> restart; -1; with(LinearAlgebra); -1; with(DETools); -1; libname; 1
 

/Library/Frameworks/Maple.framework/Versions/18/lib (1)
 

> libname :=
 

/Users/maddah/Documents/Work/Packages/packages/libraries/AppSing/AppSing.lib (2)
 

> march('list',
 

[[
[[
[[
[[
[[
[[
[[
(3)
 

>
 

>
 

Desingp(Matrix,variable,p) tests and performs desingularization at an irreducible polynomial p

Desing(Matrix,variable)   identifies, tests, and performs desingularization at all irreducible polynomials p

The output is the change of basis T, its inverse invT, the matrix B of the equivalent desingularized system, and the execution time t, respectively.
 

 

DesingpSteps(Matrix,variable,p) and DesingSteps(Matrix,variable) give the same output and print key intermediate steps as well  

 

For more information, please refer to our paper entitled "Removing Apparent Singularities of Systems of Linear Differential Equations with Rational Function Coefficients" and/or the description of the package. 

Example 1 (Example 1 in the paper) 

Input Matrix 

> A := Matrix(2, 2, [0, 1, `/`(`*`(`+`(`*`(4, `*`(`^`(z, 2))), `-`(2))), `*`(`+`(`*`(`^`(z, 2)), 2))), `+`(`-`(`/`(`*`(`+`(`*`(3, `*`(`^`(z, 2))), `-`(4))), `*`(z, `*`(`+`(`*`(`^`(z, 2)), 2))))))]); 1
 

Matrix(%id = 18446744078273212534) (1.1.1)
 

>
 

Desingularization at p= z^2 +2 

> T, invT, B, t := Desingp(A, z, `+`(`*`(`^`(z, 2)), 2)); 1
 

 

The roots
Matrix(%id = 18446744078273205662), Matrix(%id = 18446744078273206382), Matrix(%id = 18446744078273207102), .138 (1.2.1)
 

Details of Desingularization at p= z^2 +2 ( intermediate steps) 

> T, invT, B, t := DesingpSteps(A, z, `+`(`*`(`^`(z, 2)), 2)); 1
 

 

 

 

This is our matrix and its residue matrix at
The following are the eigenvalues with their multiplicities:
The roots
Matrix(%id = 18446744078273198790), Matrix(%id = 18446744078273199510), Matrix(%id = 18446744078273192054), 0.63e-1 (1.3.1)
 

Desingularization at p= z 

> T, invT, B, t := Desingp(A, z, z); 1
 

 

The roots of
Matrix(%id = 18446744078254402366), Matrix(%id = 18446744078254403086), Matrix(%id = 18446744078254395630), .262 (1.4.1)
 

Details of Desingularization at p= z ( intermediate steps) 

> T, invT, B, t := DesingpSteps(A, z, z); 1
 

 

 

 

This is our matrix and its residue matrix at
The following are the eigenvalues with their multiplicities:
The roots of
Matrix(%id = 18446744078273179886), Matrix(%id = 18446744078273180606), Matrix(%id = 18446744078273182286), .269 (1.5.1)
 

Desingularization  

> T, invT, B, t := Desing(A, z); 1
 

 

 

The roots of
The roots
Matrix(%id = 18446744078270509774), Matrix(%id = 18446744078270510494), Matrix(%id = 18446744078270511214), .282 (1.6.1)
 

>
 

Details of Desingularization  

> T, invT, B, t := DesingSteps(A, z); 1
 

 

 

 

This is the set of irreducible monic polynomials. We run our desingularization test and algorithm for each successively
The roots of
The roots
Matrix(%id = 18446744078270664942), Matrix(%id = 18446744078270665662), Matrix(%id = 18446744078270666382), .341 (1.7.1)
 

 

Example 2: Shaoshi Chen, M. Jaroschek, M. Kauers, M. F.Singer, Desingularization Explains Order-Degree Curves for Ore Operators, Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, pp. 157-164, ACM, U.S.A. (2013)) 

Input Matrix 

> A := Matrix(2, 2, [0, 1, `/`(`*`(`+`(`*`(2, `*`(`^`(x, 4))), `-`(`*`(`^`(x, 3))), `-`(`*`(35, `*`(`^`(x, 2)))), `*`(25, `*`(x)), 45)), `*`(`+`(x, 1), `*`(`+`(`*`(2, `*`(`^`(x, 3))), `-`(`*`(`^`(x, 2))...
 

Matrix(%id = 18446744078271055262) (2.1.1)
 

Desingularization at p= 2*x^3 -x^2 -20*x +23 

> T, invT, B, t := Desingp(A, x, `+`(`*`(2, `*`(`^`(x, 3))), `-`(`*`(`^`(x, 2))), `-`(`*`(20, `*`(x))), 23)); 1
 

 

The roots of
Matrix(%id = 18446744078254390918), Matrix(%id = 18446744078254375270), Matrix(%id = 18446744078254375990), .283
Matrix(%id = 18446744078254390918), Matrix(%id = 18446744078254375270), Matrix(%id = 18446744078254375990), .283
(2.2.1)
 

> map(normal, map(simplify, MatrixMatrixMultiply(MatrixInverse(T), `+`(MatrixMatrixMultiply(A, T), `-`(map(diff, T, x)))))); 1
 

Matrix(%id = 18446744078254373094) (2.2.2)
 

Details of Desingularization at p= 2*x^3 -x^2 -20*x +23 (intermediate steps) 

> T, invT, B, t := DesingpSteps(A, x, `+`(`*`(2, `*`(`^`(x, 3))), `-`(`*`(`^`(x, 2))), `-`(`*`(20, `*`(x))), 23)); 1
 

 

 

 

This is our matrix and its residue matrix at
This is our matrix and its residue matrix at
The following are the eigenvalues with their multiplicities:
The roots of
Matrix(%id = 18446744078273196390), Matrix(%id = 18446744078273197110), Matrix(%id = 18446744078273197830), .225
Matrix(%id = 18446744078273196390), Matrix(%id = 18446744078273197110), Matrix(%id = 18446744078273197830), .225
(2.3.1)
 

Example 3 (the introductory example in the paper) 

Input Matrix 

> A := Matrix(2, 2, [0, 1, `+`(`-`(`/`(`*`(2), `*`(z)))), `+`(1, `/`(`*`(2), `*`(z)))]); 1
 

Matrix(%id = 18446744078273199030) (3.1.1)
 

Desingularization 

 

> T, invT, B, t := Desing(A, z); 1
 

 

The roots of
Matrix(%id = 18446744078252940334), Matrix(%id = 18446744078252941054), Matrix(%id = 18446744078252966366), .275 (3.2.1)
 

 

Example 4: Shaoshi Chen, M. Kauers, M. F. Singer, Desingularization of Ore Operators, Available at: arXiv:1408.5512v1, (2014)) 

Input Matrix 

> A := Matrix(2, 2, [0, 1, `+`(`-`(`/`(`*`(`+`(x, `-`(2)), `*`(`+`(`*`(2, `*`(`^`(x, 2))), `-`(`*`(3, `*`(x))), 3))), `*`(`+`(x, `-`(1)), `*`(`+`(`*`(`^`(x, 2)), `-`(`*`(3, `*`(x))), 3), `*`(x)))))), `/...
 

Matrix(%id = 18446744078252968766) (4.1.1)
 

>
 

Desingularization at p = x^2 - 3*x +3 

> T, invT, B, t := Desingp(A, x, `+`(`*`(`^`(x, 2)), `-`(`*`(3, `*`(x))), 3)); 1
 

 

The roots of
Matrix(%id = 18446744078255271438), Matrix(%id = 18446744078096939718), Matrix(%id = 18446744078096940678), .202 (4.2.1)
 

Desingularization 

> T, invT, B, t := Desing(A, x); 1
 

 

 

 

The roots of
The roots
The roots of
Matrix(%id = 18446744078254378750), Matrix(%id = 18446744078254371294), Matrix(%id = 18446744078254372014), .567 (4.3.1)
 

Example 5: A. Bostan, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, J.-A. Weil, and N. Zenine, The Ising model: From Elliptic Curves to ModularForms and Calabi-Yau equations. J. Phys. A: Math. Theor., 44(4):045204, 44, (2011)) 

Example 5.2 : DE from  http://www.unilim.fr/pages_perso/jacques-arthur.weil/L3tilde.mpl 

Input Matrix 

> A := Matrix(3, 3, [0, 1, 0, 0, 0, 1, `+`(`-`(`/`(`*`(`*`(4, `+`(`*`(89128960, `*`(`^`(x, 7))), `*`(74981376, `*`(`^`(x, 6))), `-`(`*`(97687536, `*`(`^`(x, 5)))), `*`(33948640, `*`(`^`(x, 4))), `-`(`*`...
A := Matrix(3, 3, [0, 1, 0, 0, 0, 1, `+`(`-`(`/`(`*`(`*`(4, `+`(`*`(89128960, `*`(`^`(x, 7))), `*`(74981376, `*`(`^`(x, 6))), `-`(`*`(97687536, `*`(`^`(x, 5)))), `*`(33948640, `*`(`^`(x, 4))), `-`(`*`...
A := Matrix(3, 3, [0, 1, 0, 0, 0, 1, `+`(`-`(`/`(`*`(`*`(4, `+`(`*`(89128960, `*`(`^`(x, 7))), `*`(74981376, `*`(`^`(x, 6))), `-`(`*`(97687536, `*`(`^`(x, 5)))), `*`(33948640, `*`(`^`(x, 4))), `-`(`*`...
A := Matrix(3, 3, [0, 1, 0, 0, 0, 1, `+`(`-`(`/`(`*`(`*`(4, `+`(`*`(89128960, `*`(`^`(x, 7))), `*`(74981376, `*`(`^`(x, 6))), `-`(`*`(97687536, `*`(`^`(x, 5)))), `*`(33948640, `*`(`^`(x, 4))), `-`(`*`...
 

Matrix(%id = 18446744078270535190)
Matrix(%id = 18446744078270535190)
Matrix(%id = 18446744078270535190)
Matrix(%id = 18446744078270535190)
Matrix(%id = 18446744078270535190)
(5.1.1.1)
 

Desingularization at `+`(`*`(4352, `*`(`^`(x, 4))), `*`(3607, `*`(`^`(x, 3))), `-`(`*`(1678, `*`(`^`(x, 2)))), `*`(252, `*`(x)), `-`(8)) 

> T, invT, B, t := Desingp(A, x, `+`(`*`(4352, `*`(`^`(x, 4))), `*`(3607, `*`(`^`(x, 3))), `-`(`*`(1678, `*`(`^`(x, 2)))), `*`(252, `*`(x)), `-`(8))); 1
 

 

The roots of
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
Matrix(%id = 18446744078273191934), Matrix(%id = 18446744078273194694), Matrix(%id = 18446744078273188198), .545
(5.1.2.1)
 

>
 

 

Desingularization 

> T, invT, B, t := Desing(A, x); 1
 

 

 

 

 

The roots
The roots
The roots
The roots
The roots of
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
Matrix(%id = 18446744078254358886), Matrix(%id = 18446744078254361286), Matrix(%id = 18446744078270534350), 1.176
(5.1.3.1)
 

>
 

 

Example 5.2 : DE from  http://www.ms.unimelb.edu.au/~iwan/ising/series/Chi5/L11.txt 

DE 

> N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
N1 := `+`(`*`(w, `*`(`+`(`-`(`*`(16, `*`(`^`(w, 2)))), 1), `*`(Dw))), `-`(`*`(2, `+`(1, `*`(2, `*`(w)))))); -1; L1s := `+`(`*`(w, `*`(`+`(1, `-`(`*`(4, `*`(w)))), `*`(Dw))), `-`(2)); -1; V2 := `+`(`*`...
 

>
 

Input Matrix 

> A := CompanionMatrix(`/`(`*`(F3), `*`(F3P3)), Dw); -1; A := Transpose(A); 1
 

Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
Matrix(%id = 18446744078252940094)
(5.2.2.1)
 

> L := factors(F3P3); 1
 

[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
[1547425049106725343623905280, [[`+`(`-`(`*`(`/`(5169, 5629499534213120), `*`(w))), `-`(`/`(63, 5629499534213120)), `*`(`/`(29802552909, 5497558138880), `*`(`^`(w, 14))), `*`(`/`(27385298139, 13743895...
(5.2.2.2)
 

Desingularization at p(w) (of degree 37)  

> T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
T, Tinv, B, tim := Desingp(A, w, `+`(`*`(5629499534213120, `*`(`^`(w, 37))), `*`(5348024557502464, `*`(`^`(w, 36))), `-`(`*`(62874472922742784, `*`(`^`(w, 35)))), `*`(339080589913096192, `*`(`^`(w, 34...
 

The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
(5.2.3.1)
 

Desingularization 

> T, Tinv, B, tim := Desing(A, w); -1
 

 

 

 

 

 

 

 

 

The roots
The roots
The roots
The roots
The roots
The roots
The roots
The roots
The roots
The roots
The roots
The roots
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
The roots of
(5.2.4.1)
 

> map(denom, B); 1
 

Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
Matrix(%id = 18446744078270536990)
(5.2.4.2)
 

>