € C,_si2(Span(ci_1, cr—2)) such that V =T, + Woo.

For ¢ = 3:
approach covering set cardinality
Naive approach Cs(0) 157,535
BDEZ '12 Ca2(0) 980
New approach | C4(Span(cz, c1)) 12

39/44

Statement of the problem

Algorithmic problem: enumerate a set of the form

Cr—osk(Span(go, . .., ¢x—1))/ Stab(T)NStab(Span(¢o, - . ., Px-1)),

where T is a subspace of M, , of dimension ¢ and the ¢;'s are
elements of T.
Steps:
» precompute ., ./ GL, X GL,,
» deduce
Cr—e+k(Span(o, - . ., pk—1))/ Stab({¢o, - . ., dx—1}) and
» apply the the quotient
Stab({¢o, ..., dx_1})/ Stab(T) N Stab({¢o, - - ., Pk_1})-
Remark: we obtain

C,,Hk(Span(gbo, . ,(bk,l))/ Stab(T) N Stab({¢o, ey ¢k71})1
slightly larger than the targeted set.

40/ 44

Technical aspects

How to compute

Cr_eek(Span(o, . . ., dx_1))/ Stab({do, . . ., dk_1})?

Algorithm:
» forall W e ., _,.«/GL, XGL,, enumerate all the tuples
(o, - .., k1) such that ¢); € W and rk(;) = rk(¢;);
» compute o € GL, x GL, such that

{Wo, ..., k_1} o0 ={¢o,...,Pxk_1} (computational

group theory, Weierstrass-Kronecker theory...).

41/ 44

Covering sets on examples

Covering set for the short product modulo X°:

» Cs(Span(cs, c1)).

Covering sets for the product of matrices 3 x 2 by 2 x 3 (the
coefficients are denoted by ¢;;):

» C7(Span(coo + 11+ ©2));

Span(coo + c11, Co0 + C22));
(cop+ c11,C01 + C22));

(coo + c11, @22));

(

Span(co0; €11, €2.2))-

42/ 44

We have timings on a single core 3.3 GHz Intel Core i5-4590.

product time (s) | nb. of solutions
ShortProduct, 3.0 1,440
ShortProducts | 2.4 - 103 146,944

Table: Computation of decompositions of the short product.

product time (s) | nb. of solutions
Dx3by3x2|41-10°| 1,006,452
3x2by2x3]3.0-10° 7,056

Table: Computation of decompositions of the matrix product.

43/ 44

Avoiding the padding due to a modular ring and the Kronecker
substitution improves on the complexity of the algorithm: we
reach Nlog N - 498" N for the integer multiplication.

The complexity is conjectural: related to “Hypothesis H" and
lower bounds on r such that P(r) is prime for a polynomial P.

In practice, we do not expect this algorithm to improve on
Schénhage-Strassen for sizes < 240 bits.

We obtain interesting speed-up for symmetric bilinear maps
such as matrix product and short product compared to
implementations of BDEZ.

How to push computations further: possible to decompose
matrix product 3 x 3 by 3 x 37

44 / 44

	Asymptotic multiplication
	Fast Fourier Transform
	Fürer
	Using generalized Fermat primes

	Bilinear rank
	Optimal formulae
	Existing algorithms
	Contribution

	Conclusion

